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Abstract:Microcalcification detection is a very important issue in early diagnosis of breast cancer. Generally physicians

use mammogram images for this task; however, sometimes analyzing these images become a hard task because of

problems in images such as high brightness values, dense tissues, noise, and insufficient contrast level. In this paper,

we present a novel technique for the task of microcalcification detection. This technique consists of three steps. The

first step is focused on removing pectoral muscle and unnecessary parts from the mammogram images by using cellular

neural networks (CNNs), which makes this a novel process. In the second step, we present a novel image enhancement

technique focused on enhancing lesion intensities called the automated lesion intensity enhancer (ALIE). In the third

step, we use a special CNN structure, named multistable CNNs. After applying the combination of these methods on

the MIAS database, we achieve 82.0% accuracy, 90.9% sensitivity, and 52.2% specificity values.

Key words: Mammogram, microcalcification, cellular neural networks, image processing, image enhancement, auto-

mated lesion intensity enhancer, pectoral muscle

1. Introduction

Breast cancer is a common problem, occurring at a rate of more than 1 million people among women worldwide.

Breast cancer incidence in Turkey is 42.7 per 100,000. Among Turkish women, in the top 10 cancers, the

incidence of breast cancer ranks first, at 35.47% [1].

Depending on the effect of early diagnosis and improved treatment methods, death rates related to breast

cancer have decreased in recent years [2]. Therefore, early diagnosis of breast cancer plays a very important

role for women. Unfortunately, close to 30% of breast cancer cases are not detected [3,4].

There are some signs for breast cancer detection. Calcium deposits (microcalcifications) are one of the

most important indicators. There is no exact definition for the shape of the microcalcifications. Microcalci-

fications usually appear as fragments of 0.1 to 2 mm wide in mammogram images. Microcalcifications in a

mammogram appear as tiny bright spots and are one of the most difficult images for physicians to detect,

especially in mammograms obtained from dense breast tissues. Microcalcification clusters are defined as 3 or

more microcalcifications grouped in areas smaller than 1 cm2 [5]. Detection of microcalcifications is a vital task

in the early diagnosis of breast cancer. Image processing and artificial intelligence techniques serve as useful

tools for helping physicians (especially less experienced ones) in mammogram reading.
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There are a large number of approaches for segmentation of mammogram images, such as fuzzy logic

methods, neural networks, and statistical methods. There are also shape-based classification techniques in

the literature, such as Le Gal classification [6] or BI-RADS classification. In some studies, high-frequency

components in the image spectrum are also used in determining data [7,8]. Many researchers combine these

methods for better results. Generally features extracted from each pixel are presented to a trained classifier for

detection and classification of the candidates. These kinds of methods are often followed by a postprocessing

stage in order to reduce the false positive rate [7,9,10].

As one of the biomedical image types, mammograms are generally handled in 2D spaces. The great size

of these images makes it harder to analyze them with pixel-based algorithms. Hence, cell-based algorithms give

better and faster results, especially in tiny particle detection tasks like microcalcifications. In this study, cellular

neural networks (CNNs) are used because of their cell-based nature.

CNNs were introduced in previous studies [11–13]. CNNs are described as interconnections of cells that

are defined by a nonlinear state equation. These structures have been used in applications like image processing,

pattern recognition, cryptography, and many other fields.

CNNs use matrices called templates for these tasks and every task needs a specific template. The training

process of CNNs aims to obtain appropriate template matrices for the desired output. There are many varieties

of CNN templates, like adaptive templates, linear templates, and cloning templates [14–21].

Although the cell-based algorithms have good yields, they can still encounter some obstacles during

mammogram image analysis because of the nature of these images. Some tissues in breasts can cause adverse

effects in mammogram images. For instance, fatty tissues increase the general intensity levels of the entire image.

Hence, in this case, cell-based classification algorithms can miss microcalcifications because of the intensity level

of the surrounding tissue. To increase the efficiency of the algorithms most of the time, the data should be

preprocessed. In this step, a variety of image preprocessing and enhancement methods are applied depending

on the nature of the image. There are many methods developed in this area.

In this paper, we propose a new approach, called the automated lesion intensity enhancer (ALIE), based

on histogram adaptation methods. This method involves image analysis and a linear combination technique.

The technique aims to decrease the effects of the tissues with high intensity levels and increase the detectability

of the microcalcifications.

The method is followed by the multistable CNN algorithm for extracting possible microcalcification spots.

A classification process is then applied to these extracted data for precision. We used the Mammographic Image

Analysis Society (MIAS) database [22] because MIAS is a well-known, commonly used database in mammogram

studies. In our study, we chose the digitized MIAS database because digitized mammograms are noisier than

digital mammograms; hence, we evaluated our algorithms performance on noisy images.

There have not been many studies using CNNs in the process of detecting microcalcifications in mammo-

grams in the literature. In this study, we used the ALIE algorithm for preprocessing the mammogram image and

preparing the image for the CNN algorithm. From this point of view, our study demonstrates a new method.

