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Abstract: This study proposes an improved method based on a nonlinear parametric model for intensity profile to

increase the edge localization accuracy in medical images gathered from different imaging modalities. The edge model

consists of three parameters associated with an edge point. It also takes into account local background intensity, noise,

and blurring. The Marquardt–Levenberg algorithm is used to estimate the parameters because of its accuracy and good

convergence rate. Performance of the proposed method is tested quantitatively by comparing the results with those

of the well-known active contour method on synthetic vessel images. Qualitative comparisons on real MRI, coronary

angiography, CT, ultrasound, and retinal images showed that the proposed method accurately estimates edges in medical

images.
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1. Introduction

The importance and use of medical electronics are increasing gradually in parallel with the rapidly developing

techniques of the technological age. Imaging techniques constitute the most important part of medical elec-

tronics, especially since they are being used in the diagnosis process. Medical imaging techniques have become

more than just an imaging device or an instrument used to examine anatomic structures. They serve important

roles, such as being planning appliances for a possible surgical intervention or radiotherapy; additionally, they

are used to observe the progression of disease. However, some operations need to be conducted in order for

these images to be evaluated. Edge detection methods are foremost among these techniques.

Edge information or contours related to the object of interest bear important information about that

object in an image. The detection of edges is also a key step for further processing of images using techniques

such as object recognition, segmentation, and 3D reconstruction. Therefore, edge detection on medical images

captured with different imaging modalities has always been an open research field. Different imaging modalities

result in images with different features. Therefore, developing a method that will reveal the best results for all

kinds of medical images has always been a main motivation in this area of research.

Classical edge detection methods like derivative-based methods [1,2] are easy to apply. However, these

techniques may fail to succeed due to factors such as high gray level alterations because of noise and discontinuity

of edge areas originating from the nature of imaging modalities. These factors results in false detection of edges

[3]. Different techniques were developed to overcome these problems. Some of these methods make a series of
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operations on the images with different resolutions in order to overcome effects such as noise and blurring in

images [3–6]. These methods, which produce good results, require the regulation of some parameters based on

trial and error. Other methods try to detect the edges either by modeling the morphological structure of the

object or recognizing the tissues that belong to the object [7,8]. There are also methods that use a genetic

algorithm or artificial intelligence [9]. These methods have a disadvantage of heavy calculations and memory

use. In addition, there are region-based approaches based on the similarity feature of the objects in the images

[10]. Clustering-based approaches are the most used methods among these [11,12]. However, in noisy images,

these methods also fail to extract the correct edge information of the object of interest.

In this study, edge estimation is realized by using a parametric edge model developed to obtain the most

accurate results with images that are collected from different imaging techniques. The model will be explained

in more detail in the following sections. This model improved two points according to the previous studies

[13,14]: the first improvement is the use of parametric active contours (snakes) instead of spline interpolation

for the selection of initial profiles. The selection of initial profiles is crucial for the success of the method. Use

of the active contour approach provides continuously changing initial profiles while keeping them sufficiently

close to real edges. The second improvement is the use of the edge continuity property by applying constrained

parameter estimation. These points will be explained in detail in the following sections.

This study is organized as follows: in Section 2, edge intensity profile modeling is explained, and then

the selection of the region of interest is discussed. Parameter estimation is then explained for the profiles of

the selected region. In Section 4, we discuss the differences of our method from previous methods and offer

suggestions related to the alterations that can be made in future studies.

2. Proposed method

The proposed method is a semiautomatic edge estimation procedure. Figure 1 shows the main steps of the

method. First we present some background information about the motivation of the method in the following

subsection.

2.1. Modeling of edge intensity profile

In this study, we propose an edge estimation method based on parametric modeling. Parametric modeling

methods give more accurate results than derivative-based methods because of modeling of the background and

blurring effects on the medical images [13–16]. The fundamentals of the proposed method are based on the

elliptical cross-section of a vessel model. Figure 2 shows a computer-generated vessel model. This vessel is

modeled with a generalized cylinder with elliptical cross-sections.

