
Turk J Elec Eng & Comp Sci

(2015) 23: 698 – 708

c⃝ TÜBİTAK
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Abstract:The E-core transverse flux machine (ETFM) has major advantages with its different and unique structure in

conventional electrical machines. It is a combination of transverse flux and reluctance principle. In this work, support

vector regression machines (SVRMs) are used to obtain the magnetic characteristic parameters of the ETFM for the first

time and it is compared with its artificial neural network model. The data for the training and testing of the SVRMs

are obtained from experimental measurements. It is proven that SVRMs can conveniently be used in the modeling of

the magnetic behaviors of highly nonlinear ETFM with better accuracy and efficiency.

Key words: E-core transverse flux machine, magnetic characteristics, artificial neural network, support vector regression

machines

1. Introduction

Transverse flux machines (TFMs) have recently become attractive and popular in electrical machine areas due

to their favorable characteristics, specific torque, high force density, and high efficiency. Nevertheless, TFMs

have quite an old history, like that of the classical radial machines. In 1971, Laitwaite et al. presented a

significant paper that shaped future research by using the transverse flux principle in linear electrical machines

[1]. Compared with the more usual kind of linear motor, the new machine has flux paths lying transversely to the

direction of motion in running phases. First Weh and May introduced a new rotating machine by combining the

permanent magnet excited structure and the TFM concept [2,3]. After the 1990s, alternative shapes of stator

and rotor poles were also tried for improvement of TFMs. Henneberger and Bork presented a new concept

of a TFM that has a U-shaped inner stator with three ring windings and the outer rotor carries permanent

magnets [4,5]. Liu and Kuo adapted the transverse flux of E-shaped stator and rotor poles to investigate a linear

reluctance machine design [6]. A special reluctance motor with a transverse flux path that is free of expensive

permanent magnets was presented by Kruse et al. in [7]. As in the literature [4,8–10], TFMs can be categorized

according to different concepts, such as those with an active rotor where the exciting permanent magnets are

placed on the rotor or those with a passive rotor where the permanent magnets are located on the stator parts.

The E-core transverse flux machine (ETFM) is another concept uniting the transverse flux principle and

an electrically excited reluctance motor without any permanent magnets. It was initially patented by Rasmussen

[11] in 2007. A segmental stator design is used to improve the torque per weight ratio with a lower cost. With
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short flux paths, closed magnetic systems without common yokes, and many advantages such as high torque

density, reliability, and high load ability, it differs from classical electrical machines.

Magnetic characteristics of ETFMs such as flux linkage, phase inductance, and electromagnetic torque

are highly nonlinear functions of the rotor position and phase current, which causes difficulties in the model.

There are several methods proposed in the literature on obtaining and describing the magnetic characteristics

of similar electrical machines. Analytical approaches are used to characterize the flux linkage and torque with

respect to the current magnitude and rotor position, but most lack accuracy and complexity. Finite element

analysis (FEA) is the most commonly used method for machine design and performance predictions. Getting

better approximations, 3D FEA is applied to deal with the end magnetic field effects. Direct or indirect

experimental measurements take a long time to be implemented and the magnetic data obtained are stored in

look-up tables. Nevertheless, the interpolation methods are not compatible or accurate enough for nonlinear

characteristics due to high magnetic saturation. On the other hand, artificial intelligence approximation and

learning techniques based on artificial neural networks (ANNs), fuzzy logic, genetic algorithms, and support

vector machines (SVMs) are successfully used to solve complex problems and are well suited to obtaining the

nonlinear functions of magnetic fields.

ANNs are a favorable and powerful technique for nonlinear real-time control and system identification

problems in engineering applications. An ANN has the ability of detecting complex nonlinear relationships

and all possible interactions between dependent and independent variables with a simple architecture. With

the attractive advantages, ANNs have become an unconventional alternative method for modeling and design

problems in the field of electrical machines.

SVMs are a group of supervised learning methods that can be applied to classification or regression. In

the last decade, there have been very significant developments in the theoretical understanding of SVMs as

well as algorithmic strategies to implement them and applications of approaches to practical problems. It is a

system for efficiently training linear learning machines in the kernel-induced feature spaces while respecting the

insights provided by the generalization theory and exploiting the optimization theory. The model depends only

on a subset of the training data [12].

