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Abstract: This study develops an optimal driving strategy for solar car on a track with nonzero gradients and sharp

corners. This strategy consists of finding the racing line and the speed profile that minimizes the lap time with a given

amount of energy. The problem is formulated in proper form for a commercial nonlinear optimization software program.

The track is modeled into segments identified by their spatial coordinates on its own surface. The speed-distance behavior

of the vehicle is linearized at each segment. The constraints set by the brushless DC motor, battery, and circuit are

formulated accordingly. This is the motor type widely used in electric cars. The solver produces both the positions of

the car on the track and entry speeds into the segments, which minimizes the lap time for the given amount of the solar

power and battery reserve. The positions of the car describe the best racing line. Formulation of the constraints allows

extracting the motor current profile from the speed profile, which comprises the set of control actions. These profiles

help the human driver identify where and how much to accelerate along the track for the desired performance of the

car. The algorithm presented here can also serve as a tool to assess the performance of an electric car at different road

conditions, thus helping to choose the best settings of the motor and the car.

Key words: Minimum time maneuvering, circuit race, optimal speed profile, optimal racing line, energy management,

nonlinear constrained optimization

1. Introduction

In the literature, several mathematical algorithms are reported for solar car management in long-distance races.

Howlett et al. formulated the problem on a level road and described a power-hold-coast-brake strategy with

lower and upper critical speeds [1]. Pudney showed that the best practical strategy is still a speed-holding

strategy even on undulating roads and with an inefficient battery [2]. Pudney et al. improved this result with

a realistic battery model, proposing that the optimal strategy is a critical speed strategy, which might change

with solar power during the journey [3]. Wright proposed a constant speed strategy despite weather fluctuations

[4]. Mocking and De Geus used numerical optimization techniques or heuristics, which search for a speed profile

based on weather predictions during the race [5,6].

In long-distance races, the car is driven with small speed variations in response to road conditions and

solar power. This strategy is interrupted by a few stops and speed limits during the journey. This leads to the

fact that the car should be designed and driven for maximum efficiency, while cruising within a limited range

of speed.

For a circuit race, the constant-speed strategy still holds if the track does not have sharp corners or steep
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sections. Although unpredictability of the weather encourages the teams to design their cars for maximum

efficiency with 2–5 kW motor power, sharp corners require the car to be capable of high acceleration, braking,

and cornering performance. Frequent accelerating and braking actions lead to large and rapid rises and drops

in motor current, and thus motor efficiency cannot be accepted as constant. Therefore, the optimal driving

strategy in a circuit race is an acceleration-control strategy rather than a speed-hold strategy.

Due to its essential differences, formula racing provides insufficient guidance for optimal timing of a solar

car in circuit racing. In formula races, expert drivers force the car up to its limits, where energy management is

of secondary importance. Aerodynamic design allows high cornering speeds due to the downward forces on the

car. With engine powers of up to 750 kW, the road gradients have practically no effects on the performance of

the car. On the other hand, circuit racing conflicts with the motor choice of a highly efficient solar car. Adcock

et al. verified through simulation and testing that increasing the motor power improves lap time at the expense

of reducing the achievable range considerably [7].

One other source of guidance is the studies on optimal driving strategies of the trains on a track of

nonzero gradient and with speed limits [8–10]. However, they search for solutions along prescribed paths, and

in their current formulation, they are relevant to long-distance solar car events and are not directly applicable

to circuit events.

There exist a couple of works handling solar car management in circuit racing. Ersöz predicted the

performance of the car by developing a speed distribution model for the track [11]. Ustun et al. compared the

energy consumptions and timings of the predefined driving scenarios [12]. However, they still did not propose

a dedicated method for finding the speed and control profile of a solar car in circuit racing.

This study presents a method to calculate the optimal lap timing of a solar car in a circuit race. The

speed profile with its racing line is generated for the best lap time at a given solar power input and energy

constraint. The current profile is derived using the constraints and the speed profile. The track is modeled in

segments, which are sized properly so that the speed-distance function of the car can be linearized. The lap

time, the work done by the motor, the energy drawn from the battery, and the constraints are formulated in

terms of this function. The independent variable is the distance. A nonlinear programming software program

(NLP) can incorporate this formulation. This study uses the function fmincon in MATLAB.