In Figure 2, we also show incoming X-ray planes that intersect with the vessel model. These planes are

calculated in such a way that their normal vectors coincide with the tangent vectors of the vessel center-line at

the corresponding points. The intersection regions of the planes and vessel model will also be an ellipse because

we use an elliptical cross-sectional generalized cylinder. These ellipses are defined in the local coordinate system

that is characterized according to the local tangent vectors. Figure 3 shows an example of these ellipses and

the corresponding computer-generated X-ray projection profile.

As a result of the experimental studies that we conducted with medical images that were obtained via

methods such as MRI, CT, and angiography, we observed that the intensity profile of an object’s edge can be

modeled as the addition of object (the projection profile model) and background profiles. The mathematical
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object of interest and determination of 

profile width  

Initialization of Active Contour using 

control points  

Getting initial path from the last step of 

Active Contour algorithm  
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initial path  
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estimation of initial parameters  
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Estimation  

Estimation  of object edge points with 
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Evaluation of Active Contour until the 
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Figure 1. Flowchart of the proposed method. Figure 2. A computer generated vessel model and its

projection on imaging plane.
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Figure 3. An elliptical vessel’s cross-section and X-ray projection profile.
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expression of the edge intensity profile of the object (the projection profile seen in Figure 3) is:

f(p) = (fcen

√
1− (

p− pcen
pmax

)2 ), pcen-pmax ≤ p ≤ pcen + pmax. (1)

In this expression p , fcen , pcen , and pmax represent the horizontal axis (in pixels), the maximum value of the

vessel lumen (in gray levels), the point that corresponds to the peak value (in pixels), and the cross-section width

in the corresponding plane (in pixels), respectively. Consequently, pcen , pmax , and fcen are parameters of an

object’s intensity profile. For tubular objects such as vessels, pcen−pmax corresponds to the left edge coordinate

while pcen + pmax corresponds to right edge coordinate. As for objects other than vessels, a single edge point

is valid since the right side of pcen is ignored in terms of object intensity expression; therefore, its coordinate is

determined via pcen − pmax with subpixel accuracy. Similarly, the intensity expression of background b(p) can

be modeled with a fifth-order polynomial that ignores its second- and fourth-order terms to avoid wrong-fitting

results at the center part of the model. The mathematical expression of the total profile was modeled as below,

including noise and blurring effects as a result of nonlinear operations in the imaging process:

i(p) = f(p, φ) ∗ g(p) + b(p) + w(p). (2)

In this expression, * represents convolution, g(p) represents a Gaussian-type blurring function that has an

average of zero and a standard deviation of S , and w(p) represents the Gaussian-type noise that has an average

of zero and a standard deviation of σ .

Figure 3 shows the visual results of the experiments. In these experiments, we take sample profiles along

an edge of an object of interest. The images used in this experiment are from ultrasound (Figure 4a), retinal

angiography (Figure 4b), MRI (Figure 4c), CT (Figure 4d), and X-ray angiography (Figure 4e). We take the

mean of all profiles to obtain a typical single profile for that image type. After that, we fit the proposed model

to see how successfully we can represent these profiles.

The model fitting results can be seen in Figure 5. These tests show that our proposed model can

successfully represent these profiles from different kinds of imaging modalities.

2.2. Detecting the region of interest (ROI)

We used a spline interpolation method as in previously proposed studies [13,14]. This method requires control

points from the user to interpolate a path along the edge of an object of interest. The control points have to

be set accurately and with a sufficient number to be able to initialize a useful path along the edge of the object

of interest. The path selection method is replaced with a more versatile and robust method in this study. We

used a parametric active contour model as a preprocess to obtain an initial guess of edge points. Therefore, the

points defined by the user are used to initialize the active contour model.

