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Abstract: A multirobot system provides many advantages over a single robot. In certain situations, robots need to

maintain global connectivity while proceeding through tasks such as traveling to spots of interest in an area. This

paper formulates the problem of multiple robots traveling while constrained by connectivity and analyzes the limits

of increase in total traveling distance (TTD) caused by connectivity constraints. A connection condition is proposed

and proven, which can be used to direct the design of solutions. Two algorithms satisfying the connection condition,

connected nearest neighbor (CNN) and bold Lin–Kernighan heuristic (B-LKH), are proposed to solve this problem,

which consider the connectivity constraint in planning paths. Simulations are designed to investigate the influence of

important parameters, and comprehensive comparisons among algorithms are also conducted. The results show that

CNN and B-LKH significantly outperform previous systems with respect to TTD.

Key words: Multiple traveling salesmen problem, multirobot system, global connectivity, nearest neighbor, bold Lin–

Kernighan heuristic

1. Introduction

In recent years, research on control of multirobot systems (MRSs) has gained much attention due to the

advantages provided by a robot network compared to a single robot. A MRS is composed of a network of robots

that interact with each other to achieve a common goal. It is more efficient, redundant, and fault-tolerant than

a single robot when completing a job.

In situations where static infrastructures are not available, an MRS can be quickly deployed and can

provide sensing and actuating abilities. Thus, it can be used in a variety of missions such as surveillance

in hostile or severe environments (i.e. border patrol, disaster sites, and areas contaminated with biological,

chemical, or even nuclear wastes), large-area environmental monitoring (i.e. air quality monitoring, forest

monitoring, and wild-animal monitoring), etc. Generally, in these missions, the area of interest cannot be

covered by robots, which gives rise to the problem of traveling to interested spots (ISs).

This paper presents and solves a multirobot traveling problem constrained by connectivity (MRTPCC).

Informally speaking, given several robots and predetermined positions (i.e. ISs) on a map, the problem is to

assign travel paths to the robots for them to traverse all the ISs while making sure that they can communicate

with one another via wireless radio all the time. The objective of the study is to minimize the total traveling

distance (TTD) of the robot team. Although this problem seems very similar to the multiple traveling salesmen

problem (MTSP), the connectivity constraint makes it more difficult to solve. First, some robots will have to
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move to non-ISs to keep the robot network connected, so it significantly expands the search scope and thus

makes traditional heuristic searching methods impractical. Second, the robots have to be connected instantly,

which means that the solutions have to take temporal factors into consideration, while traditional methods

are merely time-sensitive. Last but not least, network partitioning has to be prevented, which increases the

communication and computational burdens of the solution. Note that the MRTPCC is the same as the MTSP

when the communication range of the robots is infinite. The MTSP is known to be NP-complete, and the

MRTPCC is readily proven to be NP-complete.

To solve this problem, the influence of the connectivity constraint is theoretically analyzed, and a connec-

tion condition is proposed and proven. Under the guidance of the connection condition, a nearest neighbor-based

method called connected nearest neighbor (CNN) and a bold Hamilton circle-based method called the bold Lin–

Kernighan heuristic (B-LKH) are proposed. Both of these algorithms ensure global connectivity in rounds. In

each round, robots reach as many ISs as possible. The difference of these algorithms lies in how they select goal

positions for each robot in one round. CNN is stateless and lightweight and uses a nearest-neighbor criterion,

while B-LKH makes selections based on a bold Hamilton circle. With global optimization, it generates shorter

paths. The details of these two algorithms are illustrated in Section 5.

This work is motivated by a practical monitor mission, in which a network of robots equipped with

cameras patrol a school and send the videos back to a sink computer through Wi-Fi. The data rate generated

by the camera is up to 2 Mbps; however, the storage space on each robot is only 256 MB, which means that if a

robot loses its connection to the sink computer for a period of about 20 min, the data will be lost. In an outdoor

environment, the communication range of Wi-Fi is typically 20–30 m, and thus data loss is constant if the paths

of robots are not properly scheduled. In a multirobot search and rescue system [1–3], this concern becomes

more serious because losing connection may cause unnecessary casualties. Maintaining connectivity of a robot

team is also crucial in applications of persistent surveillance, joint exploration, and mapping, where robots must

have the ability to align themselves along the boundaries of complex shapes in two dimensions while ensuring

the successful transmission of critical data [4–7]. Other applications requiring connectivity preservation include

rendezvous and formation control [8–11], wireless distributed computing [12], etc.

The contributions of this paper are summarized as follows: 1) The MRTPCC, a practical variation of

the MTSP, is formulated. 2) The influence of maintaining global connectivity is theoretically analyzed, and a

connection condition is proposed and proven, which can be used to direct the design of solutions to MRTPCC.

3) Two algorithms are proposed to solve the MRTPCC. CNN is lightweight and robust to environmental

dynamics, while B-LKH generates solutions with less TTD as the cost of higher computational complexity. (4)

Simulations are designed to investigate the influence of the amount of robots and ISs, communication range,

and IS distributions. Comparisons of the algorithms are also made.

The remainder of this paper is organized as follows: in the next section, related work on multirobot

systems is reviewed. Section 3 gives the system model and problem formulation. Section 4 analyzes the

influence of keeping connectivity and proposes and proves the connection condition. The CNN and B-LKH

algorithms are proposed in Section 5. Simulations are conducted in Section 6. Section 7 concludes the paper.

2. Related work

Traversing ISs is part of a patrol planning problem, or a persistent surveillance planning problem [13], based

on whether the visits should be regular. Generally, the solutions to this problem can be divided into 2 classes.

