
Turk J Elec Eng & Comp Sci

(2015) 23: 824 – 840

c⃝ TÜBİTAK
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Abstract:Time delays are often instability sources and give rise to undesired oscillation and performance degradation,

so it is necessary to consider delay in general congestion control schemes. In this paper, a new system model for wireless

sensor networks (WSNs) is established in discrete time, subsystems including delay are presented, and the overall model

is achieved by blending these subsystems. For controller synthesis, common quadratic Lyapunov functions and a new

approach based on nonquadratic Lyapunov functions are utilized, and a controller is designed to stabilize each subsystem.

The controller synthesis results are expressed in terms of linear matrix inequalities. Moreover, the performance of our

proposed scheme is considered and the decay rate is guaranteed. Finally, a set of novel congestion control schemes

is derived for WSNs, and the resulting closed-loop systems are globally asymptotically stable in case of queue length

changes and the consequent delay changes. The simulation results are also presented to illustrate the effectiveness of our

proposed method.
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1. Introduction

Congestion control is an important issue in communication networks, especially with the growing need of

bandwidth, load, size, and connectivity of these networks. The aforementioned fact has necessitated the design

and utilization of networks including more efficient congestion control algorithms, especially for wireless sensor

networks (WSNs) [1] that play a dominant role in recent technologies.

Congestion of packets results in poor performance and low reliability of networks. Recently, a large and

growing number of results have been investigated on congestion control schemes [2–19]. Due to the major role

of control theory in solving different problems such as congestion, the main idea in this paper is to use control

theory to design and analyze suitable congestion controllers for WSNs as a closed loop system.

Since delays are ubiquitous in networks, it is essential to consider delay in the study of different congestion

control schemes. Unlike previous methods and decentralized predictive congestion control (DPCC) [9], in our

proposed method, a new system model for WSNs is established in discrete time, subsystems including delay are

presented, and the overall model is achieved by blending these subsystems (for further details on DPCC, please

refer to Section 2). In this paper, the control signal and buffer occupancy error are considered at different time

instances; however, in [9], they are only considered at time instances n− 1 and n , respectively.

∗Correspondence: shoorangiz shams@yahoo.com
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Maintaining system functionality despite dynamically changing and uncertain environments is very critical

in WSNs. Fading is quite probable in WSNs, which causes bandwidth reduction. In this case, queue size is

increased, which causes a delay increase, and satisfactory performance can be achieved if the resultant closed-

loop systems are stable in the case of queue length changes and the consequent delay changes. Otherwise,

performance degradation occurs and our system tends to be unstable.

In recent years, controller synthesis of different systems has been thoroughly investigated. In this regard,

Lyapunov approaches are of paramount importance. Through the Lyapunov-based approaches, systematic

stability study and convergence of algorithms in the context of closed-loop control systems can be achieved.

There are several different Lyapunov functions such as the so-called common quadratic Lyapunov func-

tions [20–23], piecewise quadratic Lyapunov functions [24–26], and nonquadratic Lyapunov functions [27–29].

Common quadratic Lyapunov functions tend to be conservative and might not even exist for many complex

highly nonlinear systems; however, piecewise and nonquadratic Lyapunov functions are less conservative, but

their computation cost is much higher.

In this paper, common quadratic Lyapunov functions are utilized for controller synthesis of our system.

Since common quadratic Lyapunov functions tend to be conservative, nonquadratic Lyapunov functions are also

used. It is worth mentioning that there have been a few attempts to employ nonquadratic Lyapunov functions

for controller synthesis in WSNs with the goal of reducing the conservativeness of common quadratic Lyapunov

functions. Therefore, this paper presents a new approach for controller synthesis of our system based on

nonquadratic Lyapunov functions. Additionally, the results are expressed in terms of linear matrix inequalities

(LMIs), which are numerically feasible with commercially available software. In this paper, a controller is

designed for each subsystem. Afterwards, these controllers are blended and system stability is guaranteed.

Moreover, unlike [9], performance is considered and the decay rate is guaranteed.

The rest of the paper is structured as follows: the preliminaries are stated in Section 2, while the main

results are presented in Section 3. The effectiveness of our approach is demonstrated through simulation results

in Section 4. The paper is concluded in Section 5 and the Appendix is given in Section 6.

2. Preliminaries

In this section, DPCC [9] is briefly presented; thereafter, DPCC is compared with our scheme and our proposed

model is given.

2.1. Decentralized predictive congestion control

DPCC was introduced in [9]. In this scheme, a hop-by-hop flow control is utilized. DPCC can predict the onset

of congestion and reduce the incoming traffic by using a backpressure signal.