2. Cellular neural networks

CNNs were introduced in 1988 [11–13]. CNNs are described as 2D cell arrays with local cell interconnections

[11]. The structure of CNNs is based on cellular automata and a neural network architecture [23]. The main

difference between conventional neural networks and CNNs is that the CNNs have a local connectivity property.

Since this structure resembles the human retina, CNNs can be used as image processing tools in various manners,

including medical image processing and segmentation tasks [23,24].
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In digital medical image processing, CNNs can be thought of as cellular programmable multidimensional

processing arrays with distributed logic and memory [25,26]. Training CNNs for a specific task is called template

learning. CNN template learning is the determination of the values in the template of a CNN that affect the

general dynamics of the structure. The learning process creates a stable connection network for the specified

task. CNNs consist of cells placed as 2D arrays. Every cell in the structure is related to nearby neighboring

cells, as presented in Figure 1 [12,13].

 

C (1,1) C (1,2 ) C (1 ,3)

C (2,1)

C (3,1)

C (2,2 ) C (2 ,3)

C (3,2 ) C (3 ,3)

Figure 1. CNN cell structure.

A CNN cell is described as a normalized differential state equation (Eq. (1)). The basic CNN cell has a

capacitor for giving it first-order dynamics, and neighboring cells are coupled with each other through nonlinear

controlled sources. The dynamics of the CNN is described by:

d

dt
xi,j(t) =

∑
k,l∈N

Ak,lyi+k,j+k(t) +
∑

k,l∈N

Bk,lui+k,j+k + I. (1)

Nonlinearity of output is defined by Eq. (2).

y (x) =
1

2
[|x− 1| − |x+ 1|] (2)

The input, state, and output, represented by u i,j , x i,j , and y i,j , respectively, are defined in 0 ≤ I ≤ N1 and

0 ≤ j ≤ N2.

A template contains the combination of a triplet{A, B, I} for the template learning, where A consists of

all arguments akl , and B represents the values bkl . In the structure of CNNs A and B, matrices are square

matrices such as 3 × 3, 5 × 5, etc. The threshold is generally a one-dimensional scalar, but it can also be

described as a matrix with the same size as the A and B matrices. In our study we used 3 × 3 templates.

The effects of the templates on equations can be described in block diagram form, as shown in Figure 2

[12,13]. The correlation sums in the equation can be written as convolutions by template reflection. From the

diagram, it can be seen that the B template forms a simple feedforward finite impulse response filtered version

of the input, which itself can be considered as static input to the rest of the system. On the other hand, the A

template is operating in a feedback loop along with nonlinearity, a feature that gives interesting behavior [27].

In some cases, especially in image segmentation tasks, one other property of CNNs, multistability, plays a

useful role. In the conventional CNN cell structure, the output function is defined as a piecewise linear function

called unit saturation. This structure is common for all CNN-based tasks. The unit saturation function can be
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Figure 2. CNN’s cell model.

defined as follows [27].

f(x) =

 1 x ≥ 1
x −1 < x < 1
−1 x ≤ −1

 (3)

The CNN’s multistability property requires another definition for the output function. In a multistable CNN

cell, every property is the same as in the normal CNN cell, but the output function differs from the standard unit

saturation function. There are many possible output functions for multistable CNN cells, such as polynomial

functions of different ranks or piecewise nonlinear functions with more slopes [28]. This piecewise function can

be defined as follows.

f(x) =


1 x ≥ 1

m1x 0 ≤ |x| ≤ b
m2x b < |x| ≤ c
−1 x ≤ −1

 (4)

In this equation, there are slopes, and b and c are the breaking points of the equation. More slopes and breaking

points can be added by defining new definition intervals. Because of the chaotic trend of CNNs, this definition

must preserve the continuity of the output function. Undefined intervals or points are not allowed, as this can

cause unstable or oscillatory behaviors [28].

3. Enhancement of mammographic images

Many researchers are working on computer-based image processing to help radiologists in the detection of breast

cancer. One of the most important parts of these studies is the image enhancement stage. Image enhancements

include noise reduction, background removal, histogram manipulation, sharpening, gray level, and contrast

manipulation. One of the basic goals of mammogram image enhancement is to arrange the contrast between

shape and background or to sharpen the edge of the image [29].

Various studies have been done on mammographic image enhancement. Photographic unsharp masking

[30,31], digital unsharp masking [32], and spatial bandpass filtering [33] have been used to enhance mammo-

grams. Chen et al. [31] studied an automatic method for optimized image contrast enhancement. Panetta et al.

[32] performed edge-preserving contrast enhancement. Kosheleva et al. [34] used the selective median filtering

method, which is a modification of the median filter operation.

3.1. Techniques of enhancement of mammographic images

In general, image enhancement, or the preprocessing step, deals with contrast adjustment, background removal,

noise reduction, edge sharpening, and filtering.
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Image enhancement includes many different methodologies and objectives. There are a large variety of al-

gorithms developed on this area. These methods can be summarized by the following methods: histogram-based

enhancement techniques as histogram equalization, contrast-based enhancement techniques as histogram ad-

justment, the region-based enhancement technique [30], and image enhancement using metaheuristic algorithms

like genetic algorithms [35].