Managing the battery charge content is the essence of the energy management of a solar car. The

temperature and rate of discharge affect the apparent capacity of a lithium polymer battery. The Peukert

relation is invalid for these batteries. In addition, the terminal voltage is an inadequate indicator of the battery

energy content. Due to these complexities, this study makes a conservative assumption on the energy capacity

of the package and takes it as a constant, which is estimated at a rate higher than the average rate of discharge.

For high efficiency, the solar car is built with zero lift design and low rolling-resistance tires. Since these

tires have a reduced grip, the car tends to follow safe cornering speeds in order to handle the lateral forces.

Therefore, the car can be modeled as a point mass, ignoring the yaw moments. In addition, the suspension

elements can be assumed stationary with respect to the chassis, and the effect of suspension dampers on vehicle

performance can be omitted. Only the accelerating and braking actions are taken into account.

2. Method

2.1. Minimum time maneuvering problem

Consider that the independent variable is the distance x . The states will then be S(x) = (t(x), v(x),W (x)),

where W (x) is the energy use out of the battery, and t(x) and v(x) are the time and speed of the car at x .

The distance traversed around the track is X . Assume that there is a control u(x) that minimizes T = t(X).
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In order to make use of the existing numerical solvers, this optimal control problem can be converted to a

nonlinear programming problem by replacing the control and state histories with their discrete approximations.

Assume that there is an optimal racing line on the track. It can be divided into N segments as in Figure

1, which is sized suitably so that the optimal speed profile v(x) at each interval (xi−xi+1) can be described by

its linear approximation. The states and constraints can then also be formulated accordingly. The problem is

to find the motor control action, which is the current Ii or power Pi at each interval (xi−xi+1) that minimizes

the lap time T. The problem then turns into finding the speed profile:

Vp = [v0 v1 v2 . . . vN ], such that lap time T is minimized where Ti is the time elapsed on interval (xi

- xi+1):

T = T1 + T2 + . . . .+ TN (1a)

v 

(m/s)  

X (m)

0 x 1 x 2 xNxN-1 xi xi+1

vi

 
 
 
 
 
 
 
 
 

Figure 1. Optimal speed profile and its approximation.

The speed profile and its associated control profile must satisfy the following constraints:

- At each location xi there is a speed constraint: amount of core losse

vi <= Vi (1b)

- WT = W1 + W2 + . . . . + WN , where Wi is the energy use at segment (xi − xi+1)

The energy available for each lap is constrained:

WT <= Wlap (1c)

v0 = vN+1 (1d)

The current and power of the motor is limited:

IM min <= Ii <= IM max, PM min <= Pi <= PM max (1e)

2.2. Constraints imposed by the motor

Figure 2 shows the operating characteristics of the brushless direct current (BLDC) motor installed in the car

[13].
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Figure 2. Speed, torque, and efficiency of the BLDC motor with its controller at 96 V.

In the BLDC motor, voltage drop on the switching elements during commutation may be significant. As

a result, the torque and back emf constants are not always equal to each other, in contrast to a conventional

DC motor [14]. Its total efficiency is determined primarily by the winding losses in the motor and the switching

losses in the controller. In order to take the switching losses into account, all voltage drops can be attributed

to coil resistance. This can be estimated from the steady-state characteristics in Figure 2, which is given at 96

V. This assumption still allows the motor constants to be nearly equal to each other in the actual speed range.

Figure 2 is the graphical representation of the test data supplied by the manufacturer. The vertical line on this

figure represents the operating point, at which the motor revolves at 810 rpm supplying 20 Nt-m torque with

94% efficiency. From a series of operating points an equivalent resistance R can be found representing all the

losses. The total loss can be stated as:

∆P = VbatIM − Po −∆Pcore ≈ 3I2wR, (2)

where Po is the output power with Po = Tω , Iw is the coil current, and ∆Pcore is the core losses together

with mechanical losses. The change in the amount of core losses is inconsiderable from no load to full load. The

manufacturer supplies its value.

Electrical transients in the controller are much faster than the mechanical transients in the car. Thus, it

can be assumed that during the accelerating and braking phases, the torque and emf constants are the same as

in the steady state. These simplifications allow modeling the motor as a torque source.