2.1.1. Model description in DPCC

Changes of buffer occupancy in terms of incoming and outgoing traffic at a particular node is given as follows:

qa(n+ 1) = satp[qa(n) + Tua(n)− fa(ua+1(n)) + d(n)] (1)

where satp is the saturation function expressing finite size queue behavior, qa(n) is the buffer occupancy of the

ath node at time instant n , T is the measurement interval, ua(n) is a regulated incoming traffic rate, fa(·)
is a dictated outgoing traffic by the next hop node disturbed by channel variations, and d(n) is an unknown
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traffic disturbance [9]. It is necessary to calculate and propagate ua(n) as a feedback to the (a− 1)th node to

estimate the outgoing traffic for this node.

Considering that qad is the desired buffer occupancy at the ath node, the buffer occupancy error defined

as eba(n) = qa(n)− qad can be written as:

eba(n+ 1) = satp[eba(n) + Tua(n)− fa(ua+1(n)) + d(n)] (2)

In this section, buffer occupancy and buffer occupancy error at a particular node are introduced [9]. In the

subsequent section, the adaptive and predictive controller of [9] is briefly presented.

2.1.2. Adaptive and predictive controller

Based on the scenario in [9], if the outgoing traffic fa(.) is unknown, the traffic rate input is as follows:

ua(n) = Satp

(
f̂a(ua+1(n)) + (κbv − 1)eba(n)

T

)
(3)

where κbv is the gain parameter and f̂a(ua+1(n)) is the estimate of fa(ua+1(n)). Buffer occupancy error at

time instant n+ 1 is given by:

eba(n+ 1) = Satp[kbveba(n) + f̃a(ua+1(n)) + d(n)] (4)

where f̃a(ua+1(n)) = fa(ua+1(n))−f̂a(ua+1(n)) is the outgoing traffic estimation error. If there is no estimation

error, the traffic estimate is defined as [9]:

f̂a(ua+1(n)) = θ̂a(n)fa(n− 1) (5)

where θ̂a(n) is the actual vector of the traffic parameter and f̂a(ua+1(n)) and fa(n− 1) are the estimation of

unknown outgoing traffic and the past value of outgoing traffic, respectively. If the parameter θa is updated as

θ̂a(n+ 1) = θ̂a(n) + λua(n)efa(n+ 1) (6)

provided that λ ∥ua(n)∥2 < 1 and κfvmax < 1/
√
δ , where λ is the adaptation gain, κfvmax is the maximum

singular value of κfv , δ = 1/[1 − λ ∥ua(n)∥2] , and efa(n) = fa(n) − f̂a(n), then the mean estimation error of

θa along with queue utilization mean error converges to zero asymptotically [9].

Remark 1 It is important to note that fading channels are ignored in Eq. (3) and congestion is detected just

by monitoring the buffer occupancy, so in order to mitigate congestion due to fading channels, the rate from

Eq. (3) has to be decreased. Back-off interval selection for nodes plays an important role in deciding which

node can access the channel. The back-off interval at the ath node is defined as BOa and it is denoted that

V Ra = 1/BOa , where V Ra is the ath node virtual rate. The ath node actual rate is:

Ra(t) =
B(t).V Ra(t)∑

l∈Sa
V Rl(t)

=
B(t).V Ra(t)

TV Ra(t)
(7)

where B(t) is channel bandwidth, V Ra is the ath node virtual rate, and TV Ra(t) is the sum of all virtual rates

for all neighbors Sa [9].
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2.2. Comparison of our proposed scheme with DPCC

• Unlike in [2–8] and [10–19], congestion due to fading channels in dynamic environments is studied in both

DPCC and our scheme.

• The control problem in this paper and [9] are both solved offline; however, outgoing estimation is

accomplished online in both schemes.

• Since time delays are often instability sources and give rise to undesired oscillation and performance

degradation, unlike previous schemes and DPCC, in our method, more realistic models including delay

are introduced and a new system model for WSNs is established in discrete time. Unlike [9], the control

signal and buffer occupancy error are considered at different time instances. However, in DPCC, the

control signal and buffer occupancy error are only considered at time instances n− 1 and n , respectively.

Therefore, in this paper, delay is considered and some augmented states are used, which is an important

difference between our scheme and [9]. Since our model includes delay, it is more realistic compared to

[9], and unlike [9], controller synthesis is presented in case of delayed systems.

• Since WSNs are normally set up in adverse conditions, bandwidth reduction is quite probable (fading

causes bandwidth reduction and fading is very probable in WSNs); in this case, the queue size increases,

which then renders a delay increase. In our proposed method, the resultant closed-loop systems are

stable in the case of queue length changes and the consequent delay changes; however, in [9], performance

degradation occurs and the system tends to be unstable.