Stump et al. [14,15] considered a persistent surveillance problem in which ISs are periodically visited over

770



WANG and HU/Turk J Elec Eng & Comp Sci

a long period of time. They approximated the problem to a vehicle routing problem with time windows. By

properly modifying the original problem, they got a mixed integer linear problem formulation, which was further

decomposed into subproblems by using Lagrange multipliers to relax the constraint that each site can only be

visited by one vehicle. The proposed method is centralized and robust to mission dynamics. However, it has to

compute for each time window, and it does not consider connectivity of the robots.

The other viewpoint is to take it as a MTSP. Trevai et al. [16] considered multirobot surveillance in

unknown environments, where the boundary and obstacles were not known. By having robots sweep through

a bounded region to perform a search requiring maximum coverage, iterative surveillance paths were planned,

aiming to minimize the distance of the cyclic path. A simple but ineffective method is to find a TSP cyclic path

along all the observation points and then make the robot repeat this travel cycle over and over. Khamis et al.

[17] solved the problem of task allocation in mobile surveillance systems by applying a market-based approach.

The shortest sequence planning (SSP) algorithm was used to find the minimum cost path for each robot given

the ISs. The solution needed to perform a centralized SSP algorithm first, and then adjust the scheme in a

distributed way. Furthermore, neither [16] nor [17] took connectivity into consideration.

The MTSP has been widely studied in applications such as school bus routing, print press scheduling,

crew scheduling, etc. [18]. Current solutions include exact solutions and heuristic solutions. Bellmore et al. [19]

converted the asymmetric MTSP with m salesmen and n nodes into a standard asymmetric TSP with n+m−1
nodes. Rao [20] gave the transformation of the symmetric MTSP into a standard symmetric TSP. Xu et al.

[21] developed a 3/2-approximation algorithm for the multidepot MTSP, which partially filled the gap between

the existing best approximation ratios for the TSP and for the multidepot MTSP in the literature. Therefore,

the resulting problem can be solved by any algorithm devised for the TSP. These transformations make copies

of nodes and generate an expanded graph that increases the problem scale and complexity. The TSP has

been intensively studied for decades [22], and the Lin–Kernighan heuristic (LKH) [23,24] is generally considered

to be one of the most effective solutions for generating optimal or near-optimal solutions for the symmetric

traveling salesman problem. However, to the best of our knowledge, none of the algorithms mentioned above

have considered the connectivity among the salesmen.

In many multirobot applications, maintaining connectivity is essential to their performance and the

results. Sugiyama et al. [1] investigated a multirobot rescue system consisting of a base station and autonomous

mobile robots. These robots coordinately formed a chain network to explore a disaster area and sent the video

back to the base station. The connectivity of this chain network is essential for reconnaissance. In this work,

the robots were divided into relay robots and search robots, depending on whether they were at the end of

the chain network. Relay robots kept their master search robot connected to the fixed base station. Arkin

et al. [5] investigated how a team of robotic agents self-organized for the exploration of a building, subject

to the constraint of maintaining line-of-sight communications. Based on the information available, 3 different

behavioral strategies were developed and tested. Two behavioral assemblages were involved: wander-avoid-past

and living-in-past. Vazquez et al. [6] presented a behavior-based architecture for multirobot exploration and

mapping. In this architecture, if the signal strength among the robots on the bridge of the robot network fell

below a threshold, the achieve-connectivity action was executed. Otherwise, the robots moved to their goals in a

distributed manner while avoiding collisions. However, this strategy cannot guarantee global connectivity when

one set of robots loses connection with another set simultaneously. Hsieh et al. [4] implemented a neighbor-based

method where robots stayed connected to certain neighbors. If the link quality among the robots fell below a

certain threshold, they moved to these neighbors. Robots moved to their goals when the link quality was at
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an acceptable level. Anderson [7] and Derbakova [25] considered the repair of a broken robot network due to

robot failures. Robots wander to reach their goals instead of moving cooperatively, which increases the TTD to

keep connectivity or avoid collision with each other. Ponda et al. [26] addressed network connectivity issues in

a more generalized task allocation application. The goal was to find a conflict-free allocation of tasks, valid in

certain time windows, that maximized the global score. They improved the consensus-based bundle algorithm

by explicitly considering the connectivity constraints in the planning process. However, these algorithms do not

consider the traveling distance when planning the task allocation. A higher score does not ensure less TTD.

Preserving global connectivity in MRSs was also intensively studied by Ji and Egerstedt [8], Dimarogonas

and Kyriakopoulos [9], and Sabattini et al. [10], where algebraic graph theoretic tools were used. Each robot

was assigned a control law, in which parameters were to be adaptively and locally estimated. Obeying the

control law, robots ensured that they kept connected to others, and thus applications like rendezvous and

formation control while preserving connectivity were achieved. Esin et al. [11] presented a novel method for

the formation control of a group of nonholonomic mobile robots using implicit and parametric descriptions of

the desired formation shape. The formation control strategy employs implicit polynomial representations to

generate potential fields for achieving the desired formation and the elliptical Fourier descriptors to maintain

the formation once achieved. However, these studies just consider one goal position for each robot, leaving the

allocation of all ISs unmentioned.

Compared to previous work, the algorithms proposed in this paper explicitly consider connectivity in

planning the paths. First, it is more efficient and effective than methods that try to fix connectivity only when

links are nearly broken. Second, to ensure connectivity of the plans, a connection condition is proposed and

proved. CNN and B-LKH modify the standard nearest neighbor method and LKH to satisfy the connection

condition. In B-LKH, the concept of nodes is expanded by applying a set-covering method. Since the proposed

algorithms meet the connection condition in each step, they are proven to be correct. The details of the

algorithms are presented in Section 5.

3. System model and problem formulation

Consider a planar rectangular area with no obstacles, where N robots are initially deployed at a service station

(SS). These robots are equipped with a wireless communication module, a computing module, a GPS module,

and a moving module. Each robot communicates with robots within distance r directly and with those outside

its communication range in an ad hoc way if relay robots exist.