In the literature, there are two types of active contours: parametric and geometric active contours. The

main difference comes from the definition of curves (contours) that evolve in a digital image. This curve deforms

under the effect of two types of forces, which are called internal and external forces. Both types of active contour

models search for a state to balance their internal and external energy functions. Internal energy tries to keep

the active contour smooth while external energy pulls the contour through the edges of the object of interest.

The external force of active contours (either parametric or geometric) usually depends on the derivative of the

image since we deal with edge features. Since the derivative-based edge estimation methods generate bias error

due to blurring effect [17], this problem requires scale-space processing of the image, which needs large memory
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Figure 4. Selection of profiles from different imaging modalities: (a) ultrasound, (b) retinal angiography, (c) MRI,

(d) CT, and (e) X-ray angiography.
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Figure 5. Edge profiles and their model fitting results. The dots correspond to profile points and the continuous curve

is the fitted model.

and heavy calculations. Thus, usage of active contours by itself will not generate accurate edge estimations even

if we set tighter convergence criteria and require longer computation times. We use active contours here instead

of a spline interpolation-based technique to get a fast and rough estimate of initial profiles. Using active contours

allows the user more flexibility for setting initial points and results in a more accurate initial path than the

spline interpolation method. The initialization of the contour algorithm starts by linear interpolation of control

points to obtain the parametric curve. This curve evolves under the influence of external and internal energy

function until the change in the shape of the curve is less than a predefined threshold. The external energy used

in this study is calculated from the derivative of the image with the vector flow convolution [18] approach for its

good capture range. With properly determined weighting constants for internal and external energy functions

(selected 1 for both of the constants throughout this work), the final shape of the contour (initial path) will be

sufficiently smooth while it is close to the edges of the object. The smoothness of the initial edge line is crucial

for the parameter estimation step in the modeling-based algorithm to use the continuity property of an edge.
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The continuity property is used to get a robust edge detection method. Therefore, the active contour model

provides a fast way to get continuously changing profiles along the edges of the objects.

After getting the initial edge path with the help of the active contour, the algorithm calculates normal

vectors of every point on the path. These vectors are used as the profile selection directions within a properly

selected range. This range is determined by the user according to the width of the object of interest. The

intensity profiles are obtained by bilinear interpolation of the image at the profile selection points.

2.3. Estimation of model parameters

Since the projection model that we use is nonlinear, the Marquardt–Levenberg estimation algorithm, which is

advantageous in terms of speed and a good convergence rate, was used to calculate parameters.

The Marquardt–Levenberg algorithm requires initial parameters for the estimation process (as well as

other nonlinear minimization methods). The proximity of these parameters to the actual values both decreases

the convergence rate of the algorithm and increases the percentage of attaining the most accurate result. In

addition, the method must be robust against noise and abrupt changes caused by the background. For this

purpose, we used the continuity property of the object parameters (fcen ,pcen ,pmax) by using the constrained

minimization approach. Constrained minimization includes bounded change only in the object parameters with

respect to the nearby profile parameters. We limit the change only to the object parameters because they must

be continuous along its edge points. On the other hand, other parameters such as background profile parameters

or the blurring parameter are not necessarily continuous.

The use of the continuity property requires a good initial guess to start with in the estimation process.

It is possible to estimate the initial parameters from the profile with derivative-based approaches. This is useful

for relatively flat background profiles or high contrast regions. On the other hand, for low contrast profiles or

profiles that include other backgrounds, structure can cause the estimation to go wrong. Most of the time, the

derivative-based methods fail to get a correct initial guess and this affects the convergence rate and success

possibility of the nonlinear estimation. There is also a strong possibility of converging for the nonsuitable

parameter vector. A global minimum will not necessarily give the correct values we expect because we are

using the sum of two different models (a nonlinear vessel model and a linear polynomial background model)

for estimation. We changed the method for estimating the initial parameters applied in the previous paper

because of the need for robust initial parameter estimations [14]. For this purpose, we take the mean of the

selected profiles and use this to estimate the initial parameters. The noise content and unwanted background

effect will be decreased in this new profile because we took the mean. This helps to find the correct initial guess

automatically by derivative operators. After determining the initial parameters, we searched for the profile that

was most similar to the mean profile because we used the result of the previous estimation step as the initial

guess for the next one. Therefore, we have to start with the profile that is the most similar to the mean profile.