• There have been a few attempts to employ nonquadratic Lyapunov functions in the context of controller

synthesis in WSNs with the goal of reducing the conservativeness of the quadratic framework. Unlike

[9] and the available literature, this paper presents a novel approach for controller synthesis of our WSN

system based on nonquadratic Lyapunov functions.

• The control signals in DPCC and our scheme are different from each other. In [9], the control signal is

given as in Eq. (3); however, our control signals are presented in Eq. (13) and Eq. (27).

• The gain parameter kbv in [9] is an important factor in the design of the controller in Eq. (3) and DPCC

is highly dependent on it. However, unlike [9], our controller is not dependent on kbv .

2.3. Model description in our proposed method

Network modeling is a critical issue in network traffic estimation and it is, in general, quite complex for WSNs.

In this section, a novel system model for WSNs is established in discrete time.

Since queue length increases cause delay increase in a system and the change of the model, in our proposed

scheme, different subsystems are introduced based on different delays and the control signal and buffer occupancy

error are considered at different time instances; however, in [9], they are only considered at time instances n−1

and n , respectively. In this paper some augmented states are added, which is an important difference between

our scheme and [9]. Since our model includes delay, it is more realistic compared to [9], and the controller

synthesis is presented in case of delayed systems. The states are as follows:

x(n) =
[
eba(n) eba(n− 1) ... eba(n− o) u(n− 1) ... u(n− p) s(n)

]T
(8)

where x(n) ∈ ℜz includes buffer occupancy errors eba(n − o) and control signals u(n − p) in different time

instances and integrator S(n) ∈ ℜ . o.p ∈ N are the number of states (o and p are the number of states

considered for buffer occupancy error and control signal, respectively).
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Aj ∈ ℜz×z and Bj ∈ ℜz×z are considered as known constant matrices to describe our system and they

show the jth subsystem. z ∈ N is the number of state variables.

Since delay causes different subsystems to be introduced and r ∈ N is the number of existing subsystems

due to delay, we have:

Aj ∈
{

A1 A2 ... Ar

}
Bj ∈

{
B1 B2 ... Br

} (9)

For further detail, please see the Appendix.

u(n) ∈ ℜ is the control signal vector and S(n) is an integrator defined as:

S(n+ 1) = S(n) + eba(n)

S(n) =
n−1∑
0

eba(n) + eba(n)
(10)

Since queue size increase causes a delay increase in the system and delay causes different subsystems to be intro-

duced, in order to choose different subsystems in Aj ∈
{

A1 A2 ... Ar

}
and Bj ∈

{
B1 B2 ... Br

}
, a new parameter βj(n) is introduced and our proposed system is written as:

x(n+ 1) =
r∑

j=1

βj(n)(Ajx(n) +Bju(n))

r∑
j=1

βj(n) = 1, βj(n) ∈ {0, 1}
(11)

where βj(n) indicates which subsystem is chosen based on delay.
r∑

j=1

βj(n) = 1 and βj(n) can be either 0 or 1.

In the subsequent section, the controller, stability, and simulation results will be addressed in detail.

3. Main results

Since time delays can lead to undesired oscillation and performance degradation, in this section, unlike [9],

queue length changes and the consequent delay changes are considered and controller synthesis for our proposed

system is accomplished. Conditions in which the resultant closed-loop systems are globally asymptotically stable

are achieved.

In this paper, common quadratic Lyapunov functions are utilized for controller synthesis of our system.

Since common quadratic Lyapunov functions tend to be conservative, nonquadratic Lyapunov functions are also

used. Finally, unlike [9], performance is considered and decay rate is guaranteed.

Lemma 1 (30) : If matrices Cm and Sm are of appropriate dimensions and Sm is positive definite, then:

CT
mS−1

m Cm ≥ CT
m + Cm − Sm (12)

By defining the control signal as

u(n) = [

r∑
j=1

βjNjG
−1
j ]x(n) (13)

one has the following result:
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Theorem 1 The system (Eq. (11)) with the control signal (Eq. (13)) is globally asymptotically stable if:

i) There is a symmetric positive definite matrix P ∈ ℜz×z and matrices Gj ∈ ℜz×z and Nj ∈ ℜ1×z for

every j ∈ L and L =
{

1 2 ... r
}
, such that the following LMIs (Eq. (14)) are satisfied:

(AjGj +BjNj)
TP (AjGj +BjNj)−GT

j PGj < 0 (14)

Or equivalently:

ii) There is a symmetric positive definite matrix X ∈ ℜz×z where X = P−1 and matrices Gj ∈ ℜz×z and