Note that r is the effective communication distance rather than the maximum communication range

rmax , because the communication model is actually not an ideal circle [27]. Additionally, each robot occupies

a circular space of radius r0 . Robots can move at a maximum speed V , and turning time is neglected.

This paper considers the traveling problem in flat open areas, where obstacles are few in number and easy

for robots to cross over. Since generally ISs are far away from each other, collision among robots rarely occurs.

Even if it happens, the robots will execute a simple avoidance procedure automatically, so it is reasonable to

omit obstacles and robot size r0 in the model.

In a travel mission, there are M ISs to be traversed, whose coordinates are predetermined. The N robots

start from the SS, traverse all the ISs, and then return to the SS. Generally, N < M holds. Both ISs and robots

are regarded as points on the plane, which are characterized by their coordinates. By constantly exchanging

information with others, robots are available to obtain global knowledge about the mission and the map.

Formally speaking, ISs are the positions on the plane, which have to be visited by a robot at least once,
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and any other positions on the plane are called auxiliary spots (ASs). Robot Ri is called connected with Rj if

1) D(Ri, Rj) ≤ r , where D(Ri, Rj) calculates the distance of Ri and Rj ; or 2), there exists a robot Rk , such

that D(Ri, Rk) ≤ r and Rk is connected with Rj . Denote C(Ri, Rj) = 1 if Ri is connected with Rj , and

C(Ri , Rj) = 0 otherwise. A robot network S is a set of robots such that for ∀Ri , Rj in the set, C(Ri, Rj) =

1. A robot Ri is said to be connected with a robot network S if ∃Rj ∈ S , such that C(Ri , Rj) = 1.

The MRTPCC is formulated as follows. Given M ISs, i.e. IS1 , IS2 , . . . , ISM , and N robots, i.e. R1 ,

R2 , . . . , RN , try to designate a path Pi(t) for each robot Ri , to minimize:

∑N

i=1

∫ ∞

t=0

D (Pi (t+ dt) , Pi (t)) dt (1)

s.t.
∀j,∃tji, such that Pi (tj) = ISj (2)

∀tik, such thatC (Ri,Rk)= 1 (3)

∀t′t′′i, such that

∫ t′

t′
D (Pi (t+dt) ,Pi (t)) dt≤V ·(t′−t′) (4)

Here, i , k ∈ {1,2, . . . , N } , j ∈ {1,2, . . . , M } , tj , t ’, t” ∈ [0, ∞ ], tj is the time when the first robot visits

ISj , and P i(t) is the position of R i at time t .

Eq. (2) illustrates that each IS should be visited by some robots within a finite time. Eq. (3) demands

that the robot network should keep connectivity at all times. Eq. (4) declares that robots cannot move beyond

speed V . The goal is to minimize the TTD of all the robots according to Eq. (1).

4. Analysis of connectivity constraint

4.1. Optimal result of MRTPCC compared to MTSP

The MRTPCC differs from the MTSP mainly in the constraint of keeping connectivity of the robots. Intuitively,

this constraint makes the TTD of solutions for the MRTPCC much longer than that of the MTSP. Theorem 1

shows that given a map of ISs and N robots, the increase in TTD caused by connectivity is bounded.

Theorem 1 Given M ISs and N robots on a map, the communication range of robots is r. The optimal

traversing path of the MRTPCC and MTSP is α and β , and the corresponding minimum TTD is D(α) and

D(β) , so then 1 ≤ D(α)
D(β) ≤ min(N D(β)+2r

4r ) .

Proof The minimum TTD for the MRTPCC is obviously not less than that of the MTSP, because the

MRTPCC is virtually a constrained MTSP. Thus, D(α)
D(β) ≥ 1.

When N ≤ D(β)+2r
4r , a simple solution for the MRTPCC is to make all the N robots move along

β simultaneously so that all the ISs are visited and global connectivity is maintained. For this method, the TTD

is N •D(β), and thus D(α)
D(β) ≤ N .

When N > D(β)+2r
4r , one can make the robots evenly distributed along β , so that the distance of adjacent

robots is r , as shown in Figure 1a. The robots select a shorter way to their goal positions and travel back the
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same way. Thus, the TTD is D (α) ≤ 2 · (r+
D(β)

2 )·D(β)
2r

2 = D(β)·(2r+D(β))
4r . There is D(α)

D(β) ≤
D(β)+2r

4r . In this way,

all the ISs are traversed. Because at least one robot is at the SS, connectivity is also maintained.

In conclusion, 1 ≤ D(α)
D(β) ≤ min(N D(β)+2r

4r )

 

(a)  R obots evenly distributed along β  

 

(b)  An example of reaching bound upper 
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Figure 1. A solution for MRTPCC based on the optimal solution of MTSP: a) robots evenly distributed along β , b)

an example of reaching the upper bound.

Note that the upper and lower bounds of D(α)
D(β) can be reached separately.

Reaching the lower bound: Suppose that the distances from the SS to any IS are less than r . A schedule

for the MRTPCC is that one robot travels along β , and all the others stay at the SS. Therefore, there is D(α)

= D(β).

Reaching the upper bound: If there are 3 robots and only one IS, which is 3r away from the SS, the

optimal path α for the MRTPCC is shown in Figure 1b. The TTD is 12r , while the minimum TTD for MTSP

is 6r . Hence, D(α)
D(β)=

12r
6r = 2 =min

(
N, D(β)+2r

4r

)
= min

(
3, 6r+2r

4r

)
= 2. Theorem 1 explains the phenomenon

in [28], where the increase in TTD of CNN over NN is softened as the robot number increases (where NN is

a path-planning algorithm very similar to CNN, except that it does not consider the connectivity constraint).