In contrast to well-known ANNs, SVMs use the principle of structural risk minimization that aims to

minimize an upper bound of the generalization error instead of the empirical risk minimization that minimizes

the training error used in ANNs. It solves a convex constrained quadratic optimization problem, and its error

surface is free of local minima and has a unique global optimum. Therefore, SVMs can be implemented simply

and reliably in regression, classification applications, and system identification [13–15].

In the literature, it can be seen that support vector regression machines (SVRMs) are used in the control

and modeling of electrical machines. A control method based on a least square SVM algorithm was introduced

for switched reluctance machine (SRMs) in [16]. Moreover, a novel approach proposed position estimation for

SRMs based on SVRMs [17]. A nonlinear model of SRMs based on least square SVMs and the genetic algorithm

was presented in [18].

This paper proposes the use of SVRMs to determine the nonlinear magnetic characteristics of an ETFM

for the first time in the literature. Data required in the training and testing of the SVRM are directly obtained

from experimental measurements. To reveal the performance of the SVRM for this application, ANN models are

generated with the same training data. The effectiveness of two popular ANN and SVRM methods for obtaining

the nonlinear magnetic characteristics of the ETFM is discussed in this paper. The paper is structured as follows:

the ETFM is introduced in the next section. The third section is devoted to the fundamentals of the SVRM
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method. Essentials of modeling of the magnetic characteristics of the ETFM will be given in the fourth section

for the practiced methods. The conclusions finally end the paper.

2. E-core transverse flux machine

The typical feature of TFMs is that the flux linkage is perpendicular to the direction of motion and current

flow. Thus, the magnetic circuit is independent from the design of the electrical circuit. This decoupling

in structure simplifies the control method. The torque can be increased only by increasing the pole number

while the machine size is kept the same, whereas the winding space is a significant limitation for conventional

machines. Since the TFM allows the pole number to be increased without reducing the magneto motive force

per pole, it enables much higher power densities than a conventional machine [19–21].

Figure 1 shows the stator and rotor views. It is based on general E-shaped cores traditionally used for

single-phase transformers. Each E-core has a coil around the centered leg and is assembled parallel to the

rotor axis. This placement of the stator E-cores generates the transverse flux principle. The ETFM has steel

laminations on the rotor and stator. There are no windings or permanent magnets on the rotor. Due to the

fact that the stator poles and the phases are separate, no steel is shared. Thus, the mutual couplings between

phases can be ignored for the analysis. The frame of the ETFM is shown in Figure 2 [22].

Figure 1. Stator and rotor structure of the ETFM.

Figure 2. Frame of the ETFM.

In Table 1, the parameters of the ETFM are given. The cross-section and the axial view of the ETFM

that has 15/10 stator/rotor pole numbers are illustrated in Figure 3.

The flux generated by one winding of a phase does not link with the other winding of the same phase on

the other side of the E-core stator segment. Therefore, the ETFM has short flux paths. Each stator pole has

closed magnetic systems without common yokes. Figure 4, derived from FEA, shows the axial flux path of the
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ETFM for one stator pole and one rotor pole in an aligned position. As can be seen, the flux linkage pattern is

distributed from stator pole legs to yoke and then from middle legs to air gap through to the rotor pole. The

magnetic field flux linkage is dependent on stator winding currents and rotor replacement angle.

Table 1. The parameters of the ETFM.

Ns (stator pole number) 15
Nr (rotor pole number) 10
Phase number 3
R (one-phase winding resistance) 0.09 ohm
In (nominal current) 40 A

Figure 3. The cross-section and axial side view of the ETFM.

Figure 4. The axial flux paths of the ETFM for one stator pole and one rotor pole in an aligned position.

The machine is controlled by switching the phase currents in synchronism with the regions showing

increasing inductance or decreasing inductance of the stator windings of the motor. As the rotor pole moves

from aligned position to unaligned position with a stator pole, the inductance of that stator winding decreases

from a maximum value to a minimum value. If each phase is excited in this region, the ETFM operates in

generating mode.

3. Support vector regression machines

The regression problem related to the estimation of the flux linkage (Fℓ) and torque (Tℓ) characteristics can

be stated as follows: first, let us considerFℓ . In the training phase, a set of L training pairs {(x o , F o
ℓ ), (x 1 ,

F 1
ℓ ),. . . ,(x  L−1 , FL−1

ℓ )} is constructed by considering (x ) as the input variable vector and (Fℓ) as the output.

