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Abstract: This paper proposes a novel approach that applies neural network forecasting to security for closed-loop

prepaid cards based on low-cost technologies such as RFID and 1-Wire. The security vulnerability of low-cost RFID

closed-loop prepaid card systems originates mostly from the card itself. Criminal organizations counterfeit or clone

card data. Although high-security prepaid cards exist, they are often too expensive for transport ticketing, and even

their security is not guaranteed for a well-defined period of time. Therefore, data encryption systems are used widely

against counterfeiting with success. However, it has not been possible to develop countermeasures with comparable

success against cloning. Our proposed security application uses neural network forecasting to determine the recharge

day behavioral characteristics of the cardholder and predict the next time the cardholder will recharge their card. Based

on the prediction for the recharge time, the expiration date of the low-cost RFID prepaid card is defined, which is a

good countermeasure against cloning. FTDNN, LRNN, and NARX network architectures with one hidden layer are

considered in this research. The effects of the network architecture, the number of neurons, the training algorithm, and

the prediction performance function on the recharge day forecast are investigated. Experimental results confirm the

accuracy of the recharge time forecast and confirm countermeasures against cloning. Our proposed security approach

with neural network forecasting is applied with success to the Turkish public transport without an online backend system.
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1. Introduction

For the past several years, the use of prepaid cards with radio frequency identification (RFID) technology has

grown rapidly as an alternative to credit and debit cards. The exponential growth of RFID prepaid cards brings

not only prosperity but also vulnerability, especially for low-cost cards. These low-cost tags have little or no

processing and storage capacity. Therefore, it is not possible to implement well-known cryptographic protocols

such as 3DES (Triple-Data Encryption Standard) or AES (Advanced Encryption Standard) to increase the

tag security. However, RFID cards with simple logical functions as cryptographic protocols are preferred for

applications where many cards are needed, such as prepaid telephone cards and transit fare cards, because

these cards are inexpensive. However, numerous attacks have challenged security mechanisms for low-cost

RFID cards, such as Philips MIFARE RFID tags [1–9], Texas Instruments DST RFID tags [10–12], and Maxim

iButtons [13]. Furthermore, the unique serial number (UID) of a chip is initialized only by the manufacturer,

but a China-based company produced unlicensed clones of MIFARE chips [7,8]. Highly secure tags have greater

processing and storage capabilities. Therefore, these cards are expensive, but they have the capability to be
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high-security tags. Certainly, a card’s security is not guaranteed for a well-defined period of time. Kasper et al.

[14] showed how to fully recover the 3DES key of a high security DESFire tag with a factory-programmed UID

from MIFARE using side-channel analysis. Furthermore, Kasper et al. [15] could clone and restore the credit

balance of a card to its original state to provide an infinite amount of payments with the high security DESFire

tag with 3DES and a DESFire EV1 tag with AES from MIFARE. Although the security level of credit cards

is extremely high because they use online backend systems to finish transactions, Murdoch et al. [16] found

vulnerabilities in the security standard used to make payments without knowing the card’s PIN and to remain

undetected while using an online connection to the banking network. These security vulnerabilities show that

security with cryptographic protocols is never sufficient to provide high security for tags, especially for a defined

time period. The main sources of these security vulnerabilities are the unchangeable cryptographic protocols

and authentications. Although it is important to secure a system the first time it is used, it is more important

to have the ability to adapt to a higher security level if needed. However, this adaptability is not applicable

to public systems where tags and readers must be reprogrammable, which requires a higher initial cost. Our

proposed security approach fulfills this need with a completely different form of security, and it is suitable for

applications with low-cost technologies, such as RFID and 1-Wire. Our proposed security approach depends

on the time of recharge and the cardholder’s behavioral characteristics, which are specific for each cardholder

and function as a dynamic ‘unique identifier’ [17]. From these behavioral characteristics, we use neural network

(NN) forecasting to predict the card expiration date as a countermeasure against cloning.

NN has been applied successfully as a powerful modeling technique in a wide range of research areas.