The torque of the BLDC motor is proportional to its current. The torque constant is defined in terms of

rms value of the winding current. Noting that the current into the controller is IM , the torque constant is kT ,

and the wheel radius is r, the force of the motor can be written as:

FM = 3kT IM
√
2/3/r. (3)

The force balance of the car is
FM = FR + Fa, (4)

where FR is the total resistance force of the car:

FR = mgCrr(1 + v/44.7) + 0.5ρcDAv2 +mgsin(α). (5)

Moreover, Fa is the accelerating force on it.
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The first term in Eq. (5) is the rolling resistance force, where Crr is a tire-specific coefficient, m is the

mass, and g is the gravitational constant [15]. The second term is the aerodynamic drag force, where ρ is the

air density, cD is the drag coefficient related to the geometry of the car, and A is the frontal area of the car.

The third term is the road gradient force, where α is the road slope angle.

Taking the segment size to be sufficiently small, the current and thus the force of the motor, FM , can

be assumed constant throughout the segment (xi −xi+1). In Figure 3, the motor overcomes all resistances and

adds or removes kinetic energy from the car at each segment. The work done by the motor can be calculated
as:

Wi =

xi+1∫
xi

FMdx =

xi+1∫
xi

FR(x)dx+ 1/2m(v2i+1 − v2i ). (6)

The speed terms in FR are stated as a linear function of x, vi , and vi+1 at any point along the segment

(xi − xi+1). The integral in Eq. (6) results in a quadratic function of the form

Wi = c1v
2
i + c2v

2
i+1 + c3vivi+1 + c4vi + c5vi+1 + c6. (7)

The coefficients in Eq. (7) are written in terms of the constants in Eq. (5) and the term xdi , where xdi refers

to the length of the segment defined by (xi − xi+1). The average force from the motor is then obtained as:

FMi = Wi/xdi. (8)

At each point along (xi − xi+1), FMi must satisfy:

FM min ≤ FMi ≤ FM max. (9)

The minimum force in Eq. (6) is a negative term, set by the maximum regenerative current out of the motor.

This current is less than the maximum forcing current due to the battery safety issues. The controller can

adjust the maximum current up to a value limited by its design. The maximum speed at which the controller

is still able to force the maximum current at full battery voltage is called critical speed. Beyond this speed,

the current and torque start to drop due to the rise of back emf voltage. These constraints can be described in

terms of the approximate linear speed-distance relation shown in Figure 3.

In a star-connected BLDC motor as shown in Figure 4, the back emf constant ke can be found as:

ke = eM/ωM =
√
2/3(VW − IMR)/ωM , (10)

where VW is the voltage per winding at speed ωM and R is the winding resistance. The motor torque constant,

kT , can be written as:

kT = T/3/(
√

2/3IM ). (11)
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Figure 3. Linear approximation of the speed. Figure 4. BLDC motor model.

By these definitions, the motor constants derived from the steady-state characteristics are approximately

equal to each other over a wide range of speed:

kM = kT ∼ ke. (12)

Combining Eqs. (10) and (11) and considering that the maximum value of VW is Vbat /2, the maximum force

at car speed v can be stated as:

FM max = (
√
3/2kM/(rR))Vbat − 3k2M/(r2R)v. (13)

In Eq. (13) all terms except the speed term are constant. If the motor has field weakening capability, then the

motor constant kM will be a variable, too. At low speeds, the maximum force is constrained by the controller

setting, while at high speeds it is constrained by the condition in Eq. (13).

2.3. Constraints imposed by the battery

In lithium-based batteries, energy capacity depends on the discharge rate, the temperature, and the age. Since

the Peukert formula is not valid for these batteries, one practical solution for battery modeling is to assume a

constant capacity estimated from the discharge rate predicted for a given loading condition. Since the controller

limits the motor current, the maximum discharge rate can be assumed as less than 5C for each cell. According

to the manufacturer’s specification, the capacity of each cell is 14.7-W-h at 5C. If Ncell is the number of the

cells, the total capacity of the package is then:

EbatC = 14.7NcellW − h. (14)

The energy reserve per lap depends on the organization of the race. In some races, teams should run a given

number of laps in minimum time. In some others, teams run as many laps as possible in a specified period. The

average solar power can be assumed constant if the time span of the race is short. The energy balance is then

written as:
WM = Wlap = EbatC/n+ PST, (15)

where WM is the work done by the motor each lap plus winding losses, n is the number of laps, and PS is the

average solar power. If the time span of the race is long enough, then the energy balance can be written as:

WM = Wlap = (EbatC +

TR2∫
TR1

Ps(t)dt)/n. (16)
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In this case, n is the predicted number of laps and Ps (t) is a time-dependent function of the solar power. TR1

and TR2 are the beginning and ending times of the race. Eq. (16) is the interpretation of the speed-holding

strategy in the long-distance race. Intuitively, it can be stated that in the circuit race, a constant profile of the

speed holds each lap instead of a constant hold-speed along the entire track. At any instant during the race the

energy storage in the battery must stay within the limits:

0 ≤ Ebat ≤ EbatC . (17)

The current through the segment (xi − xi+1) can be found using Eqs. (3) and (8). Writing the total winding

losses as

WRi = 3(
√
2/3IM )

2
R, (18)

the total energy consumption of the motor is:

WMi = Wi +WRi. (19)

The amount of solar energy collected each interval depends on the time elapsed at that segment:

Ti = 2(vi + vi+1)/xdi. (20)

The energy use out of the battery can be written as

WBi = (WMi − PSTi)(1/µB), (21)

where WMi is the motor losses in addition to the work done on the car, and µB is the battery efficiency, which

is less than one. Note that µB replaces 1/µB if the energy is pumped into the battery. The battery constraint

is written as:

WB = WB1 +WB2 + . . . +WBN <= EbatC/n. (22)

2.4. Selection of the segment size

Linearization of the speed causes an error ∆v = v − v′ at any point, x′ , over each segment as in Figure 5. To

keep this error within acceptable bounds, the segments should be sized properly.

Setting the maximum error ε in speed over a segment as

∆v = v − v′; ε = ∆v/v < 5e− 5, (23)

it is observed in numerous experiments that the segment size must be at most 1 m if the its entry speed, vi , is

1 m/s. If the initial speed is 20 m/s then even a 98-m segment size is acceptable. These should be calculated

specifically for each motor-car combination. The curved sections of the circuit should be modeled in detail

with shorter segments, where high accelerations-decelerations are expected. In Appendix A (on the journal’s

website), it is shown that the linearization error in speed leads to an error in calculation of the power and energy

consumption of the car as

∆PR/PR < 3ε. (24)
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2.5. Constraints imposed by the circuit

2.5.1. Modeling the circuit

Modeling of the circuit is a preliminary study. It is required to preserve the grade variations and curving

properties of the circuit in its discrete model.

Google Earth facilitates the identification of the latitude and longitude of a point on the earth’s surface.

Using the functions of Google Earth, the centerline of the circuit can be represented in detail by sampling it

at 1.5–5 m distances. The geodetic coordinates are then transformed into earth-centered Cartesian coordinates

by a common ellipsoid model of the earth, GRS80 [16]. This study develops a second transformation based on

three points forming a new Cartesian coordinate system on the track plane. Because of this transformation,

the z-component of a point is the altitude of that point in the new frame. Note that the distance between two

points does not change after these transformations.

2.5.2. Identifying the racing line

Figure 6 depicts a section of the best racing line on a hypothetical track, which the car follows with its consistent

speed profile. The points Ci and C ′
i identify the front line of the segment (xi−xi+1). These are the coordinates

of the inner and outer lines of the circuit, which are at a distance half the width of the track on both sides from

the centerline. These points represent a linear model of the circuit. They reflect the grade variations, curves,

and corners of the circuit with reasonable accuracy.

The set of the points xi forms the racing line that is searched for by the algorithm. The coordinates of

the point xi can be written in terms of Ki , which is the distance from the point Ci along the line (Ci − C ′
i).

The circuit sets a speed limit at each point xi such that

v2i /rci ≤ kg. (25)

Here, rci is the radius of the curvature at point xi , which is defined by the points xi−1 , xi , and xi+1 . Here

kg is the lateral acceleration limit for a safe cornering. Its value is found as nearly 0.55 g on analyzing the

maximum actual speeds achieved during cornering on the circuits.

The locations xi and xi+1 , the two points of varying positions on the two front lines, describe each

segment. Thus, the length of a segment is a dependent variable given by

xdi = |xi+1 − xi| . (26)
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Figure 5. Acceleration profile. Figure 6. Racing line on a sample circuit.
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2.6. Formulation of the solution

Vp is the vector representing all the variables searched for by NLP:

Vp = [v1..vN+1|K1...KN+1] , (27)

where N is the number of segments. The circuit is coded by 2N+2 three-dimensional points. The first subvector

represents the speeds; the second one represents the distances from the inner side of the circuit. The width of

each segment sets the upper bounds for the terms in the second subvector.