Starting from these samples consisting of input/output values of Fℓ , the goal is to find a function F̃ℓ that
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approximates the unknown function, Fℓ(x). By using the support vector regression, F̃ℓ is defined as:

F̃ℓ(x) = ⟨w,φ(x)⟩ + b, (1)

where ⟨., .⟩ denotes the inner product between w and b . φ is a nonlinear mapping vector that performs a

transformation of the input vector to a high-dimensional space. w and bare the weighting vector and bias,

respectively which are obtained by the minimization of the primal convex objective function:

Rreg =
1

2
∥w∥2 + C

L−1∑
i=0

Lε(x, Fℓ, F̃ℓ), (2)

where C is the regularization constant and Lε(x, Fℓ) is a general loss function. The objective function given

in Eq. (2) has no local minima and it guarantees the global minimum. This is one of the superiorities of SVMs

over other pattern recognition methods, particularly neural networks. In this work, the so-called ε-insensitive

loss function developed by Vapnik [23] is used:

Lε(x, Fℓ, F̃ℓ) =

 0, if
∣∣∣F i

ℓ − F̃ℓ(x
i)
∣∣∣ ≤ ε∣∣∣F i

ℓ − F̃ℓ(x
i)
∣∣∣− ε, else

. (3)

This equation defines an ε tube. If the predicted value is within the tube, the loss is zero, and if the predicted

point is outside the tube, the loss is the magnitude of the difference between the predicted value and radius ε

of the tube. It is possible to rebuild the minimization of the regression risk as a dual optimization problem. In

the dual optimization problem, the w vector can be written in terms of x as follows:

w =
L−1∑
i=0

(αi − α
′

i)φ(xi), (4)

where αi and α
′

i are the unknown Lagrange coefficients. By substituting Eq. (4) into Eq. (1), F̃ℓ can be

rewritten as follows.

F̃ℓ(x) =
L−1∑
i=0

(αi − α
′

i)
⟨
φ(xi), φ(x)

⟩
+ b

=
L−1∑
i=0

(αi − α
′

i)K(xi, x) + b

(5)

Here the coefficients αi, α
′

i , and bmust be selected in order to minimize the regression risk. In Eq. (5),

K(xi, x) =
⟨
φ(xi), φ(x)

⟩
is the kernel function that works on the original space. After applying the standard

Lagrange multiplier technique, equivalent maximization of the dual space objective function is obtained:

W (α,α
′
) = −ε

L−1∑
i=0

(α
′

i + αi) +
L−1∑
i=0

F i
ℓ (α

′

i − αi) −
1

2

L−1∑
i,j=0

(α
′

i − αi)(α
′

i + αi)K(xi,x). (6)

The constraints of this function are as follows:

0 ≤ α
′

i, αi ≤ C, (7a)
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L−1∑
i=0

(α
′

i − αi) = 0. (7b)

Using Karush–Kuhn–Tucker conditions to maximize Eq. (6) subject to the constraints given by Eqs. (7a) and

(7b), αi, α
′

i (dual variables) and b are computed. From Karush–Kuhn–Tucker conditions, it can be observed

that only for
∣∣∣F̃ℓ(x

i) − F i
ℓ

∣∣∣ ≥ ε may the Lagrange coefficients be nonzero. For all data samples inside the ε -

tube, the coefficients disappear. Consequently, a sparse expansion of w in terms of xi is obtained. The samples

that come with nonvanishing coefficients are called support vectors. The reduced number of training data also

has enormous computational advantages in the training phase. This property together with the guaranteed

global minimum is the superiority of SVMs over the alternative methods. A detailed theoretical background

can be found in [24–26].

The regularization parameter C is a parameter to represent the capability of the approach in estimating

the flux linkage using training and test sets. In order to correctly approximate the Fℓ function, L data pairs in

the form of {(x o , F o
ℓ ), (x 1 ,F 1

ℓ ),. . . ,(x L−1 , FL−1
ℓ )} obtained from the measurement setup for the TFM are

used in the training phase. At the end of the training phase, in the so-called test phase, Fℓ values are estimated

for the new current values that are not included in the training set. Similarly, support vector regression can

be applied to the regression of the magnetic torque characteristic, Tℓ . Numerical details of the support vector

regression analysis for Fℓ and Tℓ of the ETFM will be given in the next section.