The similarity is measured by calculating the mean-squared error of the mean profile and the candidate. The

minimum error profile is used to start the estimation process with the initial guess obtained from the mean

profile.

There is the possibility of converging for an unwanted parameter vector because of the abruptly changing

nature of the background, even if we start the minimization process from a good parameter vector. To reduce

this possibility, we implied a bound restriction on the amount of change for the parameters of the next profile

according to the previous one. This restriction is applied only for the object parameters because the background

is not necessarily continuous. Therefore, we searched for the correct object parameters within the region that

are determined by the previous parameter vector. In fact, with the limitation of parameter change, we define

1133
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a maximum and minimum for the next profile parameters. Therefore, the width of the search region for every

parameter depends on the sampling interval of the ROI and closeness of the initial profiles to the actual edges.

Initial profiles are determined with active contours. Since this method is also a robust edge estimation approach,

we make an accurate estimate for every profile. The performance of the improvements against the previous

approach is demonstrated with tests; it is presented in the next section.

3. Experimental results

First we compared the proposed method with the one presented previously [14] to show how well the proposed

improvements operate. For this purpose, we produced a synthetic vessel image and added a real angiography

image as background. The artificial vessel has a constant radius along its centerline. The vessel parameters

are: fcen : 10,20,30,40,50 (gray levels);pcen : 256 (pixels);pmax : 5 (pixels); and blurring level (sigma): 1.35

(pixels). The constants for the polynomials (background model) are selected as zero due to the addition of the

real angiography image as a background. The noise is also is not added to the profiles for the same reason. The

aim here is to show the effect of constrained optimization on the edge estimation process. The initialization of

the path along the vessel was realized with a constant line along the real edge with a 2-pixel bias error. This

bias is intentionally added to emphasize the performance of the estimation process against initialization errors.

Since we take the profile interval as 1 pixel, we chose the bound restriction limits as 1 gray level for fcen , 0.2

pixels for pcen , and 0.4 pixels for pmax . These restrictions imply that, for example, the pmax(i) parameter

will be searched within the region of pmax (i-1) ± 0.4. The pcen parameter is the center of the object so it is

expected that pcen will not change much according to the pmax . That is the reason for the selection of limits

in that way.

We compared two algorithms for different contrast levels (fcen). The results are presented over a distance

error that is calculated between real and estimated edge coordinates. Table 1 shows the results for this

comparison. Table 1 also shows that constrained estimation gives more robust estimation results than the

previous method, especially for low contrast images.

Table 1. Comparison of the improved method with previous method in terms of estimation accuracy.

Contrast amount

Previous method (without Proposed method (with

fcen (gray levels)

constrained optimization), constrained optimization),
estimation error (pixels) estimation error (pixels)

Mean
Standard

Mean
Standard

deviation deviation
10 3.6233 1.9658 0.8122 0.7170
20 0.6705 0.6813 0.4147 0.3428
30 0.3104 0.2921 0.2964 0.2661
40 0.2436 0.2417 0.2282 0.2173
50 0.1964 0.1922 0.1915 0.1871

To present the tolerance of the model-based edge detection method, we tested our algorithm with ground

truth edge parameters on the same synthetic image used in the previous experiment. The initial path is obtained

from real edge points. This situation gives us the correct value of pcen−pmax but not more. Thus, the algorithm

has to estimate the correct values of all the parameters. This test shows us the edge localization accuracy under

the conditions of ground truth initial path. Table 2 presents the results of this test for 5 different gray level

values. The edge localization accuracy is presented over the mean and standard deviation of distance errors. If
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we compare the results of Table 1 and Table 2 for the outcomes of the proposed method, it is easily seen that

the results are almost identical. However, the initial path in the first experiment was added a 2-pixel bias error.