The objective function and constraints described in Eq. (1) specify the problem of finding the minimum

of a constrained nonlinear multivariable function. The variables are the entry speeds, vi , and the distances

from the inner line, Ki .

min f(Vp), (28a)

f(Vp) =
i=N∑
i=1

2xdi/(vi + vi+1), (28b)

where
xdi = |xi+1 − xi| , and xi(x) = Ci(x) +Kix;xi(y) = Ci(y) +Kiy;xi(z) = altitude(i). (28c)

Here, (Ci (x), Ci (y), altitude(i)) are the coordinates of the inner point Ci in Figure 6; Kix and Kiy are the

x-axis and y-axis components of the distance Ki from the point Ci . The component altitude (i) is read from

the model data of the circuit. The three-dimensional vector (xi (x), xi (y), xi (z)) defines the coordinates of the

point xi , which is on a candidate racing line.

Using Eqs. (7) and (8) we can write the functions fdi :

fdi = ci1v
2
i + ci2v

2
i+1 + ci3vivi+1 + ci4vi + ci5vi+1 + ci6, i = 1, 2, . . . , N.

The solution V ∗
p must then satisfy the following nonlinear constraints, fc , set by the motor:

fc(i) : fdi ≤ fM max, (29a)

fc(i+N) : fdi ≥ FM min, (29b)

fc(i+ 2N) : fdi ≤ FM max. (29c)

The circuit sets a constraint at each point xi :

fc(i+ 3N) : v2i /rci ≤ kg. (29d)

Finally, the solution must also satisfy the constraint set by the battery energy reserve and expected solar power,

PS :

fc(4N + 1) :

i=N∑
i=1

WBi =

i=N∑
i=1

(WMi − PSTi)/µB ≤ batreserve. (29e)

In the above equations, the coefficients cij , j = 1...6, are determined by the car parameters and the term xdi

in Eqs. (6–8). The maximum motor force at low speeds, fM max , is set by the controller:

fM max = 3IM max

√
2/3kM/r. (30)
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The maximum motor force at high speeds, FM max , is determined by Eq. (13).

The solution V ∗
p is bounded such that

0 ≤ vi ≤ 30m/sec, and0 ≤ Ki ≤ trackwidth, i = 1, 2, . . . , N. (31)

Here, trackwidth is the width of the track, which is assumed as constant and equal throughout the circuit.

Three-dimensional coordinates of the points (xi−1 , xi , xi+1) determine the radius of curvature at point

xi . To calculate it a MATLAB function is developed and integrated into the constraint functions.

In the constraint function fc (4 N + 1), the work done by the motor along the segment (xi − xi+1),

WMi , is calculated by Eqs. (6), (7), (18), and (19), while T i is given by Eq. (20).

The solution must also satisfy the linear equalities:

v1 = vN+1,K1 = KN+1. (32)

The objective function has an explicit form, and thus its derivative can be supplied to the solver. However, xi is

a variable and stated implicitly in terms of Ki . Therefore, it is complicated to formulate the derivatives of the

constraint functions in Eq. (29). They have to be approximated by the solver itself using the finite differencing

technique. As the number of segments increases, it may be computationally expensive. This is the main reason

for modeling the circuit with the least number of points.

Operation of the algorithm is summarized in Figure 7.

Start 

Read circuit parameters: Coordinates of the centerline 

Determine the coordinates of the inner and outer lines of the circuit 

Read battery reserve (%), solar power (W) 

Read motor parameters: IMax, kM, R 

Read car parameters: mass, Crr, r, cDA 

Start the solver with randomly chosen initial value of the solution, Vp0: 

[v, fval] = fmincon(@objective function, Vp0, @constraint function) 

End the solver. Read the optimal speed profile v and the raceline information K 

Process the objective and constraint functions in Section 2.6 

End 

Use v to derive the optimal current profile of the motor 

Use K to derive the coordinates of the optimal raceline 
 

Figure 7. Operation of the algorithm.

1151



ATMACA/Turk J Elec Eng & Comp Sci

3. Testing the method

3.1. Properties of the circuits and cars

The test circuit is almost a level track with sharp corners. Its properties in the linearized model are summarized

in Table 1. The parameters of the test car are given in Table 2, where aerodynamic drag coefficient is found

by computer analysis. Although the motor has regenerative braking capability, it is not used for battery safety.

The nominal battery voltage is 122 volts in the tests.

Table 1. Properties of the test circuit.

