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Abstract: This paper discusses the effect of nonuniform varying communication delay on distributed consensus algo-

rithms in discrete time. After introducing the delayed mathematical model, we first investigate the ergodicity of the

delayed system using the properties of scrambling matrices. Subsequently, the effect of nonuniform varying delay on

convergence is examined. It is shown theoretically that nonuniform delay is not detrimental to the convergence rate of

the algorithm for directed acyclic graphs. The results are also illustrated with several numerical examples.
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1. Introduction

The problem of achieving a common value, referred to as consensus, agreement, or synchronization, in a

distributed information sharing context has drawn significant research attention as of late [1–13]. The focus

of this paper is to examine the performance of averaging-based discrete-time distributed consensus algorithms

in communication networks where delay exists in data receptions. As packet losses and sampling are potential

sources of delay in real systems, the possible adverse effect of delay in consensus algorithm performance has to

be studied appropriately.

Although there has been a vast amount of research on distributed consensus (see, e.g., [1,2] and the

references therein), only a few studies were focused on the performance of such algorithms under time delays.

In [3], the authors proposed consensus protocols so that agents with integrator dynamics could achieve average

consensus (i.e. nodes converge to the arithmetic mean of the initial values) under a constant amount of delay.

Later, based on the results of [3], the effect of time-varying delays on convergence was examined in [4]. Some

sufficient conditions for achieving consensus in directed networks in the presence of nonuniform delays were

given in [5]. In [6], the authors used contraction theory and a simplified wave variable design in the stability

analysis of interacting nonlinear systems with time delayed communications.

While the above work was for continuous-time networks, the focus of this paper is discrete-time consensus,

which was addressed in [7–12]. Conditions for achieving consensus in discrete time were first given in [7] and

were later reevaluated in [8] for bounded delays and conditions on the connectivity of the network. The results

of [7,8] were extended in [9] by relaxing the convexity of the allowed regions for the state transition map of

each agent. In [10], the authors studied the convergence properties of a discrete-time consensus algorithm under

the assumptions of bounded delay and connectivity of the network using the concept of a spanning tree, which
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was utilized by [11] in proposing a condition for achieving consensus. In [12], the author considered a network

of interacting agents and showed that convergence to a common value would be achieved, provided that old

information was uniformly purged from the system.

While all of the above works examined conditions for achieving consensus in delayed discrete-time systems,

the main focus of this paper is to examine the effect of delay on the rate of convergence performance of the

algorithm. To this end, the authors of [13] provided bounds on the time required to reach consensus. Naturally,

these bounds turn out to be geometric for the conditions under which consensus is reached. However, their

work did not provide enough insight into (non)adverse effects of delay on the performance of averaging-based

consensus. While we also demonstrate that nonuniform delay does not adversely effect convergence of the

consensus algorithm by using properties of scrambling matrices, the main contribution of this paper is to

examine a class of network topologies for which the convergence rates of the delayed and nondelayed consensus

algorithms are equal to each other (regardless of the weighting coefficients). More specifically, we will analytically

show that nonuniform delay is not detrimental to the convergence rate for directed acyclic graphs that are of

interest herein.

The organization of this paper is as follows. In Section 2, we introduce the delayed version of the

consensus algorithm and examine its convergence properties using tools of scrambling matrices and graph

theory. In Section 3, some terms related to the analysis of convergence speed are described and illustrated with

examples. In Section 4, the effect of delay on the convergence rate of distributed consensus is discussed in detail,

while Section 5 concludes the paper.

2. Model and convergence analysis of delayed distributed consensus

2.1. Delayed consensus model and mathematical preliminaries

In communication networks where communication delay is unavoidable, the distributed consensus algorithm

can be mathematically expressed as

xi(t+ 1) = aii(t)xi(t) +
n∑

j=1,j ̸=i

aij(t)xj(t− τij), (1)

where aij(t) ≥ 0 is the averaging coefficient and τij is the amount of delay in data transmission between nodes

j and i . The following conditions are assumed throughout the paper [8]:

Assumption 1

(i) aii(t) > ξ , ∀ i = 1, 2, . . . , n , ∀ t ≥ 0 for some constant ξ > 0 .