Nj ∈ ℜ1×z for every j ∈ L such that the following LMIs (Eq. (15)) are satisfied:[
Gj +GT

j −X (AjGj +BjNj)
T

(AjGj +BjNj) X

]
> 0j ∈ L (15)

Moreover, the controller gains are given by:

Fj = NjG
−1
j (16)

Proof Consider the following Lyapunov function candidate:

V (x(n)) = xT (n)Px(n) (17)

It is necessary to first check the existence of G−1
j . Note that if condition (ii) of Theorem 1 (Eq. (15)) holds

true, we have: [
I 0

] [ Gj +GT
j −X (AjGj +BjNj)

T

(AjGj +BjNj) X

] [
I
0

]
> 0j ∈ L

Thus, GT
j + Gj −X > 0, which can be written as GT

j + Gj > X , since X ∈ ℜz×z is considered a symmetric

positive definite matrix in (Part ii, Theorem 1), and it can be concluded that GT
j +Gj > 0.

If Gj is not invertible, it means that there exists a nonzero Πj where GjΠj = 0 (Πj is in the null

space of Gj). Since GT
j + Gj > 0, it is possible to write it as ΠT

j (G
T
j + Gj)Πj > 0, which can be written as

ΠT
j G

T
j Πj + ΠT

j GjΠj > 0, or equivalently (GjΠj)
TΠj + ΠT

j (GjΠj) > 0. Since GjΠj = 0,we have 0 + 0 > 0,

which is incorrect, so there is no Πj where GjΠj = 0 and thus Gj is invertible.

It suffices to show that the following inequality is satisfied to prove that our proposed system is globally

asymptotically stable. Thus:

∆V = V (x(n+ 1))− V (x(n)) = xT (n+ 1)Px(n+ 1)− xT (n)Px(n) < 0 (18)

Based on the system equation (Eq. (11)) and the control signal (Eq. (13)), we can easily obtain

x(n+ 1) =
r∑

j=1

βj(n)(Aj +BjNjG
−1
j )x(n) (19)

since
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r∑
j=1

βj(n) = 1 and βj ∈ {0, 1}

We have
x(n+ 1) = (Aj +BjNjG

−1
j )x(n) (20)

Substituting Eq. (20) into Eq. (18) yields:

∆V = xT (n)(Aj +BjNjG
−1
j )TP (Aj +BjNjG

−1
j )x(n)− xT (n)Px(n) < 0

= xT (n)[(Aj +BjNjG
−1
j )TP (Aj +BjNjG

−1
j )− P ]x(n) < 0 (21)

which in turn implies that:

(Aj +BjNjG
−1
j )TP (Aj +BjNjG

−1
j )− P < 0 (22)

Via the Schur complement lemma [31], Eq. (22) can be rewritten as:[
P (Aj +BjNjG

−1
j )T

(Aj +BjNjG
−1
j ) P−1

]
> 0j ∈ L (23)

Pre- and postmultiplying Eq. (23) by

[
GT

j 0

0 I

]
and

[
Gj 0

0 I

]
, respectively, leads to:

[
GT

j PGj (AjGj +BjNj)
T

(AjGj +BjNj) P−1

]
> 0 (24)

Using the Schur complement lemma, the claimed global exponential stability result of condition (i) is established.

It follows from Lemma 1 that:

GT
j PGj ≥ Gj +GT

j − P−1 (25)

Therefore, Eq. (24) can be expressed as:[
Gj +GT

j − P−1 (AjGj +BjNj)
T

(AjGj +BjNj) P−1

]
> 0 (26)

The equivalent condition (ii) follows directly by considering P−1 = X as follows:[
Gj +GT

j −X (AjGj +BjNj)
T

(AjGj +BjNj) X

]
> 0 (27)

Hence, the claim of Theorem 1 is established and the proof is completed.

Remark 2 It is also possible to obtain some sufficient conditions for asymptotic stability by considering the

same Lyapunov function and the state feedback u(n) =
r∑

j=1

βjFjx(n) where Fj = NjP for some matrix Nj .