We can therefore conclude that our proposed method is robust under initialization errors.

Table 2. Tolerance of the proposed method with different gray levels.

fcen(in gray levels)
Localization error (in pixels) (pmax =5 pixels)
Mean Standard deviation

10 0.7908 0.7415
20 0.3923 0.3498
30 0.2807 0.2649
40 0.2234 0.2200
50 0.1853 0.1913

We also made some visual comparisons to see the effect of constrained minimization. Figure 6 shows

four different synthetic vessel image parts. These images are produced intentionally to fault the normal

minimization approach with some background effects. In Figure 6, the left column shows estimations from the

normal minimization approach (previous method), while the right columns are the results of the constrained

minimization method. We can see from Figure 6 that the constrained minimization approach is a much more

robust edge estimation approach against abruptly changing background effects.

We also have compared our method with the traditional active contour algorithm (snake method) on

both computer-generated images and real images. We selected the active contour method because it needs a

ROI, as with our proposed method. The quantitative results from artificially generated images show a major

increase in the estimation of correct locations of edges with the proposed method. The qualitative results for

real images also show the effectiveness of the proposed algorithm for the aspects of accuracy and robustness.

Figure 6. Visual comparison of the previous method with the proposed method. The left column shows estimations

from previous method and the right column is from the proposed method. The robustness of the proposed method

reveals itself in the tracking performance.
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Figure 7. Synthetic angiogram image: projection of 3D vessel model (a), blurred vessel model (b), real background

(c), and sum of blurred vessel model with the background (d).

Table 3. Hausdorff distance table.

Sample 1 Sample 2
Between estimated edge points by active

1.1486 1.5623
contour method and original edge points
Between estimated edge points by

0.4817 0.5552
proposed method and original edge points

We produced a computer-generated vessel projection image to obtain a quantitative accuracy measure.

First, a 3D generalized cylinder vessel model was produced. By simulating the angiographic imaging process

with a ray tracing approach, we take a projection of this model on a 2D plane to get a simulated medical

image without any background (Figure 7a). This image has provided us a vessel projection with known true

edge locations. To produce a more real-like image we convolved the vessel projection with a Gaussian kernel

to simulate the blurring effect (Figure 7b). After this step, we added a real angiogram image without any

vessel projection (taken just before contrast increasing matter was injected) as the background (Figure 7c).

The artificial image used in this experiment can be seen in Figure 7d.

To get a quantitative result, we calculated the Hausdorff distance [19] of the active contour method and

our proposed method for the reference of the ground truth edge curve. The Hausdorff distance metric gives us

a number that measures the similarity between two sets of points. A value of zero means these two sets are

identical. For a verbal definition, the Hausdorff distance is the greatest of all distances of points from one set to

the closest point from another set. Table 3 shows the results of this metric for two sample regions taken from

the artificially generated image. We can see that the proposed method gives closer edge points than the active

contour method.

Figure 8 shows the visual results of the accuracy comparison tests. The left column shows the original

images used for the test and the right column shows comparisons. The dotted curve indicates the original edge

of the vessel while the white one represents the estimated edge curve from the proposed method. The black

curve is the result of the active contour method. This clearly demonstrates a significant bias error between the

original and estimated curves by active contour method due to the blurring effect.

In the right column of Figure 8, we can see the performance of the proposed method by inspecting the

closeness of the estimated curve to the original. We intentionally keep the contrast of the vessel low to show

the performance better against the derivative-based active contour method. The proposed modeling approach

outperforms the active contour method for the aspect of closeness to the real edge curve.
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Figure 8. Visual comparison of the active contour method with the proposed method: original images (a, c) and

estimated edges with the original edge curve (b, d).