3.2. ALIE

In our study, a new histogram-based enhancement technique has been developed for improving and enhancing

mammogram images for increasing the success rate in detection of microcalcifications.

The ALIE algorithm works on 8-bit integer-valued (scaled between 0 and 255) gray scale images, and the

minimum resolution must be 1024 × 1024. Our method works on images with 0–255 gray value distributions.

While working on other kinds of images, the image should be normalized to 0–255 gray values. The algorithm

affects the entire image and preserves the gray values of lesions such as microcalcifications while darkening

the other areas. It consists of 22 steps, shown in the flowchart in Figure 3. At the beginning, the algorithm

calculates some index values and some coefficients from the histogram of the entire image, and then generates

two more images using these values. The generated images preserve pixel location information, while one of

them is generated by subtraction of the dark index value from the original image and the other one is generated

by adding the light index value to the original image. After generating these images, the algorithm uses linear

combination techniques and combines all three images for generating the enhanced final image. Generally

median and average filtering is dangerous for mammograms, as filtering can cause loss of microcalcifications

in the mammogram images, but in our algorithm the filtering steps are applied to support the final image,

not to generate it. In the final step, we apply the last linear combination between the original image and

the generated supporting image; hence, microcalcification locations on the original image still persist and no

microcalcifications are lost. The ALIE method consists of 22 steps. The ALIE algorithm is given below as

pseudocode and a flowchart.

ALIE (Source Image // Read the image to be enhanced) {
Sharpened=unsharp(Source image); //Apply unsharp mask on image

H=histogram(Sharpened); //Generate grayscale histogram for the image

H W =H(5:255); // Subtraction of fully black region from histogram by thresholding

DH= H W(1:125); // Dark region of the histogram

LH=H W(126:255); // Light region of the histogram

DM=median(DH); // Median value of the dark region of the histogram

LM=median(LH); // Median value of the light region of the histogram

D I= find (DM); // Finding the value of the dark index where the value overreaches the median value of

the dark region

L I= find (LM); // Finding the value of the light index where the value overreaches the median value of

the light region

D image= Source image – D I; // Generating decreased image from source image

L image= Source image + L I; // Generating increased image from source image

TR Image1= linearcombinate(D image, Source image); // First transient image generated by linear

combination of decreased image and source image
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Figure 3. Flowchart of the ALIE algorithm.
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TR Image2= linearcombinate(L image, Source image); // Second transient image generated by linear

combination of increased image and source image

TR Image3= linearcombinate(TR image1, - TR image2); // Third transient image generated by linear

combination of first transient image and negative second transient image

TR image4= linearcombinate(TR image3, Source image); // Fourth transient image generated by linear

combination of third transient image and source image

TR image5= TR image4 - D I; // Fifth transient image generated by subtraction of dark index from

fourth transient image

M image= median 2d(TR image5); // Median filtered image generated by applying a two-dimensional

median filter on fifth transient image

Cbright= |L I – D I | ; // Calculation of lightness coefficient

Cdark=Cbright-1; // Calculation of darkening coefficient

Dark image=darken(M image,Cdark); // Darkening median filtered image by using darkening coefficient

AvDark image = average filter(Dark image); // Average filtered Dark image

Final image= linearcombinate (AvDark image, M image); Final image generated by linear combination

of median filtered image and darkened image }

The flowchart of the algorithm (ALIE) is shown in Figure 3:

In Figure 4, the results of the ALIE algorithm applied to a mammogram image from the MIAS database

(mdb222) are shown. Figure 4a is the source image file (mdb222), Figure 4b is a detail from the image, and

Figure 4c is the detail from the final image with the same coordinates.

 

(a )              (b)            (c)  

Figure 4. (a) Original mammogram image (mdb222) (1024 × 1024 resolution), (b) a cluster of microcalcifications in

(a) (145 × 145 resolution), (c) the same image in (b) after ALIE algorithm (145 × 145 resolution).

Our proposed enhancement algorithm basically operates on a histogram of the source image and shifts

the pixel values to the dark region of the histogram while protecting the pixel values of abnormalities, as shown

in Figures 5a and 5b.
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Figure 5. (a) Histogram of the source image, (b) histogram of the final image.

4. Detection of microcalcifications in digital mammograms with cellular neural networks

The method proposed in this study aims to detect suspicious particles in a mammogram image and inspect the

microcalcifications among them. In this work, the mammogram image is first preprocessed for cleaning images

from various noise signals. The pectoral muscle and extra partitions like labels are then removed. After this

removal step, the background is set to absolute black value. The ALIE algorithm explained in Section 3 is used

for enhancing probable lesions.

These preliminary steps are followed by a CNN algorithm for segmenting microcalcification particles from

the image. Our proposed method is summarized by the flow chart in Figure 6.