NN refers to mathematical models based upon the functionality of the human brain. These models contain at

least three different layers, input, hidden, and output, and each layer is composed of a number of neurons. NN

models are increasingly applied to systems that are highly correlated and frequently assumed to be nonlinear,

having unclear relationships and being too complex for other approaches [18–22]. We apply NN forecasting

to define a security feature that is unique and dynamic for every cardholder. This approach meets the most

demanding requirements for security over a long period of time.

This paper is organized as follows. Section 2 gives a brief overview and a comparison of prepaid cards

and their security levels. Our proposed approach to security is described in Section 3. Section 4 focuses on the

NN forecasting architecture, while Section 5 discusses the data analysis and the training of the NN forecasting

networks. Section 6 presents the simulation results and the discussion of these results, and Section 7 addresses

the conclusions.

2. Prepaid cards

Prepaid cards can be divided into two main groups. The first group includes the open-loop prepaid cards

(OLPCs). These prepaid cards are used as standard debit cards, but without the need for a bank account.

They can be utilized at any retailer that accepts credit/debit cards, and they can be used for receiving direct

deposits or making withdrawals at ATM machines. The second type, the closed-loop prepaid cards (CLPCs),

are limited for use with specific merchants or purchases, such as prepaid telephone cards and transit fare cards.

An important difference between the OLPCs and the CLPCs is the security mechanism of the card.

Because the OLPCs are used in banking systems, their security is standardized and identical worldwide. These

security standards and other supporting guidance documents are generated by EMV (Europay, MasterCard, and

VISA) and the Payment Card Industry Security Standards Council (PCI SSC) to provide the greatest level of

security for the whole system. EMV and PCI SSC seek to define a common set of high-level security standards
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for the OLPCs and the system. However, the CLPC cards are used by specific merchants and purchasers, and

there is no widespread public examination, such as that of EMV or PCI SSC, to provide high-level security

for the CLPCs and their applications. Only the security developed by the card manufacturer protects the card

data. However, the manufacturers conceal their cryptographic algorithm and design to provide security. This

is known as ‘security by obscurity’, but the details of this system will eventually become public information,

which was the case for low-cost MIFARE RFID tags, DST RFID tags, and iButtons. Nevertheless, there are a

great number of applications for these cards, each with its own security, and new applications can arise at any

time because these cards are inexpensive.

Another important difference between the OLPCs and the CLPCs is the connection from the terminals

to the backend system. The OLPCs are online systems, and their terminals must be connected online to

their backend systems to complete the transactions. Therefore, the online systems are using fraud detection

by monitoring card transactions and analyzing the data to detect unusual behavior. However, most CLPCs

are offline systems, and their terminals are offline from their backend systems. Transactions are stored in the

terminal unit they are transferred to the backend system. Therefore, the CLPCs are not as secure as the OLPCs.

Our proposed neural network approach adds a different level of security to applications of low-cost RFID tags.

3. Recharge day forecasting

The CLPCs are only as secure as their card manufacturer’s security. This is not enough for applications that use

many low-cost prepaid cards, such as those that are used in public transportation. If the vulnerability in the card

security becomes apparent, the barriers to adopt a new secure card technology or to evolve a countermeasure

are significant and time-consuming because software and hardware must be redesigned. A criminal organization

can develop a business case for illicit exploitation of the system.

To overcome the potential security vulnerabilities, we propose a completely different security mechanism

that depends on the cardholder’s behavioral characteristics [17]. Individuals have behavioral characteristics

that differentiate them from other people [23,24]. These distinct behavioral characteristics can be considered

‘unique identifiers’. There are no rules that determine which behavioral characteristics define a unique identifier.

Although there are many behavioral characteristics of a cardholder, we find three factors that serve as unique

identifiers to characterize the relationship among daily use, the amount of recharge, and the elapsed day

between recharges of the CLPC. This relationship is determined by trial-and-error method from 22,869 different

cardholders during 3 years of use in public transportation systems in Turkey. With this relationship, we forecast

the next recharge day and define an expiration date for a CLPC. Therefore, the cardholder must recharge his

CLPC at a vending machine before the expiration date. Furthermore, we predict the cardholders’ maximum

daily use to provide a daily upper limit for use of the CLPC. With this security approach, it would be useless

to clone the data of a CLPC.