This is accomplished if all slack variables (G−1
j ) are considered P in Theorem 1.
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In the subsequent theorem, the controller synthesis results are presented based on nonquadratic Lyapunov

functions. By defining the control signal as

u(n) =
r∑

j=1

βjNj(
r∑

i=1

βiGi)
−1x(n) (28)

one gets the following result:

Theorem 2 The system (Eq. (11)) with the control signal (Eq. (27)) is globally asymptotically stable if:

i) There exists a set of symmetric positive definite matrices Pj ∈ ℜz×z and matrices Gi ∈ ℜz×z and

Nj ∈ ℜ1×z for every i, j ∈ L and L =
{

1 2 ... r
}

such that the following LMIs are satisfied:

(AjGi +BjNj)
TG−T

m PcG
−1
m (AjGi +BjNj)− Pj < 0i, j,m, c ∈ L (29)

Or equivalently:

ii) There is a set of symmetric positive definite matrices Pj ∈ ℜz×z and matrices Gi ∈ ℜz×z and Nj ∈ ℜ1×z

for every i, j ∈ L such that the following LMIs are satisfied:[
Pj (AjGi +BjNj)

T

(AjGi +BjNj) Gm +GT
m − Pc

]
> 0i, j,m, c ∈ L (30)

Moreover, the controller gains are given as:

Fji = NjG
∗−1
i (31)

with the following notation, which is adopted for simplicity:

G∗
i =

r∑
i=1

βiGi (32)

Proof Consider the following Lyapunov function candidate:

V (x(n)) = xT (n)[G∗−T
i (

r∑
j=1

βjPj)G
∗−1
i ]x(n) (33)

Following the same procedure as in Theorem 1 to prove that Gj is invertible, we can conclude that Gm and

Gi are also invertible.

The difference function is given by:

∆V = V (x(n+ 1))− V (x(n))

= xT (n+ 1)G∗−T

m

[
r∑

c=1

βcPc

]
G∗−1

m x(n+ 1)− xT (n)G∗−T

i

 r∑
j=1

βjPj

G∗−1

i x(n) (34)

where indices i and j are used for time instant n and indices m and c are used for time instant n+ 1.
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Based on the system equation (Eq. (11)) and the control signal (Eq. (27)), we can easily obtain:

x(n+ 1) =
r∑

j=1

βj(Aj +BjNjG
∗−1
i )x(n) (35)

Since
r∑

j=1

βj = 1 and βj ∈ {0, 1} , we have:

x(n+ 1) = (Aj +BjNjG
−1
i )x(n) (36)

Substituting Eq. (35) into Eq. (33) and considering
r∑

c=1
βc = 1 and βc ∈ {0, 1} yields:

∆V = xT (n)(Aj +BjNjG
−1
i )T (G

−T

m PcG
−1

m )(Aj +BjNjG
−1

i )x(n)− xT (n)G
−T

i PjG
−1

i x(n)

= xT (n)[(Aj +BjNjG
−1

i )T (G
−T

m PcG
−1

m )(Aj +BjNjG
−1

i )−G
−T

i PjG
−1

i ]x(n) (37)

which can be written as:

∆V = xT (n)G−T
i [(AjGi +BjNj)

T (G
−T

m PcG
−1
m )(AjGi +BjNj)− Pj ]G

−1
i x(n) (38)

where the G−T
i parentheses on the left and G−1

i parentheses on the right of Eq. (37) are taken.

It suffices to show that the following inequality is satisfied to prove that the proposed system (Eq. (35))

is globally asymptotically stable. Therefore:

[(AjGi +BjNj)
T (G−T

m PcG
−1
m )(AjGi +BjNj)− Pj ] < 0 (39)

Thus, the desired result in condition (i) is satisfied. The equivalent condition (ii) follows directly from the Schur

complement as: [
Pj (AjGi +BjNj)

T

(AjGi +BjNj) (G−T
m PcG

−1
m )−1

]
> 0i, j,m, c ∈ L (40)

Via the matrix inversion lemma, we have:

(G−T
m PcG

−1
m )−1 = GmP−1

c GT
m (41)

Then it follows from Lemma 1 that:

GmP−1
c GT

m ≥ (Gm +GT
m − Pc) (42)

Therefore, Eq. (39) can be expressed as:[
Pj (AjGi +BjNj)

T

(AjGi +BjNj) Gm +GT
m − Pc

]
> 0i, j,m, c ∈ L (43)

Thus, the closed-loop control system (Eq. (35)) is globally exponentially stable. Moreover, the controller gains

can be easily determined by Eq. (30) and the proof is completed.

In the following theorem, performance is considered and the decay rate is guaranteed.