(ii) aij(t) ∈ [ξ, 1] ∪ {0} , ∀ i, j = 1, 2, . . . , n , ∀ t ≥ 0 .

(iii)
n∑

j=1

aij(t) = 1 , ∀ i = 1, 2, . . . , n , ∀ t ≥ 0 .

(iv) τij ≤ τmax , ∀ i, j = 1, 2, . . . , n .

Assumption (i) guarantees that nodes use their own data in their updates, whereas the second condition

requires that the received data from a neighbor should be used with strictly positive weighting. Assumption
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(iii) ensures that the sum of the weighting coefficients for each node is equal to one. Finally, (iv) excludes

unbounded delay in the context of this paper by restricting the maximum delay amount to τmax .

When there is no communication delay, i.e. τij = 0, the matrix representation of Eq. (1) is given by

x(t+ 1) = A(t)x(t), (2)

where the system matrix A(t) ∈ A belongs to a special class of so called row-stochastic averaging matrices

under the conditions of Assumptions 1(i)–(iii) that are assumed to hold throughout the paper.

Definition 1 We say that a nonnegative matrix A ∈ Rn×n is row-stochastic if
∑n

j=1 aij = 1 , ∀ i ∈

{1, 2, . . . , n} .

For row-stochastic matrices, we have the following well-known result due to Markov.

Lemma 1 [14] Let A be a row-stochastic matrix. Let x be a nonnegative vector and y = Ax . Then we have:

max
i=1,2,...,n

yi − min
i=1,2,...,n

yi ≤ τ(A)( max
i=1,2,...,n

xi − min
i=1,2,...,n

xi) (3)

where

τ(A) =
1

2
max
i,j

∑
k

|aik − ajk| (4)

is defined to be the coefficient of ergodicity.

Definition 2 Let A ∈ Rn×n be a row-stochastic matrix. (i) We say that A is scrambling if τ(A) < 1 .

(ii) We say that A is ergodic if limt→∞At = ec⊤ for some c ∈ ℜn where e = [1 . . . 1]⊤ .

For a row-stochastic matrix A , its coefficient of ergodicity satisfies 0 ≤ τ(A) ≤ 1. Although scrambling

matrices are ergodic, not every ergodic system matrix is scrambling [15].

Delay is well known to deteriorate the performance of a system in general; furthermore, it can even lead

to instability if not compensated properly. The focus in this paper is to study the effect of nonuniform delay on

the convergence rate of the distributed consensus algorithm in Eq. (1) using mathematical tools of stochastic

matrices, ergodicity, and graph theory. In the rest of this section, we examine the convergence properties, while

Section 4 is devoted to the effect of delay on convergence rate.

2.2. Convergence analysis for uniform delay and fixed topology

Suppose that there exists a uniform and fixed amount of delay between all nodes, i.e. τij(t) = τ , ∀i, j, t . Then
Eq. (1) is reexpressed as

x(t+ 1) = ADx(t) + (A−AD)x(t− τ) (5)

where AD = diag(aii). Let the augmented state vector x̂ be defined as

x̂(t) = [x(t+ τ)⊤, x(t+ τ − 1)⊤, ..., x(t)⊤]⊤.

Then Eq. (5) can be rewritten in the following form:

x̂(t+ 1) = Â(t)x̂(t), (6)
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where Â is given by

Â =


AD 0 . . . 0 A−AD

I 0 . . . 0 0
0 I . . . 0 0

. . .

0 0 . . . I 0

 . (7)

Lemma 2 Suppose that at least one node exists in the network from which the rest of the nodes are accessible.

Then consensus in the network is achieved despite the existence of bounded uniform delay τ .

Proof Let there be a node in the network from which the rest of the nodes are accessible. From [15], An−1 is

known to be scrambling. We now show that the network achieves consensus by proving that the ((τ + 1)n− 1)th

power of Â is scrambling. For mathematical convenience, denote the (i,j)th block of Âτ by Âτ,ij that can be

computed as

Âτ,ij =


f̄i,j(A) i < j
fi,1(AD) j = 1, i ≤ τ
0 j ≤ i, j ̸= 1
I j = 1, i = τ + 1

(8)

where fi,j(A) and A have equal adjacency matrices and f̄i,j(A) and A have equal adjacency matrices, except

that f̄i,j(A) has zero diagonal elements. In the sequel, gi,j(A), ḡi,j(A), hi,j(A), and h̄i,j(A) are defined

similarly.