4. Forecasting with neural networks

Forecasting is always subject to uncertainty from two sources: the model structure and the training data. It is

necessary to identify an optimal combination from the set of input variables and the number of neurons in the

hidden layer. Although there are different forecasting methods [25], the basic approach is to train a NN with

historical data containing both inputs and the corresponding desired outputs. In this process, a NN constructs

an input–output mapping and adjusts the weights and the biases at each iteration based on the minimization

of an error measure between the produced and the desired outputs. The adequate selection of inputs, hidden
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layers, training functions, tapped delay lines, and number of neurons strongly influences the success of the

training process [26,27].

There are no guidelines for establishing an optimal configuration for an application. It is necessary to

train different neural network models and choose the best option. Therefore, we use three types of multilayer

perceptron (MLP)-based NN structures: the focused time delay neural network (FTDNN), the layer recurrent

neural network (LRNN), and the nonlinear autoregressive neural network with external input (NARX). These

MLPs have been used for many years in a wide range of applications, and there are many examples in the

literature that explain the full mathematical treatment and structures of NNs and NN forecasting applications

[19,28–31]. The MATLAB structure of the MLP used in this paper for forecasting the recharge time is given in

the next section.

To identify the best forecasting result, different training functions and numbers of neurons are applied to

the MLP. Each MLP consists of one input layer, one output layer, and a hidden layer with up to 30 neurons.

The number of neurons in the hidden layer should be increased only when the results are not adequate. In our

approach, one hidden layer produces excellent results, and there is no need to increase the size of the hidden

layer. The tangent sigmoid function in the hidden layer and the linear function in the output layer are used as

transfer functions. The following training functions are considered in the MLP: BFGS quasi-Newton (BFG),

Bayesian regulation (BR), conjugate gradient with Powell/Beale restarts (CGB), Levenberg–Marquardt (LM),

one-step secant (OSS), and scaled conjugate gradient (SCG).

5. Data analysis and training of the networks

The dataset used in this study comprises 3 years of data (2006–2008) for public transport with CLPCs. This

dataset is obtained from 22,869 cardholders that belong to seven social groups (officials, workers, medics,

high school students, undergraduate students, housewives, and retirees) in four different residential quarters in

Turkey. The dataset consists of six input variables: the date, the day of the week, the time, the amount of daily

use, the current balance per day, and the recharge amount. Figure 1 shows the current balance in Turkish lira

(TL) per day of a CLPC used for public transportation by an official.
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Figure 1. The current balance per day of a CLPC used for public transportation by an official (1097 data points).

The performance of a NN often deteriorates when the number of input variables increases. This has been

referred to as the curse of dimensionality in the literature [26]. Increasing the number of input variables also

leads to the need to use more training examples and process time to effectively understand the input-output

relationship. Therefore, techniques such as principal component analysis or regression analysis are used to
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decrease the number of input variables without losing any features from the dataset. However, we use the

trial-and-error method to decrease the number of input variables because our dataset is comprehensive. We find

that when we recalculate the elapsed time between recharges of the CLPC and use it with the recharge amount

as input (Figure 2), the NN gives a very good forecast of the next recharge date. Therefore, three inputs (date

of recharge, recharge amount, and elapsed days between the last recharge) and one output (forecast of the next

recharge time) are used for every MLP.
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Figure 2. Recharge amount of a CLPC used in public transportation by an official (80 data points).

A large number of training processes are made with a NN, and two calculation methods are used to

determine the most accurate forecast. The dataset is separated into two parts for the two different calculations.

Figure 3 shows how the dataset is separated. All data points except the last data point (fresh data) are used for

NN training. We investigate one-ahead forecasting, and, therefore, the last data point is evaluated separately.