4. Determination of the magnetic characteristics of the ETFM with SVRM

The magnetic characteristics such as flux linkage, phase inductance, and electromagnetic torque of the ETFM

are highly nonlinear functions of the rotor position and phase current. It will thus be very difficult to model

the ETFM due to its special structure. Intelligent approximation and learning algorithms such as SVRMs and

ANNs offer an option to obtain the nonlinear characteristics of the ETFM successfully. However, these methods

are only based on the experimental data.

4.1. Data acquisition with experimental measurements

Training and test data for the SVRM and ANN models are obtained by an experimental test system on the

machine. The test system is shown in Figure 5a with a block diagram. A photo of the actual measurement

setup is given in Figure 5b [27]. The computer controls a stepping motor that changes the rotor’s position of

the testing machine to the desired position and locks it. Between the stepping motor and the test machine,

a gear and a strain-gauge torque transducer are placed. The applied voltage is adjusted by a programmable

power supply.

For the measurement procedure of the torque characteristics, first the rotor is locked at the desired position

and a DC pulse is applied to the one-stator phase winding. The static torque values, which are measured by the

strain-gauge module, are recorded for several rotor position values according to different current values. The

effects of friction and mechanical misalignment can be ignored in static torque measurement for ETFMs. Each

phase has a periodicity of 2π/Nr that is equal to 36◦ for the 15/10 pole ETFM. Rotor position is changed from

an unaligned position (0◦) to an aligned position (18◦). Torque characteristic curves are interchanged from an

aligned position to an unaligned position (36◦).
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Figure 5. (a) Block diagram, (b) photo of the test system used to determine the ETFM characteristics.

The resistance of the phase winding is first measured temperature-dependently for the measurement

procedure of flux linkage curves. The phase winding is supplied with a required AC voltage at a fixed rotor

position mechanically while the other phases are open-circuit. Afterwards, the instantaneous terminal winding

voltage and line current values are recorded simultaneously. For each rotor position, the measurement is repeated

at the desired current values. The flux linkage is calculated numerically based on an equation that is the integral

of the difference between the terminal voltage and the stator resistive voltage drop:

λ =

∫ t

0

[u(t) −Ri(t)]dt + λ(0), (8)

where λ(0) is the value of the flux linkage at t = 0, R is the phase armature resistance, u(t) is terminal voltage,

and i(t) is the line current. The flux linkage characteristic is obtained according to the currents for different

rotor positions from unaligned to aligned positions. An overview of the existing measurement methods and

their advantages or limitations can be found in [27].

4.2. SVRM model for the characteristics of the ETFM

In this paper, the SVRM is proposed for determining the flux and torque characteristics of the ETFM. For the

training and testing of the SVRM, the experimental data obtained by the experimental setup defined in the

previous subsection are used.

In SVRM training, the radial basis function is chosen as the kernel type:

K(x∗, x) = exp(−γ
∥∥x− xi

∥∥2). (9)

Suitable parameters are chosen with several trials to enhance the ability of the generalization. In the SVRM

model for torque characteristic, width parameter γ is set to 5. The regularization parameter C is set to 100

and ε is chosen as 0.001 for the optimal performance. Out of 323 sampling data, 134 are chosen as SVs for

determination of the flux characteristics. In the SVRM model for torque characteristics, γ = 50 and C = 1000

give the highest accuracy, and 320 data out of a total of 627 data are chosen as SVs by the SVRM. The scatter

plots of target and predicted values of the magnetic characteristics are given in Figure 6.
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Figure 6. Scatter plots of target and predicted values for (a) flux and (b) torque characteristic with SVRM.

To compare the performance and reliability of the SVRM in determination of the magnetic characteristics

of the ETFM, an ANN model for the magnetic characteristics of the ETFM is constructed and compared with

the SVRM model. In ANN models, the Levenberg–Marquardt backpropagation method is utilized to train the

network built with two inputs, two outputs, and two hidden layers. There are ten and eight neurons in the two

hidden layers, respectively. The tangent sigmoid transfer function is used in the hidden and output layers as

the activation function [28].