 
Acquiring the source mammogram image

Label and pectoral muscle deletion

Enhancement of the image with ALIE algorithm

Image analysis using CNN algorithm

Binarization and labeling of the detected spots

Classification

Marking the microcalcifications detected by the algorithm

Figure 6. General flowchart of the proposed algorithm.
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4.1. Extraction of pectoral muscle and labels

The pectoral muscle regions are generally very large areas in mammograms. They appear as a bright triangular

region near the image corner [36]. Their high intensity value affects preprocessing steps adversely, especially

the histogram equalization techniques. In our study, we needed to remove the pectoral muscle regions from

the original image before starting to analyze it. After analyzing the image without the pectoral muscle and

obtaining the coefficients, we used the images with pectoral muscles for enhancement with the ALIE algorithm.

In some studies, especially in pixel-based and histogram-based techniques, removing these areas increases the

robustness of the technique [37]. Some mammogram images can also include additional information, such as

labels or direction information as high-intensity regions in the image’s corner.

The microcalcifications neighboring the pectoral muscle could be lost in the pectoral muscle removal

step. Hence, a cell-based method can be more accurate for this task. Therefore, we used the CNN algorithm for

removing pectoral muscles to overcome this problem. In this paper, the CNN-based pectoral muscle and label

removing algorithm has been used. The algorithm consists of two steps, both using CNN algorithms. In the

first step, the CNN is trained with the recurrent perceptron learning algorithm (RPLA) [38] for detecting the

entire breast in the image. The RPLA is used, generating A and B template matrices and an I bias value. The

algorithm needs input and target datasets for calculating these values. In this study, an image obtained from

the MIAS database is processed by a physician and a target dataset is generated. The target dataset includes

the same images as the input dataset without unnecessary label parts, and also another dataset without the

pectoral muscle regions.

The CNN templates obtained with RPLA for breast detection are shown below.

A =

 0.8574 1.3370 0.9301
1.7550 −1.6794 1.7550
0.9301 1.3370 0.8574

 ,

 −1.7855 −0.4677 1.6051
−0.4438 0.4286 −0.4438
1.6051 −0.4677 −1.7855

 , I = [0.8016]

After obtaining this CNN template, the entire MIAS dataset is presented to the CNN algorithm with

this template. The output of this step was binary masking of the other regions to be set to zero value; hence,

the label and unnecessary information are deleted.

In the second step, the CNN is also trained with a backpropagation algorithm for separating the pectoral

muscle and breast tissue. In this step, the backpropagation algorithm was chosen because the results of this

training were more precise. During the training task, the same dataset processed by the physician was used.

The new template obtained is shown below.

A =

 1.3372 1.8066 0.406
0.8926 −8811 0.8926
0.0406 1.8066 1.3372

 ,

 1.4478 −0.2689 −1.4972
−1.0045 −0.2501 −10045
−1.4972 −0.2689 1.4478

 , I = [−2.1454]

The output images of the second step were binary-valued images. Erosion and dilation operations were

applied to these images to generate the binary mask. Finally, the pectoral muscle was placed on the upper left

or right corner of the images. Removing this part from the original image gives the final mammogram image

to be analyzed.

Removal of both the pectoral muscle and labels is position-based. The flowchart of the method is shown

in Figure 7.
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Acquiring the source mammogram image

Detecting the breast with CNN algorithm

Generating the binary mask of unnecessary area

Deletion of the mask area

Detecting the pectoral muscle with CNN algorithm

Generating the binary mask of pectoral muscle

Deletion of the masked area

Saving the final image to be analyzed

Figure 7. Flowchart of the pectoral muscle and label deletion algorithm.

Figure 8a is the original mammogram image, Figure 8b is the binary mask of the areas to be removed,

Figure 8c shows the removed labels from the original image, Figure 8d is the binary mask of the pectoral muscle,

and Figure 8e shows the removed pectoral muscles and labels from the original image.

The general CNN model as described previously in Figure 2 was used in this step, where the input

parameter is U = 0 and the initial state parameter is X0 = Im1 , where Im1 describes the mammogram image

to be cleared.

4.2. Lesion intensity enhancement using the ALIE algorithm

Mammograms are defined with low signal to noise ratios [39]. Noisy backgrounds and low contrast levels are

the other problems. Hence, successful detection of microcalcifications needs a preprocessing step for enhancing

the contrast levels and noise removal. In this study, the ALIE algorithm proposed in Section 3 is used for

this task. The algorithm basically enhances the intensity level of abnormalities in mammogram images while

reducing the intensity level of the background. The performance evaluation of the method is based on some

global image enhancement evaluation criteria. These criteria are enhancement measure (EME), absolute mean

brightness error (AMBE), and universal image quality index (UIQI) [40–43]. These evaluation methods work on

the entire given image and especially evaluate the enhancement of intensity values and noise reduction between

the original image and the enhanced image. The proposed algorithm runs on an entire image, too, and hence

these global performance evaluation methods for evaluating the enhancement performance of the proposed

algorithm were chosen. The performance evaluation results in this study are only for the image enhancement

step; microcalcifications are handled in further steps.
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.  