Using Eq. (8), Â2τ+1 = [Â2τ+1,ij ] is computed as

Â2τ+1,ij =

 ḡi,j(A
2) i < j

gi,1(A) j = 1
ḡi,j(A) j ̸= 1, j ≤ i.

(9)

From Eq. (9), one can deduce that Â2τ+1 is scrambling given that A is.

Suppose that A is nonscrambling. Then the subblocks of the ((τ + 1)n− 1)th power of Â are calculated
as

Â(τ+1)n−1,ij =


h̄
(n)
i,j (A) i < j

hi,1(A
n−1) j = 1

h̄
(n−1)
i,j (A) j ≤ i, j ̸= 1

(10)

where h̄
(k)
i,j (·) is a polynomial of order k . One can note that each of the first column components of Eq. (10)

has the same adjacency as An−1 . If at least one node exists in the network from which the rest of the nodes are

accessible, the matrix An−1 is scrambling [15]. Hence, from Eq. (10), the ((τ + 1)n− 1)th power of Â is also

scrambling. Therefore, we can conclude that the network achieves consensus under bounded uniform delay. 2

2.3. Convergence analysis for uniform delay and varying topologies

Consider a network with N different topologies characterized by averaging matrices A = {A1, A2, ..., AN} .

Suppose that a uniform and fixed amount of delay exists between nodes. Let Â = {Â1, . . . , ÂN} consist of the

corresponding system matrices for the delayed systems.
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Lemma 3 Given the set of averaging matrices, A = {A1, ..., AN} , suppose that the network consists of a node

(possibly different for each topology) in the network from which the rest of the nodes are accessible. Then

consensus is achieved in the delayed network for τij = τ and arbitrary switching of the topologies.

Proof Let πk , k ≥ 1 be sets that consist of all possible k matrix products from the set Â . It can be seen

that all of the elements of πK are scrambling for some K ≤ (τ + 1)n − 1, and therefore the network achieves
consensus. 2

2.4. Nonuniform delay varying topology networks

Each node may receive data from other nodes with different and varying amounts of delay. Convergence analysis

of the consensus algorithm for nonuniform delay networks is crucial since uniform delay does not exist in practical

systems.

Theorem 1 Given the set of averaging matrices, A = {A1, ..., AN} , suppose that the network consists of a node

(possibly different for each topology) from which the rest of the nodes are accessible. Then consensus is achieved

for arbitrarily varying bounded delay τij , i, j = 1, 2, . . . , n , i ̸= j and arbitrary switching of the topologies.

Proof First let us consider the case of a nonuniform fixed amount of delay, which will later be extended to

varying delay and network topologies. Under this setting, the consensus algorithm of Eq. (1) can be put into

the following matrix form for networks with nonuniform delay [16]:

Â =


AD +AD̄,0 AD̄,1 . . . AD̄,τmax

I 0 . . . 0
. . .

0 · · · I 0

 (11)

where the (i, j)th element of AD̄,l , l = 0, 1, . . . , τmax is given by

[AD̄,l]ij =

{
aij if τij = l and i ̸= j
0 otherwise

(12)

so that AD̄,0+...+AD̄,τmax
= A−AD is satisfied. The minimum power that makes the system matrix scrambling

is no more than (τmax + 1)n − 1 with the equality if delay is uniform and τij = τmax . Since Â(τmax+1)n−1 is

guaranteed to be scrambling under Assumption 1, consensus follows for a nonuniform fixed amount of delay

and the given network topology.