In Figure 7, the flux linkage characteristic is given with respect to current values for different rotor

positions from the aligned position (0◦) to the unaligned position (18◦). Here the comparison between the

performance of the SVRM and ANN models with experimental test data is shown for flux characteristics. The

comparison for torque characteristics versus angle (aligned to unaligned positions) for different current values

is given in Figure 8.
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Figure 7. The comparison of the ANN and SVRM with

experimental results for the flux linkage characteristic of

the ETFM.

Figure 8. The comparison of the ANN and SVRM

with experimental results for torque characteristic of the

ETFM.

In Figures 7 and 8, the curves for SVRM and ANN show impressive similarity with the measurement

results. This proves the performance of the methods in the regression problem. To define the performance of the

SVRM and ANN more precisely, an error term is defined. To evaluate the quality of the conformity to target

data and to make comparisons between the SVRM and ANN models, the following error analysis is convenient:

Ek =
1

N

∑n

i=1

∣∣xk
i − x̂k

i

∣∣
xk
i

, (10)

where xk
i , x̂k

i are the target and predicted flux values, respectively, of the ith data sample depending on the
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angle value of the flux characteristics.

Accuracy = 1 − 1

k

∑k

j=1
Ej (11)

Accuracy for the flux and torque curves is found by the accuracy definition given in Eq. (11). In Table 2, the

error analysis of the SVRM and ANN for the flux characteristic is given for N = 17 sampled data and K = 9

angles. Similarly, the error and accuracy analyses for the torque characteristics are given in the Table 3. It is

observed that the best results with respect to accuracy and error analysis are achieved by the SVRM function

approximation using the structural risk minimization principle. It can be seen that 99.092% accuracy in SVRM

modeling of flux characteristics and 99.066% accuracy in SVRM modeling of torque characteristics are achieved.

Table 2. Error analysis of the SVRM and ANN for flux characteristics.

ANN SVRM
Angle (degrees) Error
1 0.011457562 0.005414622
3 0.013033656 0.002518011
5 0.008921297 0.003757087
7 0.009356167 0.002419386
9 0.007726156 0.006528174
11 0.012239434 0.013477708
13 0.024245817 0.020152875
15 0.028661428 0.027484747
17 0.02422929 0.02138142
Total error 0.012849057 0.009083623
Accuracy (%) 98.715 99.092

Table 3. Error analysis of the SVRM and ANN for the torque characteristics.

ANN SVRM
Current (A) Error
3 0.13429 0.08205
5 0.02601 0.01439
7 0.01709 0.00806
9 0.01093 0.00529
11 0.00580 0.00462
13 0.00371 0.00331
15 0.00487 0.00245
17 0.00290 0.00242
19 0.00300 0.00157
21 0.00257 0.00124
23 0.00268 0.00117
25 0.00172 0.00149
27 0.00197 0.00096
29 0.00250 0.00386
31 0.00136 0.00725
Total error 0.01476 0.00934
Accuracy (%) 98.524 99.066
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5. Conclusion

ETFMs have a unique structure and major advantages in electrical machines. Determination of the very

nonlinear magnetization characteristics (flux linkage and torque) of ETFMs is quite important for accurate

performance prediction, modeling, and design verification.

The contributions of this work can mainly be considered as the adaptation of the support vector regression

to the area of electrical machines. It is a novel technique based on rigorous mathematical fundamentals and the

most competitive technique as compared to the popular ANNs. The problem was defined and mathematically

formulated, and then the support vector regression was adapted accurately and the performance of the SVRM

was investigated.

For the first time, the SVRM was implemented for estimating the nonlinear characteristics of the ETFM.

It was also clearly shown that the SVRM is accomplished as a competitive machine against the ANN method.

Moreover, fewer training data due to SVRM theory results in reduced CPU time for training by resulting in

a faster model development process. The nonlinear regression ability of the SVRM has been demonstrated by

forming the SVRM models of the torque and flux characteristics of the ETFM. Therefore, it can be concluded

that ANNs can be replaced by SVRMs in modeling and future control applications due to their higher accuracy.

This modeling approach is significant in the reliability and accurate generalization of the finite discrete

data obtained from either simulators or measurements. It is expected to be implemented for the optimal

performance of ETFMs in various application areas such as vehicle motors, wheelchairs, exercise bikes, or servo

motors.
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