(a)              (b)    (c)  

  

(d)      (e)  

Figure 8. (a) Original mammogram image, (b) binary mask of the areas to be removed, (c) removed labels from the

original image, (d) binary mask of pectoral muscle, (e) removed pectoral muscles and labels from the original image.

Formulation of the EME, AMBE and UIQI methods are as follows.

EME:

EME(f∧) = EMEΦ(f
∧) =

1

k2

k∑
m=1

k∑
n=1

20 log2
max(f∧ [m, l])

min(f∧ [m, l])
(5)

AMBE:

AMBE = |E(X)− E(Y )| (6)

UIQI:

x = {xi |i = 1, 2, ..., N } and y = {yi |i = 1, 2, ..., N } (7a)

Q =
4σxyxy

(σ2
x + σ2

y) [(x)
2 + (y)2]

(7b)

x =
1

N

N∑
i=1

xi, y =
1

N

N∑
i=1

yi (7c)

σ2
x =

1

N − 1

N∑
i=1

(xi − x)2, σ2
y =

1

N − 1

N∑
i=1

(yi − y)2 (7d)

σ2
xy =

1

N − 1

N∑
i=1

(xi − x)(yi − y) (7e)
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The analysis results of these evaluation methods can be explained as follows.

High EME values mean overenhancement, which indicates local information loss. Very low values of EME

mean that lesions or microcalcifications in dense tissues are not significantly enhanced [41].

High or low AMBE results mean that the enhancement process was insufficient [41]. It is preferred to

keep this value at optimum levels for better contrast enhancement.

The UIQI value is placed between [0,1], where 1 means that the compared images are identical and 0

means that images are completely different. Values closer to 1 indicate that the enhancement is not sufficient,

and values closer to 0 indicate that the image lost information while being enhanced.

Table 1 shows the quantitative performance measures compared to four different enhancing algorithms

for all 22 numbers of the abnormal MIAS mammogram images in terms of microcalcification. The names and

the formulations of the algorithms used to compare the enhancement performance of the ALIE are as follows.

Table 1. The quantitative performance measures compared with four different enhancing algorithms.

File name 
EME AMBE UIQI 

CLAHE HE US ALIE CLAHE HE US ALIE CLAHE HE US ALIE 

mdb209 6.8544 1.1254 3.0236 4.8819 4.3060 92.9838 0.2343 42.1025 0.3252 0.2612 0.7699 0.4304 

mdb211 4.2508 0.4899 2.3722 3.8653 0.8624 102.7925 0.1862 38.0693 0.2964 0.2591 0.8257 0.5719 

mdb212 3.8386 0.4701 2.2508 3.3067 0.3915 107.3968 0.1717 35.1812 0.2852 0.2299 0.8198 0.5565 

mdb213 4.1072 0.3741 3.4118 2.8373 2.0027 127.8849 0.1257 28.3533 0.2568 0.1510 0.8490 0.6357 

mdb214 3.6766 0.3346 2.3053 2.6689 3.6630 134.7640 0.1337 27.5365 0.2405 0.1398 0.8567 0.6400 

mdb218 6.5972 1.5398 7.5311 2.9681 2.0345 78.5004 0.0946 37.9100 0.3876 0.2743 0.7522 0.4543 

mdb219 5.0271 1.0538 3.0381 5.4180 0.9829 65.6234 0.2139 54.4590 0.3834 0.3762 0.8002 0.4837 

mdb222 4.3953 0.5157 3.5442 2.6717 3.3751 104.6545 0.1290 31.2674 0.3035 0.2235 0.8243 0.5917 

mdb223 3.9110 0.4188 4.0937 2.1033 3.9034 131.9944 0.1594 25.5154 0.2518 0.1672 0.8500 0.6628 

mdb226 5.1382 0.6253 2.5388 2.5352 3.7635 122.1894 0.1786 29.2889 0.2523 0.1604 0.8113 0.5320 

mdb227 3.1187 0.3236 1.9952 3.3876 0.1817 128.2633 0.1484 33.7320 0.2554 0.2104 0.8743 0.6748 

mdb231 6.2917 1.6267 3.1722 8.2268 4.3110 69.3424 0.2504 59.9244 0.3783 0.3260 0.7667 0.4083 

mdb236 6.4821 1.6844 7.7898 2.6527 1.0495 73.5060 0.1533 40.3257 0.3855 0.2883 0.7576 0.4696 

mdb238 4.1378 0.7082 6.0282 3.6254 3.5619 105.7719 0.1463 37.7819 0.3322 0.2353 0.7996 0.5348 

mdb239 6.3050 1.2701 3.5764 2.9201 1.2375 60.3121 0.2262 42.5752 0.3796 0.3081 0.7711 0.4792 

mdb240 5.6353 1.1133 3.4734 3.5738 0.7391 59.8573 0.1412 37.4810 0.3643 0.2960 0.7726 0.4319 