To implement the two calculation methods, the NN must be trained with the data. Therefore, data points used

for NN training are divided into three parts: training (70%), validation (15%), and testing (15%). The dataset

of 22,869 different cardholders involves approximately 80 data points for each cardholder, depending on their

recharge times from January 2006 to December 2008. After the NN training, the resulting structure of the NN

is used to predicting the training data and forecast the fresh data. These results are compared with the actual

data points to determine the accuracy of the NN training.

15%

Dataset of a cardholder

First

data

Last

data

Training Validation Testing

Training data Fresh data

70% 15%

Figure 3. General format of the cardholder dataset used for NN training and one-ahead forecasting.

The first calculation method is the forecasting error analysis of one-ahead forecasting. The forecasting

error analysis is calculated with four different functions. These functions are the relative error (RE), the forecast

error (FE), the absolute error (AE), and the standard deviation (SD).

RE =

∣∣∣∣y − ŷ

ŷ

∣∣∣∣ · 100 (1)

1102
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FE = y − ŷ (2)

AE = |y − ŷ| (3)

SD =

√√√√ 1

n− 1
·

n∑
i=1

(
FE − FE

)2
(4)

Here, y and ŷ represent the actual and the forecasted (one-ahead forecasting or recharge day forecasting)

values of the fresh data (Figure 3), respectively. F̄E indicates the average value of the one-ahead forecasting,

and n represents the total number of cardholders. The variation of the one-ahead forecasting is calculated as

F̄E ± SD . To obtain a highly accurate forecast of the recharge day, RE, FE, AE, and SD should be as small

as possible.

The second calculation method is the prediction performance analysis of the NN training, and it is

evaluated using the following functions: the root mean square error (RMSE), the mean absolute difference

(MAD), the mean absolute percentage error (MAPE), and the Pearson correlation coefficient (r). Values of

RMSE, MAD, and MAPE near 0 and r values near 1 show good performance by the NN training.

RMSE=

√√√√ m∑
i=1

(xi−x̂i)
2

m
(5)

MAD=

m∑
i=1

|xi−x̂i|

m
(6)

MAPE=

m∑
i=1

∣∣∣xi−x̂i

xi

∣∣∣
m

·100 (7)

r=

m∑
i=1

(xi·x̂i)−
m∑

i=1

xi·
m∑

i=1

x̂i

m√√√√√
 m∑

i=1

x2
i−

(
m∑

i=1
xi

)2

m

 ·

 m∑
i=1

x̂2
i−

(
m∑

i=1
x̂i

)2

m


(8)

Here, x and x̂ represent the actual and the predicted values, respectively, and m is the total number of data

points in the training dataset (Figure 3).

In this research, each MLP is simulated with MATLAB’s NN toolbox, and the best NN forecasting

configuration is determined by varying the training functions (BFG, BR, CGB, LM, OSS, and SCG) and the

number of neurons (S = 3–30). These MLPs are FTDNN, LRNN, and NARX with three inputs (date of

recharge, recharge amount, and elapsed days since the last recharge) and one output (forecasting of the next

recharge date). The best NN forecasting configuration is based upon minimizing the difference between the

MLP forecasted value and the desired output. To avoid local minima far from the global minimum, each MLP

is trained 20 times using different random initialization parameters. Therefore, the result for each neuron is the

average of 20 different training processes. The training process of the MLP is stopped when either the default

level of error or the default number of iterations is achieved.

1103
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6. Simulation results

In the present study, three basic steps are taken to determine the best MLP architecture due to the time-

consuming MLP calculations, especially for the LRNN. In steps 1 and 2, the best architecture of each MLP is

investigated. Finally, in step 3, these architectures are compared to define the best one.

First, to find the best training and prediction performance function, 100 cardholders are chosen randomly.