Figure 9 shows two bifurcated vessel images from a real angiogram image. The white line indicates the

estimation result of the proposed algorithm while the black line indicates active contour initialization path.

These images (Figures 9a and 9b) are prepared to present the performance of the proposed method at two

points. The first point is the effectiveness of the one-sided model at the bifurcated parts of the vessels. Our

previously proposed method [13,14] uses the full profile of the vessel to estimate the two edge points of the

vessel at the same time. This is useful for nonbranching tubular structures. However, if we try to model the

bifurcation regions, we cannot use full profiles for estimation. Instead, one side of the vessel model will maintain

the validity at the bifurcation points. The second point that we try to indicate with Figures 9a and 9b is the

tolerance of the proposed algorithm to initialization errors. If we carefully examine the lower right part of

Figure 9a and lower left part of Figure 9b, it is easily seen that the active contour initialized path missed the

thinner parts of the vessel. This is a general problem of the active contour methods and requires regularization

of some parameters in the active contour algorithm. However, our proposed method tolerates this type of error.
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Figure 9. Performance test of proposed method on bifurcation points. White line is the estimation of the proposed

method. Black line is the output of the initial active contour path.

We also qualitatively compare our model-based edge detection method with the active contour method

on different kinds of real images taken from different devices. Although the motivation of the model-based edge

detection method is based on the modeling of X-ray projections of vessels, we can easily model the edge profiles

of other kinds of images. The following visual results showed that our method can be used for different kinds of

images for edge detection purposes. In all the visual test results, the white dots stand for the proposed method

estimations while the black ones represent the active contour method.

The first visual comparison test image was gathered from an angiogram device. Figure 10a shows an

angiogram image. In all test images, the white dots indicate edge estimations by the proposed method and

the black ones represent the active contour method. The active contour method uses gradient information of

the image as an external force and hence showed some underestimation effect due to blurring. However, our

modeling approach accurately estimated the correct locations of edge points by modeling both background and

blurring. In Figure 10b, a retinal angiogram image is used to test the proposed method. Our method shows

good performance, especially at the junction region of the traced vessel, because of modeling the background.

Other visual tests were conducted on MRI, CT, and ultrasound images. Figures 10c, 10d, and 10e show

an MRI image, a CT image, and an ultrasound image, respectively. The proposed method outperforms the

active contour method at the point of accuracy for all these images.

4. Discussion

This study used the application of an edge detection algorithm, which was previously proposed in [14], on medical

images that were obtained by different techniques. The previous method is enhanced by the involvement of

the active contour models and the continuity property of an edge. The active contour model is used for the

selection of initial profiles in a smoothly changing manner while getting the initial edge points close enough to

the real object edge. This provides the user more flexibility for the initialization process. On the other hand,

smoothly changing profiles allow us to use the continuity feature of edge points at the estimation step. The

second improvement is the use of the constrained optimization technique to get a robust edge detection method

against noise or abrupt changes of background. We applied a limited change only on the object parameters
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Figure 10. Visual comparison of the proposed method with active contour method on an angiogram image (a), a retinal

angiogram image (b), an MRI image (c), a CT image (d), and an ultrasound image (e).
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according to the previous parameters. By changing the constrained limits, we can control the smoothness of

the estimated points.

Application of the model-based edge detection method to medical images provides more accurate edge

estimations, as can be seen in the quantitative results. Especially with vessel images, accuracy is important

for the diagnosis of illness, planning a treatment process, or tracking the progress of a disease. Therefore, our

proposed method will be a robust and accurate edge detection tool for physicians.

There is no a reliable fully automatic edge detection method in the literature; therefore, semiautomatic

methods with minimal interaction are more useful for users. Our method needs only a rough estimate for the

edge region of the object of interest and a profile width in pixels. On the other hand, profile width has a very

important effect on the accuracy and convergence of the method. The width of profiles must be selected in

such a way that enough information for estimation could be gathered from them. As a future enhancement, the

profile width selection will be determined automatically by application of multiscale operations.
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