mdb241 3.6955 0.4614 3.4478 1.9479 1.4460 121.9848 0.1545 25.6532 0.2548 0.1836 0.8533 0.6773 

mdb248 7.0739 1.4994 3.6003 4.1837 3.3134 82.2779 0.1865 42.6838 0.3407 0.2553 0.7547 0.4151 

mdb249 4.9100 0.6826 2.7734 3.8794 0.1254 95.4229 0.1855 38.6819 0.3215 0.2649 0.8170 0.5471 

mdb252 4.8098 0.7726 3.5740 4.2329 2.8939 105.3293 0.1585 39.7930 0.3074 0.2457 0.8117 0.5468 

mdb253 5.8871 1.4970 6.7858 2.9696 1.3016 65.8996 0.1969 43.2067 0.4032 0.2777 0.7610 0.4772 

mdb256 5.0626 1.2818 3.0258 3.9232 3.0347 74.2364 0.1732 48.3449 0.3452 0.2261 0.7590 0.4350 

Average 5.0548 0.9031 3.7887 3.5808 2.2036 95.954 0.1703 38.1757 0.3204 0.2436 0.8026 0.5298 

The unsharp mask (US):

σ2
xy =

1

N − 1

N∑
i=1

(xi − x)(yi − y) (8)

Contrast limited adaptive histogram equalization (CLAHE):

g = [gmax − gmin] p(f) + gmin (9)

gmax = maximum pixel value
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gmin = minimum pixel value

g = computed pixel value

p(f) = cumulative probability distribution function

Histogram equalization (HE):

pn =
number of pixels with intensity

total number of pixel
n = 0, 1, ..., L− 1. (10a)

The histogram equalized image g will be defined by:

gi,j = floor((L− 1)

fi,j∑
n=0

pn (10b)

When Table 1 is examined, it can be seen that our proposed algorithm provides adequate enhancement values

for these criteria. This enhancement success increases the success of the detection and classification steps.

d(x, y) is the darkened version of fsharp(x, y) and l(x, y) is the lightened version of fsharp (x, y) after

generating these versions of original image. The algorithm uses these images and generates a new set of images

using linear combination techniques.

4.3. Image analysis using multistable CNN algorithm

After the image enhancement step, images become ready for the segmentation and classification step. Deter-

mination of the microcalcifications in mammograms with conventional CNN is difficult because of the intensity

levels of the surrounding tissues. Intensity levels of these tissues are close to the intensity levels of microcalcifica-

tions. Hence, a method that can produce an output with multiple gray level values was required. In this paper, a

multistable CNN algorithm is chosen. Multistable CNNs have a topology similar to that of conventional CNNs,

but their output functions of the cells have more than two stationary states. This multioutput level property

of the algorithm makes it useful for image decomposition tasks [28]. The A, B, and I values and parameters for

the multistable CNN are also obtained with RPLA [38] for detecting the microcalcification spots. The target

dataset for this training is also generated from the MIAS database using the information about the location of

abnormalities given in the database.

The CNN template for extracting specific features in the enhanced mammogram image is obtained as

below.

A =

 0.3372 0.8066 0.2407
−0.8926 5.3720 −0.8926
0.2407 0.8066 0.3372

 ,

 1.4478 −0.2689 −1.4972
−3.0045 −0.2501 −3.0045
−1.4972 −0.2689 1.4478

 , I = [−2.0655]

Because of the successful performance of the multistable CNNs on image segmentation, we also defined

an output function with three regions. The selected function is defined in Eq. (11) and graphical representation

of the function is given in Figure 9.

f(x) =


1 x ≥ 1

0.55x 0 ≤ |x| ≤ 0.7
0.25x 0.7 < |x| ≤ 1
−1 x ≤ −1

 (11)
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After applying the multistable CNN algorithm to enhanced images, the microcalcification spots are exposed.

The classified spots are marked on the mammogram image for a physician’s evaluation. In Figure 10, one of the

processed and labeled mammogram images is shown. Figure 10a is the original image without pectoral muscles,

Figure 10b is the image after the ALIE algorithm, Figure 10c is the image after the multistable CNN algorithm

is applied, and Figure 10d is the classified and labeled microcalcification spot in the image.

0 5 10 15 20 25 30 35 40 45
–1.5

–1

–0.5

0

0.5

1

1.5

 

(a)                                            (b)  

 

(c)                                                (d)  

Figure 9. Output function of multistable CNN. Figure 10. Labeled and positively true classified mi-

crocalcification spot in a mammogram image (mdb209):

(a) original image without pectoral muscles, (b) image

after ALIE algorithm, (c) after the multistable CNN al-

gorithm is applied, (d) classified and labeled microcalcifi-

cation spot in image.

5. Experimental results

To evaluate the proposed algorithm, we used the Mini MIAS database, which is publicly available [22]. The

resolution of the images was 200 micron pixels and the size of the images was 1024 × 1024. The database

contains 20 images, including 25 microcalcification clusters. The database includes coordinates of the center

of the anomaly and the diameter of the surrounding circle. The coordinate system origin is in the bottom left
corner.