In order to complete the proof for arbitrarily varying topology networks and varying delays, let π̃k , k ≥ 1

be the sets that consist of all possible matrix products of length k from the set of all matrices of the form of

Eq. (11) for all delay combinations and different topologies corresponding to A = {A1, ..., AN} . Note that

π̃1 consists of N(τmax + 1)n
2−n matrices. Analogous to the proof of Lemma 3, it can be seen that all of the

elements of π̃K are scrambling for some K ≤ (τmax + 1)n− 1. 2

Remark: Under the conditions of Theorem 1, we note that consensus is achieved despite the existence of

bounded nonuniform and varying delay. While we rely on properties of scrambling matrices in proving the

end result, the stated conditions in the theorem are relatively easy to check, i.e. one needs to ensure that

the maximum amount of delay is bounded and that the network consists of a node (possibly different for each

topology) from which the rest of the nodes are accessible.
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3. Terms related to convergence speed of consensus algorithms

Given
d0 = max

i=1,2,...,n
xi(0)− min

i=1,2,...,n
xi(0), (13)

where x(0) is the initial state, we are interested in determining the number of steps, k , required to achieve a

chosen consensus accuracy level, ϵ . In this section, we will discuss two terms related to the study of convergence

speed of consensus algorithms: the coefficient of ergodicity and the second largest eigenvalue of the update

matrix.

3.1. The coefficient of ergodicity

Recall that the coefficient of ergodicity, denoted by τ(A), for a row-stochastic matrix A is computed from Eq.

(3). As already discussed in Section 2, the coefficient of ergodicity satisfies τ(A) ≤ 1 for a row-stochastic matrix

A . Furthermore, from Lemma 1, we know that the maximum state difference is contracting when the matrix is

scrambling.

In order to derive an estimate of the convergence speed of a system with a scrambling matrix A , let dk

be the difference between the maximum and minimum components of the vector x(k) at time k , k ≥ 0. From

Eq. (3), we have dk+1 ≤ τ(A)dk , k ≥ 0, which can be iterated to obtain dk ≤ τ(A)kd0 . Since it is desired that

dk ≤ ϵ , one can impose dk ≤ τ(A)kd0 ≤ ϵ , i.e. k log τ(A) ≤ log (ϵ/d0), which leads to k ≥ logτ(A)(ϵ/d0) (since

τ(A) < 1 for a scrambling matrix). Therefore, in at most

kmax = ⌈logτ(A)(ϵ/d0)⌉ (14)

number of iterations where ⌈k⌉ denotes the smallest integer greater than or equal to k , the specified accuracy

level ϵ is achieved for the given initial difference d0 . It can be deduced from Eq. (14) that kmax is smaller

for a smaller coefficient of ergodicity τ(A) < 1; however, this does not necessarily ensure faster convergence as

illustrated in the following example.

Example 1 Consider two systems with system matrices A1 and A2 given as

A1 =

 2/3 1/3 0
1/3 1/3 1/3
0 3/4 1/4

 and A2 =

 3/5 2/5 0
1/3 1/3 1/3
0 1/2 1/2

 . (15)

The state evolutions of these two systems are depicted in Figure 1 for the initial state x(0) = [10, 2, 0]
⊤
,

whereas the maximum difference of the components of the state vector is shown in Figure 2 for ease of com-

parison. We note from Figures 1 and 2 that the first system achieves consensus in fewer steps than the second
one.

In Figures 1 and 2 and the rest of the simulation results presented in this paper, the selected numbers

do not immediately correspond to actual physical values, but rather scaled versions of physical quantities, such

as heading angle that is encountered in formation control, or clock frequencies of the nodes in, e.g., sensor

networks.

The below table summarizes the theoretical maximum and actual number of steps required for a range of

ϵ/d0 . Although the theoretical kmax value computed via Eq. (14) for System 1 is greater than that of System

2 for all ϵ/d0 , the actual required number of steps is always less or equal. Moreover, it is also noted from the
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Figure 1. State values for System 1 and System 2 (x
(j)
i denotes the ith state of the j th system).
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Figure 2. Maximum differences, d(1) and d(2) , for System 1 and System 2.

same table that kactual increases as ϵ/d0 decreases, which is expected since higher accuracy requires a larger

number of iterations.

Table. Theoretical maximum and actual number of steps required for varying ϵ/d0 .

ϵ/d0 = 10−2 ϵ/d0 = 10−3 ϵ/d0 = 10−4 ϵ/d0 = 10−5

System τ kmax kactual kmax kactual kmax kactual kmax kactual
1 0.667 12 8 18 11 23 15 29 18
2 0.6 10 8 14 12 19 16 23 20

Since the coefficient of ergodicity is not a good means to compare convergence speeds as illustrated by

the above example, we have to use alternative properties of the system matrices to make better comparisons.
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Figure 3. A simple network of n = 3 nodes.