Each training function is simulated 28 times for every cardholder because there are 28 neurons (S = 3–30) in

the hidden layer. However, within these 28 results, only the best forecasting result is used, and the average from

100 cardholders is compared for every training function as shown in Tables 1–3. The best results are shown in

bold. The smallest variation of the recharge day forecasting error ( F̄E±SD) is obtained with the LRNN and

the SCG training function. However, if we compare it with the NARX and the LM training function, we see

that the results are actually the same. Certainly, the best training function must be selected according to the

smallest value of the prediction performance functions (the value of r that is closest to 1). In an actual recharge

application, R̄E , ĀE , and F̄E±SD are unknown, and the one-ahead forecasting result is determined only from

the smallest value of the prediction performance function. The training functions and their corresponding best

prediction performance functions are summarized in Table 4. Furthermore, only the NARX and the FTDNN

with the LM training function give the best forecasting error function results with two different prediction

performance functions (Tables 1 and 3). Although none of the LRNN prediction performance functions give the

best forecasting error function result, they are comparable to the FTDNN and the NARX. However, the average

calculation time of the training process for each training function with the LRNN is extremely high (Table 5).

Therefore, the LRNN could not be used in an actual recharge application (vending machine or recharge point),

even if it had a better forecasting error function result. We use five computers with four different configurations

(Intel i7 1.86 GHz, Intel i5 1.86 GHz, Intel Core 2 Duo 1.86 GHz, and two Intel Core 2 Duo 1.86 GHz PCs with

4.0 GB of RAM) for this and the following steps.

Table 1. The effect of different training functions on the recharge day forecasting performance for one-ahead forecasting

with the FTDNN. Every result is an average of the data from 100 cardholders.

Training Prediction performance functions Forecasting error functions

functions RMSE MAPE MAD r RE AE FE ± SD
BFG 1.935 3.601 1.904 0.912 20.382 1.817 –0.490 ± 2.226
BR 3.819 5.677 1.785 0.789 17.762 1.715 –0.679 ± 1.941
CGB 1.852 3.465 1.453 0.917 21.793 1.810 –0.392 ± 2.233
LM 1.943 3.290 1.633 0.923 14.931 1.423 –0.315 ± 1.875
OSS 2.188 5.189 1.775 0.895 25.588 1.916 –0.513 ± 2.466
SCG 1.980 4.437 1.507 0.911 21.385 1.797 –0.213 ± 2.267

Table 2. The effect of different training functions on the recharge day forecasting performance for one-ahead forecasting

with the LRNN. Each result is the average of the data from 100 cardholders.

Training Prediction performance functions Forecasting error functions

functions RMSE MAPE MAD r RE AE FE ± SD
BFG 2.149 4.426 1.737 0.888 18.497 1.643 0.032 ± 2.105
BR 2.710 3.252 1.417 0.851 12.023 1.517 –0.290 ± 2.113
CGB 2.019 2.935 1.652 0.907 17.811 1.628 0.046 ± 2.034
LM 1.702 3.361 1.309 0.931 16.173 1.537 –0.016 ± 2.007
OSS 2.086 4.731 1.677 0.891 17.685 1.597 0.015 ± 1.982
SCG 2.013 3.519 1.564 0.898 16.641 1.426 –0.044 ± 1.902
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Table 3. The effect of different training functions on the recharge day forecasting performance for one-ahead forecasting

with the NARX. Each result is the average of the data from 100 cardholders.

Training Prediction performance functions Forecasting error functions

functions RMSE MAPE MAD r RE AE FE ± SD
BFG 1.988 4.075 1.536 0.903 19.434 1.729 0.078 ± 2.250
BR 3.476 3.935 1.740 0.801 19.025 1.954 –0.793 ± 2.424
CGB 1.856 3.430 1.537 0.915 21.159 1.802 0.131 ± 2.371
LM 1.861 2.942 1.383 0.926 14.844 1.467 0.117 ± 1.882
OSS 2.106 4.825 1.578 0.907 20.884 1.744 0.047 ± 2.440
SCG 1.991 2.566 1.599 0.910 20.372 1.781 –0.328 ± 2.212

Table 4. Training functions and their corresponding best prediction performance functions summarized from Tables

1–3.

MLP
Prediction performance functions
RMSE MAPE MAD r

FTDNN CGB LM CGB LM
LRNN LM CGB LM LM
NARX CGB SCG LM LM

Table 5. Average calculation times in the second of the one-ahead forecasting processes for one cardholder.