832



SHAMS SHAMSABAD FARAHANI et al./Turk J Elec Eng & Comp Sci

Theorem 3 The closed-loop control system of Eq. (35) is globally asymptotically stable with decay rate Φ ∈
ℜz×z if:

i) There is a set of symmetric positive definite matrices Pj ∈ ℜz×z and Qj ∈ ℜz×z and a positive definite

full rank decay rate matrix Φ ∈ ℜz×z and matrices Gi ∈ ℜz×z and Nj ∈ ℜ1×z for every i, j ∈ L and

L =
{

1 2 ... r
}

such that the following LMIs are satisfied:

(AjGi +BjNj)
TG−T

m PcG
−1
m (AjGi +BjNj)− (Pj −Qj) < 0i, j,m, c ∈ L (44)

GT
i Φ

−1Gi −Qj ≤ 0i, j ∈ L (45)

Or equivalently:

ii) There is a set of symmetric positive definite matrices Pj ∈ ℜz×z and matrices Qj ∈ ℜz×z and a positive

definite full rank decay rate matrix Φ ∈ ℜz×z and matrices Gi ∈ ℜz×z and Nj ∈ ℜ1×z for every i, j ∈ L

and L =
{

1 2 ... r
}

such that the following LMIs are satisfied:[
Pj −Qj (AjGi +BjNj)

T

(AjGi +BjNj) Gm +GT
m − Pc

]
> 0i, j,m, c ∈ L (46)

[
Qj GT

i

Gi Φ

]
≥ 0i, j ∈ L (47)

Moreover, the controller gains are as in Eq. (30) and the control signal can be rewritten as in Eq. (27).

Proof Following the same procedure as in Theorem 1 to prove that Gj is invertible, we can conclude that

Gm and Gi are also invertible.

Considering the Lyapunov function candidate defined in Eq. (32), it is sufficient to show that the following

inequality is satisfied to prove that the proposed system in Eq. (35) is globally asymptotically stable. In the

proof of Theorem 3, it is not assumed that Eq. (46) is satisfied; however, in this theorem, it is sufficient to show

that Eq. (46) is satisfied to prove that the proposed system of Eq. (35) is globally asymptotically stable.

∆V = V (x(n+ 1))− V (x(n)) < −xT (n)[G−T
i QjG

−1
i ]x(n) (48)

In the following, it is proven that the right side of Eq. (46) is negative: since x(n) is a nonzero arbi-

trary vector, in order to show that xT (n)[G−T
i QjG

−1
i ]x(n) is positive, we show that G−T

i QjG
−1
i is posi-

tive. Since Qj ∈ ℜz×z is symmetric positive definite matrices (Qj > 0) (Theorem 3, conditions 1 and

2) and Gi ∈ ℜz×z are invertible, so pre- and postmultiplying (Qj > 0) by G−T
i and its transpose, re-

spectively, leads to G−T
i QjG

−1
i > 0. Otherwise (if G−T

i QjG
−1
i > 0 is not correct), it means that there

is at least a nonzeroα(n) where αT (n)G−T
i QjG

−1
i α(n) ≤ 0. Considering G−1

i α(n) = η(n) and substitut-

ing it in αT (n)G−T
i QjG

−1
i α(n) ≤ 0, we have ηT (n)Qjη(n) ≤ 0. Since Gi is invertible and α(n) ̸= 0,

from G−1
i α(n) = η(n), we can conclude that η(n) ̸= 0. Thus, if G−T

i QjG
−1
i > 0 is not correct, there is

a η(n) where ηT (n)Qjη(n) ≤ 0, which is wrong (contrary to our assumption) (Qj is symmetric positive

definite matrices (Qj > 0) and η(n) is considered nonzero). Thus, there is no nonzero vector that satis-

fies ηT (n)Qjη(n) ≤ 0, and it can be concluded that G−T
i QjG

−1
i > 0 and xT (n)[G−T

i QjG
−1
i ]x(n) > 0, and
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so−xT (n)[G−T
i QjG

−1
i ]x(n) < 0.

Substituting Eq. (35) into Eq. (46) yields:

∆V = xT (n)[(Aj +BjNjG
−1

i )T (G
−T

m PcG
−1

m )(Aj +BjNjG
−1

i )−G
−T

i PjG
−1

i ]x(n) <

−xT (n)[G−T
i QjG

−1
i ]x(n)

(49)

which can be written as:

xT (n)G−T
i [(AjGi +BjNj)

T (G
−T

m PcG
−1
m )(AjGi +BjNj)− Pj ]G

−1
i x(n) < −xT (n)[G

−T

i QjG
−1
i ]x(n) (50)

where the G−T
i parentheses on the left and the G−1

i parentheses on the right of Eq. (48) are taken, which in

turn implies that:

(AjGi +BjNj)
T (G

−T

m PcG
−1
m )(AjGi +BjNj)− (Pj −Qj) < 0 (51)

Therefore, the claimed global exponential stability result of Eq. (42) is established. If Eq. (42) (the condition

in Theorem 3) is satisfied, since Eq. (42) is Eq. (49) in the proof of Theorem 3, it means that Eq. (49) is

satisfied. If Eq. (49) is satisfied, pre- and postmultiplying Eq. (49) by xT (n)G−T
i and its transpose renders

Eq. (48), which can be written as Eq. (47), and considering Eq. (35) and Eq. (32), Eq. (46) can be achieved

(Gi is invertible). Thus, if Eq. (42) or Eq. (49) is satisfied, it can be concluded that Eq. (46) is satisfied. If

Eq. (46) is satisfied, since the right side of Eq. (46) is negative, it can be concluded that ∆V < 0, and so the

proposed system of Eq. (35) is globally asymptotically stable.