3.2. The second largest eigenvalue

The largest eigenvalue of a row-stochastic matrix is equal to one. Moreover, all other eigenvalues are strictly

less than one (in magnitude) when consensus is achieved. Let λ2 be the second largest eigenvalue in this case,

i.e.
λ1 = 1 > |λ2| ≥ ... ≥ |λn|. (16)

Suppose that the system matrix A is related to its Jordan form as A = TJT−1 . Then the k th power of the

system matrix can be computed as

Ak = TJkT−1 = W111
k +

q∑
i=2

mi−1∑
l=0

Wilk
lλk

i (17)

where q is the number of distinct eigenvalues of A , mi is the multiplicity of ith eigenvalue λi , and Wij are

appropriate scaling matrices. Then the state vector at the k th step is equal to

x(k) = Akx0 = W11x0 +

q∑
i=2

mi−1∑
l=0

(Wilx0)k
lλk. (18)

Note that the sum term in the above expression vanishes faster when the second largest eigenvalue is smaller.

Therefore, the convergence speed is directly related to λ2 , i.e. a smaller λ2 (in magnitude) results in faster
convergence.

Example 2 Consider the system matrices given in Example 1. For A1 and A2 we have λ2(A1) = 0.5181 and

λ2(A2) = 0.5537 , respectively. Since |λ2(A1)| < |λ2(A2)| , System 1 converges faster.

4. The delay effect on the rate of convergence

In mathematical system theory, delay is well known to deteriorate system performance in general and may even

lead to an unstable system if not compensated properly. Although it is noted that algorithm convergence is not

adversely affected from bounded delay by Theorem 1, its effect on the convergence rate must be examined. To

this end, we first consider a simple example to demonstrate that delay does not necessarily deteriorate the rate

of convergence.

Example 3

Consider the system matrix

A =
1

1000

 924 0 76
52 948 0
0 507 493

 (19)
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Figure 4. State evolution for the nominal and the delayed system in Example 3 (xi(t) : nominal system states, xid(t) :

delayed system states).

...

(a)

...

(b)

... ...

... ...

(c)

Figure 5. Some example network topologies under consideration: chain topology (a), master-slave topology (b),

hierarchical topology (c).

for the network given in Figure 3. For the two-step delayed and the nominal systems, we have |λ2(Â)| =

0.7722 < λ2(A) = 0.8613 , which implies that the delayed system converges faster. The simulation results for

the nominal and the delayed system are depicted in Figure 4 for the initial state values x(0) = [1, 0.9, 0.7]
⊤
.

Although Example 3 illustrates that delay does not necessarily deteriorate the rate of convergence for

certain choices of the weighting coefficients, we know that this is not true in general. In the sequel, we examine a

class of network topologies for which the convergence rates of the delayed and nondelayed consensus algorithms

are equal to each other (regardless of the weighting coefficients). Some examples of the topologies under

consideration are depicted in Figure 5. The topology in Figure 5a arises in the problem of vehicle platooning,

where each vehicle is trying to follow the preceding one at a safe distance. Figure 5b depicts the master-slave

topology, in which the slaves receive data from the master. This topology is widely used in clock synchronization

problems, where the master clock dictates its local clock frequency with its neighbors, namely slave clocks. Figure

5c depicts the hierarchical topology, where the nodes receive the leading node’s data directly or indirectly. This

1077
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can be thought of as a multilevel master-slave network where slaves of the nth level are the masters of the

(n+ 1)th level. The following theorem states that nonuniform delay is not detrimental to the convergence rate

for the topologies of interest in this paper. Before we state the result, we recall that two matrices A and B are

said to be permutation-similar if there exists a permutation matrix P such that B = P−1AP .

Theorem 2 For directed acyclic graphs (i.e., the graphs whose adjacency matrix is permutation-similar to an

upper (or equivalently lower) triangular matrix), the nominal and delayed consensus algorithms of Eq. (1) have

the same nonzero spectra at each iteration step for arbitrarily varying nonuniform bounded delay.