Training MLP
functions FTDNN LRNN NARX
BFG 650.426 10573.490 805.991
BR 3105.369 26105.086 588.869
CGB 113.365 1693.649 101.959
LM 11.249 497.235 10.901
OSS 144.439 1594.580 155.129
SCG 82.737 1847.193 110.628

Second, in order to determine the optimal number of neurons for the training function from step 1,

another 100 cardholders are chosen randomly. After the forecasting error function, neurons that provide AE

values below 3 are selected for each cardholder, and equal numbers of neurons from the 100 cardholders are

grouped together. An upper limit of 3 for AE means a recharge day forecasting error within 3 days, which

is good enough for use in public transportation applications. Furthermore, this entails the optimal range of

neurons to make an acceptable selection for the next step. Increasing the number of neurons also increases

AE, except for the LRNN with the CGB training function. Increasing the number of neurons in the hidden

layer increases the power of the network at the expense of the computation time. Furthermore, it is more likely

to produce over-fitting where the NN fits all of the training data but memorizes the training data instead of

learning to adapt itself to new situations. Therefore, only neurons from Table 6 for the FTDNN, the LRNN,

and the NARX are used in the next step, which provides better forecasting among the neurons. Table 7 shows

the variation of the recharge day forecasting error performance for each MLP and its training function. The

worst average calculation time for a cardholder is obtained again with the LRNN.

If we compare the RE and the AE (Table 7) with the values from the first step (Tables 1–3), only RE

decreases significantly. Table 8 presents these decreases that depend on the number of elapsed days since the

last recharge by the cardholder. According to these results in Table 8, only the AE is suitable for the accuracy

of the recharge day forecasting.
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Table 6. Top five neurons that provide AE values below 3 and the total number of neurons in the group (in brackets).

MLP Training functions Top five neurons

FTDNN
CGB 3 (87) 4 (82) 5 (78) 8 (70) 7 (69)
LM 4 (81) 5 (78) 8 (77) 3 (73) 6 (73)

LRNN
CGB 3 (76) 18 (74) 7 (73) 16 (72) 24 (72)
LM 7 (81) 3 (79) 4 (77) 5 (76) 6 (74)

NARX

CGB 3 (81) 8 (77) 6 (74) 4 (73) 5 (81)
LM 5 (81) 3 (80) 4 (75) 7 (75) 6 (73)
SCG 4 (79) 3 (77) 8 (74) 5 (73) 6 (66)

Table 7. Recharge day forecasting error performance.

MLP Training functions RE AE FE ± SD Time (s)

FTDNN
CGB 16.604 1.913 –0.085 ± 2.495 148.788
LM 13.343 1.769 0.553 ± 2.153 11.170

LRNN
CGB 15.216 1.945 0.548 ± 2.311 1446.813
LM 15.357 1.909 0.320 ± 2.381 367.407

NARX

CGB 17.095 2.052 0.102 ± 2.628 130.747
LM 13.378 1.756 0.520 ± 2.171 22.508
SCG 17.718 2.076 –0.122 ± 2.806 88.307

Table 8. Comparison of the RE and the AE, which refer to the number of elapsed days since the last recharge and the

one-ahead forecasts for five cardholders.

Elapsed day between recharges Forecasted value RE AE
4 4.538 13.454 0.538
11 9.528 13.384 1.472
12 10.396 13.366 1.604
19 16.486 13.230 2.514
21 18.198 13.343 2.802

In steps 1 and 2, the best architectures for each MLP are determined. Finally, to determine the best

MLP, another 500 randomly chosen cardholders are used. These results are processed on the basis of the

prediction performance functions as explained in step 1. Table 4 summarizes the results of step 1 and shows

the best predictions achieved with the MLPs, the training functions, and the prediction performance functions.

These results show, for example, that the FTDNN with the CGB training function gives good predictions

with the RMSE (FTDNN-CGB-RMSE) or the MAD (FTDNN-CGB-MAD) prediction performance function.

Furthermore, the FTDNN with the LM training function also gives good predictions when the MAPE (FTDNN-

LM-MAPE) or the r (FTDNN-LM-r) prediction performance function is used. However, combinations of the

FTDNN with the other training and prediction performance functions do not provide better prediction results.