The final image obtained from the multistable CNN was converted into binary images and the spots

were first marked and counted, and then a circle of the anomaly was calculated from these marked spots.

The anomaly circles were compared with the circles given in the database. The images were also evaluated

and classified by two different radiologists. After this step, we created an ROI set from the images that the

radiologists commented on. We selected 100 ROIs for evaluating the classification success. The ROI set consisted

of 40 abnormal samples and 60 normal samples. We subjected this dataset to five similar classification methods.

These methods were a combination of enhancing techniques and multistable CNN algorithms. Tested classifiers
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CİVCİK et al./Turk J Elec Eng & Comp Sci

were ALIE + multistable CNN, CLAHE + multistable CNN, HE + multistable CNN, US + multistable CNN,

and multistable CNN without enhancement. Classification performances of the classifiers and the radiologists

are presented in Table 2.

Table 2. Performance evaluations of multistable CNN classifiers with image enhancing techniques.

 

ALIE + 

multistable 
CNN 

CLAHE + 

multistable 

CNN 

HE + 

multistable 

CNN 

US + 

multistable 

CNN 

Multistable 

CNN 
Rad. 1 Rad. 2 

ALIE + 

Rad. 1 

ALIE + 

Rad. 2 

Number of cases 100 100 100 100 100 100 100 100 100 

Number correct 82 36 10 26 47 84 80 89 86 

Accuracy 82.0% 36.0% 10.0% 26.0% 47.0% 84.0% 80.0% 89.0% 86.0% 

Sensitivity 90.9% 100.0% 0.0% 45.8% 71.0% 85.5% 85.9% 89.0% 88.7% 

Specificity 52.2% 13.5% 13.5% 7.7% 7.9% 79.2% 65.5% 88.9% 79.3% 

Cases missed 18 64 90 74 53 16 20 11 14 

Fitted ROC area 0.853 Degenerate Degenerate 0.073 0.102 0.93 0.839 0.969 0.92 

Empiric ROC area 0.838 0.321 0.055 0.084 0.115 0.918 0.826 0.955 0.905 

ROC curves obtained with the proposed method and the other methods using the MIAS database with

complete dataset are shown in Figure 11.
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Figure 11. The ROC curves obtained with the proposed method and the other methods using the MIAS database with

complete dataset.

As seen in Table 3, the locations detected by the proposed algorithm include or intersect with the original

database values. However, we also can see that the algorithm fails on mammogram images of dense breasts.

The character of the background tissue (granularity) is given in Table 3. This information is obtained

from the MIAS database [22] as follows:

F: Fatty

G: Fatty-glandular

D: Dense-glandular
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Table 3. Locations of anomalies classified by the proposed algorithm.

File name 

G
ra

n
u

la
ri

ty
 Database default 

Raw MIAS 
(Radiologist 1) 

Raw MIAS 
(Radiologist 2) 

MIAS with ALIE 
(Radiologist 1) 

MIAS with ALIE 
(Radiologist 2) 

Proposed algorithm 

X Y Diam. X Y Diam. X Y Diam. X Y Diam. X Y Diam. X Y Diam. 

mdb209 G 647 503 87 613 540 146 630 510 200 650 524 128 590 634 126 615 570 9.8 

mdb211 G 680 327 13 500 494 94 512 505 108 575 351 73 552 336 85 503 319 60 

mdb213 G 547 520 45 540 594 112 532 537 102 565 491 78 544 485 98 554 518 32 

mdb216 D Widely distributed 
490 486 140 

530 468 132 590 532 252 526 476 108 550 530 
664* 
(wide) 492 808 220 

mdb218 G 519 629 8 528 477 136 Not commented 518 448 88 510 450 60 574 400 147 

mdb219 G 546 756 29 538 738 184 550 756 72 542 732 144 548 762 76 545 765 10 

mdb222 D 398 427 17 Not commented 456 448 156 Not commented Not commented 535 481 146 

mdb223 D 523 482 29 494 480 160 542 478 144 532 490 124 536 54 588 503 499 77 

mdb223 D 591 529 6 494 480 160 542 478 144 532 489 124 536 54 588 503 499 77 

mdb226 D 287 610 7 520 514 83 Not commented 520 524 78 500 468 90 469 604 138 

mdb226 D 329 550 25 340 554 66 Not commented 340 569 60 330 604 77 429 592 116 

mdb226 D 531 721 8 330 489 45 Not commented 340 504 30 340 524 43 537 532 267 

mdb227 G 504 467 9 534 290 220 522 332 96 518 333 130 522 330 88 521 329 13 

mdb231 F 603 538 44 Not commented Not commented Not commented 577 495 218 Failed to classify 

mdb233 G Widely distributed 628 298 264 580 316 288 577 417 140 Not commented 604 284 
259* 
(wide) 

mdb236 D 276 824 14 Not commented Not commented Not commented Not commented Failed to classify 