Proof We first consider the nonuniform fixed delay among nodes. In this case, the system matrix can be

expressed in the form of Eq. (11), whose characteristic polynomial is given by

|λI − Â| =

∣∣∣∣∣∣∣∣∣
λI − (AD +AD̄,0) −AD̄,1 . . . −AD̄,τmax

−I λI 0 0
. . .

0 · · · −I λI

∣∣∣∣∣∣∣∣∣ . (20)

By using the properties of the determinant for block matrices, Eq. (20) can be simplified to a lower-dimensional

matrix determinant:

|λI − Â| = λn

∣∣∣∣∣∣∣∣∣
λI − (AD +AD̄,0) −AD̄,1 . . . −AD̄,τmax−1 − 1

λAD̄,τmax

−I λI 0 0
. . .

0 · · · −I λI

∣∣∣∣∣∣∣∣∣ . (21)

By applying the above procedure recursively, we obtain

|λI − Â| = λnτmax

∣∣∣∣λI − (
AD +AD̄,0 +

1

λ
AD̄,1 + . . .+

1

λτmax
AD̄,τmax

)∣∣∣∣ . (22)

For the network topologies that are covered in the statement of the Theorem, we note that AD +AD̄,0 +

1
λAD̄,1 + . . .+ 1

λτmax AD̄,τmax
and A (the system matrix without delay) have the same set of eigenvalues. Since

the delayed system has the zero eigenvalue with multiplicity nτmax , the nominal and the delayed systems have

the same nonzero spectra.

In order to complete the proof for arbitrarily varying delays, let π̃k , k ≥ 1 be the sets that consist

of all possible matrix products of length k from the set of all matrices of the form of Eq. (11) for all delay

combinations. Note that π̃1 consists of (τmax+1)n
2−n matrices. We now consider two subcases: 1 ≤ k < τmax

and k ≥ τmax . For the latter case, any matrix pk(Â) in π̃k can be expressed in the following form:

pk(Â) =


Ak

D + ∗ ∗ . . . ∗
Ak−1

D + ∗ ∗ . . . ∗
...

...
. . .

...

Ak−τmax

D + ∗ ∗ . . . ∗

 , (23)

where ∗ above denotes an upper-triangular matrix with zero diagonal elements. By applying the same recursive

procedure as in the fixed delay case, we obtain∣∣∣λI − pk(Â)
∣∣∣ = λnτmax

∣∣λI − (
Ak

D + ∗
)∣∣ , (24)
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which implies that the nonzero spectra of pk(Â) and Ak are equal to each other. For 1 ≤ k < τmax , the first

k subrows of pk(Â) have the form 
Ak

D + ∗ ∗ . . . ∗
Ak−1

D + ∗ ∗ . . . ∗
...

...
. . .

...
AD + ∗ ∗ . . . ∗

 , (25)

whereas the last τmax +1− k subrows are equal to [I(τmax+1−k)n 0], where I(τmax+1−k)n is the identity matrix

of length (τmax + 1− k)n . The same recursive procedure as above can be applied to pk(Â) in this case as well

to obtain the desired result. 2

Remark: From Theorem 2, we note that the nonzero spectra of the nominal system and the version for

arbitrarily varying nonuniform bounded delay are equal to each other at each iteration. Hence, we conclude

that bounded nonuniform varying delay does not adversely affect convergence rate for the network topologies

under consideration in this paper regardless of the amount of delay and the choice of the weighting coefficients.

As can be expected, this is not true for all topologies under which consensus is achieved. To this end, consider

the fully connected network where each node uses equal averaging coefficients: 1/n . It can be easily noted that

the system matrix has the zero eigenvalue with multiplicity n − 1; therefore, consensus is achieved in a single

iteration (dead-beat system). On the other hand, the delayed system has a nonzero second largest eigenvalue.

5. Concluding remarks

In this paper, the performance of averaging-based deterministic consensus under delayed information has been

studied. It is proven mathematically that the rate of convergence of the distributed consensus algorithm is not

reduced despite delay for directed acyclic graphs as discussed in Section 4. This result holds regardless of the

values of the averaging coefficients so long as they satisfy Assumption 1. Although this paper has focused on

the case where delay does not adversely effect the convergence rate, networks topologies where the convergence

rate is always degraded are to be explored.
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