Because there is an upper bound of the ratio of the TTD of CNN to that of NN, the proof is analogous to that

of Theorem 1.

5. The connection condition

In order to solve the MRTPCC, a certain condition should be followed in planning the paths. This condition,

denoted as the connection condition, should ensure that the robot network is connected all the time.

Lemma 1 Let A, B, C, D be four points on a plane, such that D(A,B) ≤ rand D(C,D) ≤ r.For ∀E on

segment AC and ∀F on segment BD, if D(A,E)
D(A,B) =

D(B,F )
D(B,D) , then D(E,F ) ≤ r.
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Proof Given that O is a reference point on the plane, and letting λ=D(A,E)
D(A,B) =

D(B,F )
D(B,D) , then

E⃗F = O⃗F − O⃗E

=
[
λO⃗C + (1− λ)O⃗D

]
−
[
λO⃗A+ (1− λ)O⃗B

]
= λA⃗C + (1− λ)B⃗D.

Without loss of generality, let
∣∣∣A⃗C∣∣∣≥ ∣∣∣B⃗D

∣∣∣ , and then
∣∣∣E⃗F

∣∣∣≤ ∣∣∣λA⃗C + (1− λ) A⃗C
∣∣∣≤r

Lemma 1 demonstrates that for any two robots, if the distances of their initial and goal positions are less

than R , and if they move straight forward at the speed proportional to their moving distance, they will remain

connected during the whole process. For instance, in Figure 2, if robotRi moves from A to B at the speed of

3 m/s, and robot Rj moves from C to D at the speed of 4 m/s, they keep connected while they are moving.

B AC ABC

D

B ACC B A

Robot  1 Robot  2 Robot  3 Robot  1 Robot  2 Robot  3

Figure 2. Connectivity maintenance of Ri and Rj ; r = 30 m andV = 4 m/s.

Corollary 1 Let A, B, C be three points on the plane, such that D(A,B) ≤ rand D(A,C) ≤r. Then for ∀E
on segment BC, D(A,E) ≤ r.

Corollary 1 is a direct use of Lemma 1. It shows a scenario in which one robot is at a standstill.

Corollary 2 Let A1B1 , A2B2 , . . . , AnBn bensegments on the plane, such that D(A1 ,A2) ≤ r,D(A2 ,A3)

≤ r, . . . , D(An−1 ,An) ≤ rand D(B1 ,B2) ≤ r,D(B2 ,B3) ≤ r, . . . , D(Bn−1 ,Bn) ≤ r.For ∀EionAiBiand

∀Ei+1onAi+1Bi+1 , if
D(Ai,Ei)
D(Ai,Bi)

= D(Ai+1,Ei+1)
D(Ai+1,Bi+1)

, then for ∀Ej ,Ek onAjBj , AkBk and
D(Aj ,Ej)
D(Aj ,Bj)

= D(Ak,Ek)
D(Ak,Bk)

,such

that C(Ej ,Ek) =1, where i, j, k ∈{1,2, . . . , n}.

Corollary 2 is obvious according to Lemma 1. It reveals that if N robots are connected at the beginning

as well as in the end, and they move straight forward at the speed proportional to their moving distance, they

remain connected during the whole process.

The connection condition LetR1, R2 ,. . . , RN beN robots;Ri is located inAiand heads forBi . The moving

plan of these robots satisfies the connection condition if 1) D(A1 ,A2) ≤ r,D(A2 ,A3) ≤ r, . . . , D(AN−1 ,AN )

≤ rand D(B1 ,B2) ≤ r,D(B2 ,B3) ≤ r, . . . , D(BN−1 ,BN ) ≤ r ; 2) Ri moves from Ai to B i in a straight

line; and 3) Ri moves at the speed of α·D(Ai ,Bi), where i ∈ {1,2, . . . , N } , α > 0.

The correctness of the connection condition is readily proven according to Corollary 2. Note that it is a

sufficient condition for a path plan to be a valid solution of the MRTPCC if it satisfies the connection condition
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for each move. According to the connection condition, the problem can be transferred to a node division

problem: divide the ISs into several sets with equal size N . In each set, the ISs are connected. Different sets

may have intersections, and the union of the sets includes all the ISs. The target is to minimize the total

distance of paths connecting these sets. In the next section, two algorithms are proposed to assign such paths

for the robot network. By applying the connection condition, it is ensured that the algorithms produce a valid

solution for the MRTPCC.

6. The solution

6.1. Connected nearest neighbor algorithm

In this subsection, the CNN algorithm is proposed. CNN works in rounds to find the next goal position and

corresponding arrival time for each robot until all ISs are visited. In each round, a search phase is first performed

to find a pioneer robot and IS pair based on the nearest neighbor strategy, which means the robot will move to

the IS in this round. Then the restore phase is performed to find proper robots and assign their goal positions

to gain connection to the pioneer robot. The robots whose goal positions are connected with that of the pioneer

robot form a set SV R . The restore phase repeats until all the robots are added to SV R , i.e. global connectivity

is achieved in this round.

Algorithm 1 CNN: A multirobot travel-planning algorithm using the nearest neighbor method while preserv-

ing connectivity.