mdb238 F 522 553 17 510 540 30 512 566 40 525 560 22 523 562 20 447 522 168 

mdb239 D 645 755 40 Not commented Not commented Not commented Not commented Failed to classify 

mdb239 D 567 808 25 Not commented Not commented Not commented Not commented Failed to classify 

mdb240 D 643 614 23 Not commented Not commented Not commented Not commented Failed to classify 

mdb241 D 453 678 38 466 672 164 438 404 108 482 662 72 478 692 108 453 610 92 

mdb245 F Widely distributed 622 210 168 612 202 232 620 268 140 620 218 184 643 255 83 

mdb248 F 378 601 10 Not commented Not commented Not commented Not commented 378 599 17 

mdb249 D 544 508 48 532 638 58 546 625 72 540 623 62 540 613 70 539 507 50 

mdb249 D 575 639 64 572 579 30 577 624 45 570 584 32 572 587 38 547 594 112 

mdb252 F 439 367 23 Not commented Not commented Not commented Not commented 430 377 56 

mdb253 D 733 564 28 725 520 50 742 550 39 730 550 35 730 570 42 714 553 50 

In Figure 12, one of the images (mdb241) is evaluated and marked by both radiologists and the proposed

algorithm. Figure 12a is the original image labeled with the database’s default coordinate values, Figure 12b

is the original image labeled by Radiologist 1, Figure 12c is the original image labeled by Radiologist 2, Figure

12d is the enhanced image labeled by Radiologist 1, Figure 12e is the enhanced image labeled by Radiologist

2, and Figure 12f is the original image labeled by the proposed algorithm. Markings of the radiologists were

made by hand and the markings of the original database values and our algorithm were made by a computer
program.
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(a)                                            (b)                                          (c)  

    

(d)                                           (e)                                        (f)

Figure 12. Microcalcification areas labeled by both radiologists and the proposed algorithm in mammogram image

(mdb241): (a) original image labeled with the database’s default coordinate values, (b) original image labeled by

Radiologist 1, (c) original image labeled by Radiologist 2, (d) enhanced image labeled by Radiologist 1, (e) enhanced

image labeled by Radiologist 2, (f) original image labeled by the proposed algorithm.

6. Conclusions

In this paper we proposed a new image enhancing method for digital mammograms and a multistable CNN-

based classification algorithm for detecting microcalcification spots. The enhancing algorithm prepares the

mammogram images for the multistable CNN algorithm. The enhancement algorithm proposed in this paper

could be effective in attracting the attention of radiologists to microcalcifications that could be missed at first

glance, especially at workload-intensive hospitals. We evaluated our enhancing algorithm with EME, AMBE,

and UIQI methods and the algorithm achieved 3.5808 EME score, 38.1757 AMBE score, and 0.5298 UIQI score

on average as shown in Table 1. Optimum scores of these evaluation methods mean better enhancing. As seen

in Table 1, our method achieved the optimum scores among the other enhancing methods explained in [40–42].

After the enhancement step, our method uses a multistable CNN algorithm for classification of micro-

calcification spots. There are not enough studies using CNNs in microcalcification detection in mammograms

in the literature. The CNN algorithm without enhancement generally fails in microcalcification detection be-

cause of the surrounding tissue; our enhancement algorithm significantly reduces this effect and prepares the

mammogram image for classification with the CNN algorithm.

To investigate the effect of the enhancement algorithm on classification we compared our method with

the following methods: CLAHE + multistable CNN, HE + multistable CNN, US + multistable CNN, and

multistable CNN without enhancement. Our method was the most successful among these methods with a 82%

accuracy score, as shown in Table 2.
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Images were also evaluated and classified by two different radiologists. Radiologist 1 has 12 years of

experience in the field and Radiologist 2 has 3 years of experience in the field. The radiologists first evaluated

the original MIAS database images (20 images with microcalcifications), and then they evaluated the enhanced

images. The evaluation process was done on a normal computer monitor without extra contrast-enhancing

capability.

Radiologist 1 achieved 84.0% accuracy in the original MIAS images, and Radiologist 2 achieved 80.0%

accuracy in the original MIAS images. After the image enhancement step, Radiologist 1 achieved 89.0% accuracy

in enhanced MIAS images, and Radiologist 2 achieved 86.0% accuracy in enhanced MIAS images, as shown in

Table 2. Our enhancing algorithm contributed 5% to Radiologist 1 and 6% to Radiologist 2.

However, there are some weaknesses in our technique. The proposed method fails on low density

mammogram images and microcalcifications neighboring the pectoral muscle. For increasing the effectiveness

of the method, comprehensive clinical studies are in progress.

The proposed algorithm offers new ideas and methods for CNN-based image processing techniques.

Integrating this technique with other methods such as genetic algorithms, fuzzy logic, or other classification

techniques will bring more precise, robust, and fast results. In the future, we will continue to study our technique

and evaluate digital mammogram images. Evaluations will take place on special computer monitors that are

used by radiologists for mammogram images.
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