In this step, therefore, simulations are made with the FTDNN and the LRNN with two training functions and

the NARX with three training functions. Therefore, every cardholder is simulated seven times. In step 2, these

training functions and up to 30 neurons are investigated, and the best predictions are achieved with five neurons

(Table 6). Therefore, there are 35 (7 × 5) different results for every cardholder, 10 with the FTDNN and the

LRNN, and 15 with the NARX. For example, Table 9 shows the NARX results for a cardholder. This table is

shown as an Excel sheet to explain step 3. These results are obtained with the CGB-the RMSE (rows 2–6), the

SCG-MAPE (rows 7–11), the LM-MAD (rows 12–16), and the LM-r (rows 12–16). However, to compare the
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MLP and the training functions, the best value from every prediction performance function is used to determine

the best MLP. The smallest RMSE value in rows 2–6 (NARX-CGB-RMSE) is in cell B-4, and row 4 is selected.

For the MAPE, the smallest value in rows 7–11 (NARX-SCG-MAPE) is in cell C-11, and row 11 is selected.

For the MAD, the smallest value in rows 12–16 (NARX-LM-MAD) is in cell D-12, and row 12 is taken. Finally,

for r, the highest value in rows 12–16 (NARX-LM-r) is in cell E-13, and row 13 is taken. Thus, there are only

four results for every cardholder, each one obtained from different prediction performance functions’ best value.

These procedures are repeated for every 500 cardholders, and the average values are shown in Table 10.

Table 9. Simulation results of the NARX-CGB-RMSE (rows 26), the NARX-SCG-MAPE (rows 711), the NARX-LM-

MAD, and the NARX-LM-r (rows 1216).

A B C D E F G
1 Neuron RMSE MAPE MAD r Actual value Forecasted value
2 3 1.3930 1.9669 1.0881 0.9776 21 20.4798
3 4 1.4887 1.3722 1.1694 0.9737 21 20.1594
4 5 1.3449 1.2137 1.0939 0.9790 21 20.2655
5 6 1.4190 2.3633 1.0798 0.9758 21 20.3924
6 8 1.4047 1.7773 1.1194 0.9770 21 19.7813
7 3 1.4837 2.5216 1.1574 0.9747 21 20.5816
8 4 1.4753 2.4746 1.2053 0.9746 21 19.9875
9 5 1.4698 1.8973 1.1513 0.9746 21 19.9637
10 6 1.4323 1.7303 1.1391 0.9759 21 20.1742
11 8 1.4886 1.1931 1.1693 0.9738 21 20.0760
12 3 1.2602 2.5542 0.9591 0.9836 21 20.4614
13 4 1.3962 1.7698 1.0418 0.9837 21 20.1785
14 5 1.3565 2.9720 1.0420 0.9818 21 20.6051
15 6 1.2924 1.7560 0.9681 0.9826 21 20.6338
16 7 1.3375 0.2655 2.0491 0.9827 21 20.1186

The NARX with the LM training function and the MAD prediction performance function gives the best

one-ahead forecast, and it is also the fastest technique, whereas LRNN is again the slowest method. The

subsequent results presented in this paper are obtained using the NARX with the LM training function and the

MAD prediction performance function. We use 38 computers with two different configurations (AMD Phenom

2.30 GHz and Intel Core 2 Duo 3.00 GHz PCs with 2.0 GB of RAM) for this step and the following section.

Table 10. Comparisons of the recharge day forecasting error performance.