Require:

{IS} , {R} , SS, V ,r ;

Ensure:

Path[N ][M ], Time[M ];

01. Path[1:N ][0] = SS, SV I = Φ, SII ← {IS} , rd = 1;

02. while SII ̸= Φ do

03. SV R = Φ, SIR ← {R} ;
04. for all Ri ∈ SIR , ISj ∈ SII do

05. Find Rx and ISy that minimize D(Ri ,ISj);

06. end for

07. Path[x ][rd ] = ISy , Rx = ISy ;

08. SV R ← Rx , SV I ← ISy , SIR → Rx , SII → ISy ;

09. while SIR ̸= Φ do

10. for all Ri ∈ SIR , Rk ∈ SV R do

11. if Ri is connected with Rk then

12. Path[i ][rd ]=Path[i ][rd -1];

13. SV R ← Ri , SIR → Ri ;

14. end if

15. end for

16. Stmp = Φ;

17. for all ISj ∈ SII do

18. if ∃Ri ∈ SIR such that D(Ri ,ISj) ≤ r then

19. Stmp ← ISj ;
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20. end if

21. end for

22. if Stmp ̸= Φ then

23. for all Ri ∈ SV R , ISj ∈ SII do

24. Find Rx and ISy that minimize D(Ri ,ISj);

25. end for

26. Path[x ][rd ] = ISy , Rx = ISy ;

27. SV R ← Rx , SV I ← ISy , SIR → Rx , SII → ISy ;

28. else

29. for all Ri ∈ SV R , Rk ∈ SIR do

30. Find Rx and Ry that minimize D(Ri ,Rk);

31. end for

32. Find AS between Rx and Ry such that D (AS,Ry) = r ;

33. Path[x ][rd ] = ISy , Rx = AS ;

34. SV R ← Rx , SIR → Rx ;

35. end if

36. end while

37. for all Ri , Rj whose path intersects do

38. Path[i ][rd ] ↔ Path[j ][rd ];

39. end for

40. dmax = maximum length of all paths in this round;

41. Time[rd ] = dmax / V ;

42. rd++;

43. end while

The details of CNN are shown in Algorithm 1. In the search phase, the algorithm finds the shortest

route from the robots to the remaining ISs and makes a virtual move (lines 4–8). The virtual move means

that the robot does not physically move until the end of this round. After this step, the robot network may be

disconnected, so a restore phase is followed (lines 9–36). In this phase, robots that have actually moved form

a set SV R (lines 10–15), and these robots are viewed to be located at their target positions. All other robots

that are connected with SV R are also added in, and they will stand still in this round (lines 16–27). If there are

still robots outside SV R , the algorithm selects the one that is nearest to SV R and finds its target position to

make it connected with SV R (lines 29–34). Then it adds this robot into SV R and repeats the previous process

until all the robots are in SV R . In the case that robots crash into each other, the goal positions of the cross

paths are exchanged (lines 37–39), as Figure 3 shows. Note that if the cost of paths satisfies triangle inequality,

the exchange will decrease the total cost. Given that the longest moving distance of the robots is dmax in this

round, the arriving time of all robots is set to T = dmax / V , which enables them to actually move. This means

that for any robot i with moving distance di , it will move at the speed of Vi = di /T .
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A B

C

D

30
m

36m

48m

28m

Robot j

Robot i

Figure 3. Collision avoidance of R1 , R2 , and R3 .

The following proposition demonstrates the accuracy of CNN:

Proposition 1 CNN provides a valid solution for the MRTPCC, in which robots move C rounds, and in round

C, robot Ri moves from Path[i][c] to Path[i][c+1] at the speed of:

Vic =
D (Path [i] [c] , Path [i] [c+ 1])

T [c]

Proof By induction.

At the beginning of the CNN, the robot system is connected by definition, and at the end of the first

round, the robot system is also connected according to the algorithm description. Since the robots move in

straight lines at a speed proportional to their moving distance, the robot system is connected during the first

round according to the connection condition.

Suppose that at the beginning of round i , the robot system is connected. It will also be connected in the

end. Since robots move in straight lines at a speed proportional to their moving distance, the robot system is

connected during round i .

In summary, the robot network stays connected during all C rounds.

Furthermore, CNN ensures termination due to the fact that at least one IS is visited in each round.

Demonstration 1 There are 3 robots and 15 ISs. The positions of the ISs and the SS are shown in Figure 4,

and the communication range of the robots is set to 15. The robots start from the SS (50,50), and traverse all

of the 15 ISs before they return to the SS. After applying the CNN algorithm, the resulting path for each robot

is as depicted in Figure 5. In the first round, with all of the robots located at the SS, R1 chooses IS1 as its

goal position because it is the nearest IS to the robot network. Since IS2 is the only IS within communication

range of IS1 , it is chosen by R2 as its goal position. R3 selects IS3 as its target because it is the nearest to

IS1 and IS2 . During this time, all the robots are connected. They move at a speed proportional to their moving

distance, and round 1 ends. In round 2, R2 moves to IS4 , R3 moves to IS5 , and R1 moves to IS6 . Note

that the nearest neighbor of IS4 is R3 ; however, the goal positions of R3 and R2 are exchanged in case of

collision. In round 3, R3 moves to IS7 , R1 moves to IS8 , and R2 moves to IS9 . In round 4, R2 moves to

IS10 , and R1 and R3 move to AS1 and AS2 respectively, to keep the connectivity of the robots. In round 4,

R2 moves to IS11 , R1 moves to IS12 , and R3 moves to IS13 . In round 5, R3 moves to IS14 , R1 moves to

IS15 , and R2 moves to AS3 to maintain connectivity. By now, all the ISs are visited, and the robots return to

the SS. The TTD is 618.35.
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Figure 4. Positions of ISs and the SS.

6.2. B-LKH algorithm

The CNN algorithm is easy to understand and implement. However, it performs poorly because only local

optimal decisions are made. It can be improved to reduce the TTD at the cost of higher computational

complexity. In this section, the B-LKH algorithm is presented. The main idea of this algorithm is to globally

optimize the paths of the robot network. Instead of planning paths for each robot independently, it is more

reasonable to first plan the bold path for the robot network. To this end, B-LKH takes the robot network as

a “large robot” with radius rb = η ·N · r , where 0 < η < 1. When it travels on the map, it visits all the ISs

covered by it. Thus, the most important issue is how to determine the travel path of the “large robot” to make

the bold path covering all the ISs. B-LKH first selects a subset of ISs to cover all the ISs with circles of radius

rb . It then applies the LKH to solve the TSP of these covered centers. The resulting path is the general travel

direction of the robot network. In order to traverse the ISs, B-LKH then sorts them in the order of a horizontal

projection along the path. Finally, the robots visit the sorted ISs sequentially. The detail of the algorithm is

shown in Algorithm 2.