The corresponding equivalent condition in Eq. (44) follows directly from the Schur complement as:[
Pj −Qj (AjGi +BjNj)

T

(AjGi +BjNj) (G−T
m PcG

−1
m )−1

]
> 0i, j,m, c ∈ L (52)

Via the matrix inversion lemma, we have:

(G−T
m PcG

−1
m )−1 = GmP−1

c GT
m (53)

It then follows from Lemma 1 that:

GmP−1
c GT

m ≥ (Gm +GT
m − Pc)

And so we have: [
Pj −Qj (AjGi +BjNj)

T

(AjGi +BjNj) Gm +GT
m − Pc

]
> 0i, j,m, c ∈ L (54)

It is noted that the following inequality guarantees the performance with the decay rate Φ:

G−T
i QjG

−1
i ≥ Φ−1 (55)

In fact, pre- and postmultiplying Eq. (52) by GT
i and its transpose, respectively, leads to:

GT
i Φ

−1Gi −Qj ≤ 0 (56)
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It follows from the Schur complement that:

[
Qj GT

i

Gi Φ

]
≥ 0i, j ∈ L (57)

Thus, Eq. (43) and Eq. (45) are also satisfied and the claim of Theorem 3 is established, and the proof is

completed.

Figure 1 depicts our proposed control scheme. Buffer occupancy and the outgoing rate are used in the

controller design, and the resultant closed-loop systems are globally asymptotically stable in case of queue length

changes and the consequent delay changes.

Wireless sensor
network

Proposed
controllers

Desired queue length

Buffer occupancy

Outgoing traffic

Figure 1. Our proposed control scheme.

4. Simulation results

In this section, the performance of our proposed scheme (Theorem 2) is compared with DPCC and, in this

regard, queue level changes and the control signal are evaluated in the case of outgoing flow rate variations.

Thereafter, the mean error of queue size, the sent traffic, and the mean outgoing estimation error in the proposed

scheme (all theorems) and DPCC are presented in the Table.

Table. Mean queue size error, sent traffic, and mean outgoing estimation error in the proposed scheme and DPCC.

Proposed Proposed Proposed

DPCCscheme scheme scheme
Theorem 1 Theorem 2 Theorem 3

Mean {Queue size error}2 15.34491 12.98235 14.85314 53.77587
Mean {-Queue size error-} 1.240782 1.156574 1.239565 1.533551
Sent traffic 20035.9 20042.52 20036.81 19920.98
Mean {-Outgoing estimation error-} 0.2229 0.1883 0.2256 3.2074

In this study, o and p are both considered 4, z is 9, and r is 4 (see the Appendix). The maximum and

ideal queue sizes are considered as 50 and 20 packets, respectively, and the controller parameters are kbv = 0.6

and 0.7 and λ = 0.001.

Figures 2 and 3 illustrate queue length changes in DPCC with kbv = 0.6 and kbv = 0.7 and the proposed

scheme (Theorem 2), and it is shown that kbv = 0.7 leads to poor performance in DPCC. kbv is an important

factor in the design of the DPCC controller (Section 2.1.2), which directly affects system performance, and

DPCC is highly dependent on it. Figure 4 shows the control signal. Finally, the mean queue size error, the sent

traffic, and the mean outgoing estimation error in the proposed scheme (all theorems) and DPCC are presented

in the Table.
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Figure 2. Queue size of proposed scheme and DPCC with kbv = 0.6.
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Figure 3. Queue size of proposed scheme and DPCC with kbv = 0.7.
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Figure 4. Control signal of proposed scheme and DPCC.

The figures and table demonstrate that our proposed schemes end in better performance in comparison

with DPCC, which is due to the use of a better system model for WSNs (unlike DPCC, delay is considered in our
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model). It is worth mentioning that, unlike DPCC, our resultant closed-loop systems are globally asymptotically

stable in the case of queue length changes and the consequent delay changes.

Furthermore, Theorems 1 and 2 are the weakest and the best in our proposed schemes, respectively, since

the latter is less conservative in comparison with the former, and this is due to the fact that nonquadratic

Lyapunov functions are used in the latter; however, common quadratic Lyapunov functions are used in the

former. In Theorem 3, performance is considered and the decay rate is guaranteed; however, decay rate is not

guaranteed in Theorems 1 and 2 or DPCC.