MLP Training functions Performance functions AE FE ± SD Time (s)

FTDNN

CGB RMSE 1.926 –0.354 ± 2.466 13.232
LM MAPE 1.970 –0.187 ± 2.808 3.780
CGB MAD 1.934 –0.375 ± 2.498 13.232
LM r 2.002 –0.155 ± 2.900 3.780

LRNN

LM RMSE 1.936 –0.142 ± 2.542 107.652
CGB MAPE 1.930 –0.431 ± 2.516 312.460
LM MAD 1.948 –0.165 ± 2.535 107.652
LM r 1.928 –0.130 ± 2.542 107.652

NARX

CGB RMSE 1.910 –0.416 ± 2.468 12.105
SCG MAPE 1.991 –0.486 ± 2.584 7.945
LM MAD 1.868 –0.106 ± 2.411 3.893
LM r 1.933 –0.128 ± 2.592 3.893
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DÜZENLİ/Turk J Elec Eng & Comp Sci

After determining the best MLP and its training function, its prediction performance function, and

the optimum number of neurons, the remaining 22,169 cardholders are investigated and validated. Table 11

shows that for over 90% of the cardholders, the recharged day forecasting error is less than 3 days. Detailed

distributions of the recharge day forecasting error with occupations are shown in Table 12. These results show

that our approach is capable of successfully forecasting the uncertain irregular recharge days of cardholders,

such as housewives, undergraduate students, and retirees.

Table 11. Distribution of the recharge day forecasting errors with the MLP NARX, the LM training function, and the

MAD prediction performance function.

Number of cardholders Percentage of cardholders
AE ≤ 1 8976 40.489
1.0 < AE ≤ 1.5 4023 18.147
1.5 < AE ≤ 2.0 3133 14.132
2.0 < AE ≤ 2.5 2526 11.394
2.5 < AE ≤ 3.0 1462 6.595
3.0 < AE ≤ 3.5 1014 4.574
3.5 < AE ≤ 4.0 563 2.540
4.0 < AE ≤ 4.5 341 1.538
4.5 < AE ≤ 5.0 129 0.582
AE > 5 2 0.009

Table 12. Detailed distributions of the recharge day forecasting errors in descending order for AE ≥ 1.

Occupation Number of cardholders
Percentage of cardholders
AE ≤ 1 1 < AE ≤ 3 AE > 3

High school student 1916 54.611 44.053 1.336
Medic 3539 49.091 46.654 4.255
Worker 5048 40.865 52.611 6.524
Official 6541 38.201 51.075 10.724
Retirees 1171 35.095 49.358 15.547
Undergraduate student 1470 33.199 50.179 16.623
Housewife 2484 29.283 51.575 19.142

7. Conclusions and future work

We propose a novel NN forecasting approach to prevent counterfeiting and cloning for closed-loop prepaid cards

based on RFID or 1-Wire technology without an online backend system. Other researchers have shown that

it is possible to clone or emulate high-security cards with 3DES or AES cryptographic protocols and factory-

programmed UID. Furthermore, other researchers have shown that there are security weaknesses in online

backend systems with high security cards. The main reason for these weaknesses is their security concept,

where the security key and the UID are individual and specific but nonchangeable for each card. The whole

security protocol is the same for every user. Although our proposed security approach does not modify or

improve the existing protocol of the RFID system, it proposes another level of security that is individual,

specific, and dynamic for each user. This is archived by defining an expiration date for each card according to

the cardholders’ recharge day and behavioral characteristics with NN forecasting. Simulation results show that

this evolved NN forecasting configuration can successfully predict the next recharge time. For over 90% of the

cardholders, the recharge days are forecast with a deviation of less than 3 days, which is a great performance

for use in public transportation systems.
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In this paper, we show that the behavioral characteristics of cardholders can be used with NN forecasting

to define security levels that are individual, personal, and dynamic. Therefore, the implementation of our

proposed security approach in existing RFID applications with low-cost tags is suggested. With our security

approach, cloning a card would be useless, and in the worst-case scenario, a cloned card could only be used until

its expiration date. Although a simple maximum daily use of a card is defined (the recharge amount divided by

the predicted next recharge time), a more precise definition of the maximum daily use for every weekday should

be investigated with NN forecasting as a second behavior characteristic of cardholders as a future work. If the

upper limit of daily use is reached, then the cardholder must show his/her card to the bus driver before they

can use public transportation. Genuine cards bear holograms or stamps from the public transport authority.

Therefore, cloned cards could only be used once a day until the expiration date. In future work, other behavior

characteristics of cardholders should be investigated to prevent the daily use until the expiration date.
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