Algorithm 2 B-LKH: A multirobot travel-planning algorithm based on bold Hamilton circle of covering

centers.

Require:

{IS} , {R} , SS, V , r ;

Ensure:

Path[N ][M ], Time[M ];

01. Path[1:N ][0] = SS,Vs ← {IS} , Vc = Φ;

02. Calculate the distance between each IS ; % Step 1. Bold TSP

03. for all ISi ∈{IS} do

04. Save its neighbors in NIS [i ], count its neighbor number in CIS [i ];

05. end for
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06. Sort Vs in descending order of CIS ;

07. for each ISi ∈ Vs do

08. Vc ← ISi ;

09. Vs → IS i , Vs → NIS [i ];

10. Update NIS and CIS ;

11. Re-Sort Vs ;

12. end for

13. Vc = LKH(Vc);

14. Adjust Vc to make sure that SS be the first and last element;

15. for i = 1 to |Vc| do % Step 2. Sort the IS s

16. vec 1 =< Vc [i -1],Vc [i ]> ;

17. {IS} → Vc [i ];

18. for all ISi in {IS} do

19. vec 2 =< Vc [i -1],ISi > ;

20. if vertical projection of vec 2 to vec 1 < r && horizontal projection of vec 2 to vec 1 ∈ [0,D(Vc [i -

1],Vc [i ])+r] do

21. Vt ← ISj ;

22. {IS} → ISj ;

23. end if

24. end for

25. Sort Vt in ascending order of horizontal projection of vec 2 to vec 1 ;

26. Vs ← Vt ;

27. end for

28. rd = 1;

29. for i = 1 to M do % Step 3. Traversing the ISs in order of Vs

30. for j = 1 to N do

31. Construct minimum cost spanning tree tr j with nodes Vs [i ] to Vs [i+j ];

32. end for

33. Find the maximum j so that the cost of tr j ≤ N ;

34. for k = 0 to j do

35. Path[k ][rd ] ← Vs [i+k ];

36. end for

37. for each edge ei in tr j do

38. if |ei| > r do

39. Put connecting points along ei into Path[*][rd ];

40. end if

41. end for

42. for all Ri , Rj whose path intersects do

43. Path[i ][rd ] ↔ Path[j ][rd ];
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44. end for

45. dmax = maximum length of all paths in this round;

46. T [rd ] = dmax / V ;

47. rd++;

48. end for

As shown in Algorithm 2, B-LKH works in three steps as follows: 1) to solve the bold TSP; 2) to sort

the ISs; and 3) to traverse sequentially.

Solve the bold TSP (lines 2–14): First, enclose all the ISs with circles of radius rb centered at certain

ISs (lines 2–12). To select proper ISs as the covering centers, the algorithm calculates the distance between any

pair of ISs. If the distance from Ri to Rj is no more than rb , they are called neighbors. Based on the distance

metrics, the neighbor list and neighbor number can be saved (lines 2–5). Then greedily select the IS with the

most neighbors as one of the covering centers, and delete all the ISs covered by the circle it is centered in. After

that, update the neighbor list of the rest of the ISs. These procedures are repeated until all the ISs are covered

by circles (lines 6–12). Finally, the algorithm generates a bold Hamilton circle (BHC) by applying the LKH on

these covering centers (lines 13–14), which shows the general travel direction of the robots.

Sort the ISs (lines 15–27): For each segment ls of the BHC, assume its start and end points are ISi

and ISj . B-LKH constructs a vector vec1 = ⃗ISiISj , and vec2 = ⃗ISiISk for any other ISk . Calculate the

vertical and horizontal projection of vec2 on vec1. The vertical projection means the vertical distance dv of

ISk from ls , and the horizontal projection means a horizontal distance dh of ISk from ISi . If dv < rb and

dh < | ls|+r, then ISk will be visited by the “large robot” while it is traveling along ls (lines 16–24). Find all

the ISs satisfying the above condition, and sort them by dh (lines 25–26). The resulting sequence is the order

in which the robot network will visit.

Traverse sequentially (lines 28–48): In this step, the ISs are also traversed in rounds. In each round,

the robots try to visit as many ISs as possible. To achieve this goal, the algorithm constructs a minimum cost

spanning tree for the next j ISs in the visit sequence (lines 30–32). The cost means the robots needed to cover

the tree. For each edge e i , if | e i| is less than rb , then it only needs two robots to be covered, and if | e i| is

larger than rb , then it needs at least ⌈ |ei|rb
⌉ − 1 robots to be covered. Note that the nodes of the tree must be

visited. Find the maximum j so that the corresponding spanning tree can be covered by, at most, N robots,

and set the goals of these robots to the points that can cover the tree (lines 33–41). If the needed points are

less than N, the residual robots try to reach the next IS in the visit sequence. After setting goal positions for

all the robots in this round, the intersection paths are adjusted in the same way as Algorithm 1.

Since B-LKH satisfies the connection condition, it is certain to generate a valid solution for the MRTPCC.

The proof is similar to Proposition 1. In each round, at least one IS is visited. At the end of each round, the

robots stop along the generated spanning tree and are thus connected. Therefore, the robot network maintains

connectivity all the time.