5. Conclusion

In this paper, novel congestion control schemes are presented and the resultant closed-loop systems are globally

asymptotically stable in the case of queue length changes and the consequent delay changes. Unlike previous

schemes and DPCC, in our method, a novel system model for WSNs is established in discrete time, subsystems

including delay are presented, and the overall model is achieved by blending these subsystems. In this paper,

common quadratic Lyapunov functions and a new approach based on nonquadratic Lyapunov functions are

utilized for controller synthesis. The controller synthesis results are expressed in terms of LMIs, which are

numerically feasible with commercially available software. In our method, a controller is designed for each

subsystem and, afterwards, these controllers are blended and system stability is guaranteed. Moreover, unlike

DPCC, performance is considered and the decay rate is guaranteed. The extended simulation results demon-

strate the superior performance of the proposed scheme in comparison with DPCC.

Appendix: Model description, numerical form

As stated in the model description, the system model is expressed as:

x(n+ 1) =
r∑

j=1

βj(n)(Ajx(n) +Bju(n))

r∑
j=1

βj(n) = 1, βj(n) ∈ {0, 1}

In our simulations, o and p are both considered 4, z is 9, and r is 4. It is straightforward to achieve the

subsequent subsystems if the delay is considered as 0, 1, 2, or 3. Based on delay, different subsystems as

(A1, B1 ), (A2, B2 ), (A3, B3 ), and (A4, B4) are chosen in our simulations.

A1 =



1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 1


A2 =



1 0 0 0 T 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 1
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A3 =



1 0 0 0 0 T 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 1


A4 =



1 0 0 0 0 0 T 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 1


B1 =

[
T 0 0 0 1 0 0 0 0

]T
B2 =

[
0 0 0 0 1 0 0 0 0

]T
B3 =

[
0 0 0 0 1 0 0 0 0

]T
B4 =

[
0 0 0 0 1 0 0 0 0

]T
Nomenclature

a Index for node number
n Time instance
i, j Index to show subsystem in time instant n
m, c Index to show subsystem in time instant n+ 1
r ∈ N Number of existing subsystems due to delay
L Set of subsystems, i, j ∈ L and L = {1 2 ... r}
o Number of states considered for buffer occupancy error
p Number of states considered for control signal
z ∈ N Number of state variables
satp Saturation function expressing finite size queue behavior
βi(n) Parameter to indicate which subsystem is chosen based on delay
κbv Gain parameter
κfvmax Maximum singular value of κfv

λ Adaptation gain

θ̂a(n) Actual vector of traffic parameter
Πj Πj is considered in the null space of Gj

d(n) Unknown traffic disturbance
eba(n) Buffer occupancy error
fa(·) Dictated outgoing traffic by the next hop node
fa(n− 1) Past value of outgoing traffic

f̂a(ua+1(n)) Estimate offa(ua+1(n))

f̃a(ua+1(n)) Outgoing traffic estimation error
qa(n) Buffer occupancy of the athnode at time instantn
qad Desired buffer occupancy at the ath node
ua(n) Regulated incoming traffic rate
x(n) ∈ Rz New states including buffer occupancy errors and control signals in different time instances

and the integrator
T Measurement interval
N Set of natural numbers
ℜ Set of real numbers
ℜn Set of n component real vectors
ℜn×m Set of n×m real matrices
B(t) Channel bandwidth
BOa Back-off interval at the ath node
Ra(t) ath node actual rate
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V Ra ath node virtual rate
TV Ra(t) Sum of all virtual rates of all neighbors Sa

Aj ∈ Rz×z Known constant matrices to describe our system
Bj ∈ Rz Known constant matrices to describe our system
S(n) ∈ R Integrator
Cm Matrices of appropriate dimensions
Sm Matrices of appropriate dimensions and positive definite
Fj ∈ ℜ1×z A set of 1× z real controller gain matrices, j ∈ L and L = {1 2 ... r }
Gj ∈ ℜz×z A set of z × z real matrices

G∗
i ∈ ℜz×z Notation adopted for simplicity G∗

i = (
r∑

i=1

βiGi)

P ∈ ℜz×z A symmetric positive definite matrix
Pj ∈ ℜz×z A set of symmetric positive definite z × z real matrices
Nj ∈ ℜ1×z A set of 1× z real matrices
Qj ∈ ℜz×z A set of symmetric positive definite z × z real matrices
X ∈ ℜz×z Symmetric positive definite z × z real matrices where X = P−1

V (x(n)) Lyapunov function candidate
∆V Difference function ∆V = V (x(n+ 1))− V (x(n))
Φ ∈ ℜz×z Positive definite full rank z × z real decay rate matrix
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