Demonstration 2 Consider the example shown in Figure 3 with η = 1/3. There is rb = 15. First, based on

greedy criteria, the covering centers are selected as IS3 , IS4 , IS7 , IS10 , IS13 , and IS15 (SS is the starting

and ending points of the paths). Apply LKH to get their Hamilton circle as shown in Figure 6a. According to

the projections along the H-circle, the ISs are sorted, which is denoted by their indexes. The robots sequentially

traverse these ISs as depicted in Figure 6b. In round 1, the maximum size of the minimum cost spanning tree
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(denoted by smax) is 3, which means the robots visit 3 ISs in this round. R1 moves to IS1 , R2 moves to IS2 ,

and R3 moves to IS3 . In round 2, smax = 2. R3 moves to IS4 , R2 moves to IS5 , and R1 moves to AS1 ,

which is near IS6 . In round 3, smax = 3. R1 moves to IS6 , R2 moves to IS7 , and R3 moves to IS8 . In

round 4, smax = 3. R2 moves to IS9 , R1 moves to IS10 , and R3 moves to IS11 . In round 5, smax = 3.

R2 moves to IS12 , R3 moves to IS13 , and R1 moves to IS14 . In round 6, smax = 1. R1 moves to IS15 ,

R3 moves to AS2 because it is near SS, and R2 moves to SS. By now, all the ISs are visited, and R1 and R3

move back to SS. The TTD is 549.29.
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Figure 5. Travel paths of robots applying CNN.
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6.3. Further discussion

The computational complexity of CNN is O(M2N3). Since M > N , the computational complexity of B-LKH

is O(M5), which is the same as LKH.

CNN can be implemented in either a centralized or decentralized manner. In the former case, a leader

robot is elected to run the program and broadcasts goal positions for each robot. Other robots memorize the

broadcasted information and move to their own goals. Heartbeat messages are regularly exchanged between the

leader and the rest of the robots to monitor possible failure of the robots. In the latter case, each robot executes

the same copy of the CNN to find the most beneficial strategy. A voting procedure is then performed to find a

global best solution. Then the robots agree on the solution and move to their goals. Heartbeat messages are

also used to keep the latest information of the environment. Furthermore, CNN is stateless. If some ISs are

dynamically added in or wiped out, the robots will recalculate the next goal position according to the updated

map. Since CNN ensures that the robots are connected at all times, the changing environment is regarded as a

new initial state, and thus correctness is preserved.

The B-LKH is a centralized and offline algorithm. It needs to have prior knowledge of global information to

plan the paths. If any IS is dynamically added in or wiped out, B-LKH has to be reexecuted to ensure correctness

and performance. In addition, the performance of B-LKH is largely influenced by η , which determines the radius

of the “large robot”. If η is too small, the covering centers are too numerous, which increases the computation

workload; additionally, the width of the path is too small, which degrades the parallel march of the robots. On

the other hand, if η is too large, the robots waste energy on vertical moving, and the BHC is thus not only

meaningless but also harmful. Intuitively, this is related to IS density and robot number; however, the precise

analysis is left for future work. In reality, it is recommended to try different values of η and select the one with

the best performance.

In general, CNN is simpler and robust to environmental dynamics. The B-LKH algorithm is more time-

consuming and not so flexible, but it generates shorter travel paths. The performance of CNN and B-LKH will

be extensively studied in Section 6.

7. Simulations

7.1. Simulation setup

In practice, the scale of environment (X × Y ), the number of ISs (M) and their distribution, and the number

of robots (N) as well as their communication range (r) are the key parameters that influence the final results.

Here, M
X×Y decides the density of the ISs, and r

X×Y decides the relative coverage area of robots. By default,

the scale of the environment is set to 1000 × 1000 m2 hereafter. Since the absolute velocity of the robots

does not affect the results, it is set to a very large value to accelerate the simulations. The SS is located at the

center of the map. The simulations mainly investigate the influence of parameters M , N , and r , as well as

distributions of the ISs.

The performance of CNN and B-LKH is compared to LQCN [4]. In LQCN, each robot keeps connectivity

with certain neighbors. For simplicity, a tree structure is constructed through a DFS procedure, and each robot

keeps connectivity with its parent robot in the tree. For comparison, the simulations assume the acceptable

range of each robot as r . Since LQCN considers only one goal for each robot, we adopt the allocation method

used in [14] and [15] to solve the whole traveling problem. Each robot automatically selects its goal position (an

IS) to maximize the information gain of G = 1.5x

1.5y·d , where x and y are IS number and robot number within

the sensing range of the IS, and d is the distance from the robot to the IS.
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Note that the absolute value of TTD is not important, since it is largely influenced by the map. Therefore,

all the results are ratios to the TTD of the nearest neighbor (NN) method. NN is very similar to CNN except

that NN takes no consideration of connectivity. The reason to use NN as a benchmark algorithm is that its

result is little influenced by N and r , which is suitable for normalization. Additionally, it also applies the

nearest neighbor strategy, which minimizes its distinctions with CNN.

All the results in the simulations are averaged by 200 runs.

7.2. Simulation results and analysis

Effect of the amount of robots: In this simulation, r = 50 m, M = 100, and ISs are subject to uniform

distribution. N varies from 2 to 8.

Figure 7 shows the TTD of CNN, LQCN, and B-LKH (η = 1/N, 0.25, 0.5, 0.75) over NN. In this

simulation, LQCN performs worse than CNN and B-LKH. B-LKH performs better than CNN except when η

= 0.75 and N > 5. As discussed before, η largely influences the performance of B-LKH, so it should be neither

too large nor too small. As depicted in Figure 7, B-LKH performs best when η takes values of 0.25 and 1/N. In

addition, when η = 0.25, B-LKH also performs well, although not always the best, in the following simulations,

so only the results of B-LKH with η = 0.25 are shown hereafter. As the number of robots increases, the TTD

generated by CNN, LQCN, and B-LKH increases relative to NN. Since the TTD of NN changes little, Figure

7 reflects the trend of the absolute value of these algorithms. The reason for the increase is that more TTD

is wasted to keep the robot network connected. Under the connectivity constraint, when the robot network

decides to traverse some ISs, it may have to give up visiting other ISs even if they are close to some of the

robots. Otherwise the robot network will be partitioned. These nearby ISs can only be visited at some point

in the future, thus increasing the TTD. However, according to Theorem 1, if N is large enough, the increase of

the TTD relative to NN will tend to be zero.
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Figure 7. TTD comparison among NN, CNN, LQCN, and B-LKH varying N .

Effect of the amount of ISs: In this simulation, r = 50 m, N = 5, and ISs are subject to uniform

distribution. M varies from 20 to 200.

As depicted in Figure 8, in this simulation, B-LKH still performs the best, while LQCN performs the

worst. There are two main reasons for the larger TTD of LQCN. First, robots act in a distributed manner in

LQCN, resulting in two or more robots possibly setting the same goal position. Only one of them will achieve
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the goal and let the others go to other goals. This is aggravated when IS density becomes high. Second, the

selection of goals does not ensure that robots will keep connected during the whole process. Instead, achieve-

connection behavior is constantly carried out, which further increases the TTD. When IS density is low, this

behavior occurs frequently. As the number of ISs increases, the TTD generated by CNN and B-LKH decreases

relative to NN. This is because the higher the density of ISs, the less TTD is wasted for keeping connectivity.

Robots have more choices when selecting the next target if the density is sufficiently high, and thus the cost of

keeping connectivity is reduced. The theoretical lower bound of the ratio is 1. Note that when M increases,

the TTD of NN also increases.
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Figure 8. TTD comparison among NN, CNN, LQCN, and B-LKH varying M .

Effect of distribution of ISs: To investigate how the distribution of ISs influences the results, three

other distributions are designed. They are: 1) Grid distribution, where ISs are distributed on the vertexes of

grids whose side length is 100 m. This distribution corresponds to street surveillance. 2) Circular distribution,

where ISs are uniformly distributed along a circle whose radius is 495 m. This distribution corresponds to

boarder surveillance. 3) Normal distribution, where ISs are subject to normal distribution. This distribution

corresponds to priority-based surveillance.

Suppose that N= 5, M= 100, and r ranges from 25 m to 125 m. The results are depicted in Figure 9, in

which Figure 9a shows the result of uniform distribution. Figure 9b shows the result of grid distribution, Figure

9c shows the result of circular distribution, and Figure 9d shows the result of normal distribution. Generally,

B-LKH performs the best, while LQCN performs the worst. When the communication range increases, the

connectivity constraint is softened, which leads to a decrease in the TTD of CNN, B-LKH, and LQCN. In

extreme cases, when r → ∞ , the TTD of CNN will be the same as NN. The simulation results validate this

proposition. Compared to NN, all the algorithms generate less TTD as r increases, except for LQCN in Figure

9c. This is because in circular distribution, the density of ISs is very high along the circle. As discussed before,

the target of each robot conflicts more often, and thus robots waste more distance on avoiding collision. CNN,

LQCN, and B-LKH perform the poorest relative to NN in Figure 9c, which is because almost all of the robots

are passively moved along the circle to keep connectivity. The most interesting part of the results is the turning

points of the curves in Figure 9b. The turning points appear at r= 100 m, which is exactly the side length of the

grids. The ratio decreases slightly when r > 100 m. This phenomenon may reveal the relationship between the

ratio and the mean number of the ISs’ neighbors that are not r far away. The results in Figures 9a and 9d are
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similar, in which CNN and B-LKH significantly outperform LQCN. Although the TTD of LQCN decreases in

these conditions, avoiding collision and achieving connection behaviors makes the decrease relatively smoother.
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Figure 9. TTD comparison varying r under different distributions of ISs: a) uniform distribution, b) grid distribution,

c) circular distribution, d) normal distribution.

Summary From these simulations, it can be seen that B-LKH and CNN significantly outperform LQCN

in all conditions, because B-LKH and CNN explicitly consider the connectivity constraint in planning the

paths. Compared with B-LKH and CNN, LQCN wastes too much energy on avoiding conflicts and achieving

connection, and thus it consumes a much higher TTD. B-LKH (0.25) performs better than CNN because CNN

makes decisions by only relying on local information, while B-LKH preprocesses global information and is able

to produce better solutions. From Figure 7, it is clear that the value of η influences the performance of B-LKH

dramatically, and hence it should be carefully considered.

8. Conclusion

This paper formulates the MRTPCC, which requires minimizing the TTD of the robots when they are traversing

ISs. The paper then analyzes the bound of increase in TTD caused by connectivity constraints and proposes

and proves the connection condition, which is used to direct the design of solutions. Based on the connection
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condition, CNN and B-LKH are proposed to minimize the TTD, which work in rounds to ensure connectivity

of the robot network. CNN is simpler and robust to environmental dynamics, while B-LKH is more time-

consuming and generates shorter travel paths. Simulation results show that the proposed algorithms perform

better when the number of ISs increases and worse when the number of robots increases relative to the NN
method. Influences of distribution of ISs are also studied. Through comparison, it is depicted that the proposed

algorithms significantly outperform LQCN in TTD.

In future work, an environment with irregularly shaped obstacles will be studied, and real-world ex-

periments are in progress. The proper number of robots to tackle certain surveillance tasks while preserving

connectivity will also be investigated. The connectivity of several local networks will be considered instead of

the global connectivity of the whole network. In each local robot network, the connectivity of a certain number

of robots shall be guaranteed.
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