Length Segment # of Altitude Slope Width
(m) size (m) segments (m) (deg.) (m)
1842 1.8–15.8 183 1.5–7.7 –3.8 to 3.7 12

Table 2. Properties and settings of the test car.

Total mass (kg) cD A Crr r (m) Motor constant Max. current (A)
220 0.22 0.004 0.27 0.6 0–40

3.2. Testing the assumptions on a model track

The basic assumption in this study is that if the linearization of a circuit is sufficiently fine, then the optimal

speed profile of a vehicle can be linearized also. This linearization then facilitates the formulation of the objective

and constraint functions in a proper form for a common nonlinear optimization software program.

Two demonstrative cases are considered to test the validity of the models and assumptions used in the

study. The battery is perfectly efficient, while the motor has a variable efficiency.

3.2.1. Test case 1: Travel on a track with steep gradients

Daniels et al. developed the most efficient speed profiles for a track with steep gradients formulating the motion

of the car as an optimal control problem [17]. Those profiles can be taken as a benchmark case for testing

purposes. Consider a track whose first 450-m section is level. It is followed by a 50-m uphill section with

gradient of 6%. After that, a 490-m level section stretches again. In the second part of this test, the uphill

section of the track is replaced by a downhill section with gradient –6%. The number the segments representing

the track is 110, each of which is 9 m.

Figure 8 shows the speed profiles of the test car on this steep track. These have the same characteristics

as presented by Daniels et al. [17]. For optimal use in hilly road conditions, the car in a constant hold-speed

starts to accelerate gradually to the beginning of the uphill section, through which it loses some of its kinetic

energy. At the end of that section, it accelerates again up to the hold-speed. In the second part of the test, the

car lowers it speed until the beginning of the downhill section, through which it gains some kinetic energy. At

the end of the section, it decelerates again to the hold-speed. Note that the speed of the car is the same at the

beginning and end of the track.
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Figure 8. Speed profile on a hilly track: a) uphill section b) downhill section.

3.2.2. Test case 2: Travel on a level circular track

An entirely circular track significantly affects the cruising speed of a car. Since there is no case reported in

literature, in Appendix B (on the journal’s website), it is shown that on such a track as in Figure 9, a car always

follows the inner circle in optimal use even if it has both high energy reserve and strong cornering capability.

To test this expectation, assume a circular track with a 326.2-m centerline that is represented in 40 segments.

If the lateral acceleration constraint, kg, is set to 0.72 g, then the test car can travel at speed 18 m/s

around the inner circle with a 7.5 W-h energy consumption. Here, g is the gravitational constant. The radius

of the inner circle is 45.9 m. When the algorithm is run with these constraints, it results in a constant-speed

profile of 18 m/s with up to 4e-3 m/s errors while the car traverses the inner circle. Now we double the energy

reserve and reduce the cornering capability to 0.64 g, which provokes the car to turn at a larger radius with a

higher speed. Subject to these new constraints, the algorithm results in a constant-speed profile of 16.97 m/s

around the inner circle with energy consumption of 6.94 W-h, which is less than the previous one. In this case,

the turning radius is 45.9 m again, which can be verified by setting υ = 16.97 m/s at υ2 / (0.64 g). This is

the expected result. Even if the energy reserve is high, the cornering constraint dominates at the optimal speed

profile and adjusts it so that the car follows the inner circle. Thus, the algorithm is valid for a circular track as

well.

3.3. Testing the method on a real track

3.3.1. Monitoring energy content of the battery

For a race with a specified number of laps, Eqs. (15) and (16) reveal that the total energy consumption at

each lap should be equal. If the time span of the race is short enough, then the solar power can be assumed

constant during the race. In this case, the amount of energy drawn from the battery at each lap should be

equal. To ensure that this condition holds, the battery energy content should be monitored during the race. If

n is the number of laps, the battery energy reserve is 1/n per lap regardless of the amount of the average solar

power expected during the race time. For a battery capacity EbatC , which is estimated from the discharge rates

predicted for the race, the nominal battery reserve is EbatC / n per lap.

To fulfill this, the battery current and voltage are measured and sent to a computer via a telemetry

system with 250–350 ms periods. The maximum error in current measurement is 0.1 A at 50 A due to the

saturation effects in the current sensors. A microcontroller processes the analog output of the sensor to calculate
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the actual value of the current. The same microcontroller also makes the voltage measurement with errors up

to 10 mV.

In Figure 10, the battery current and the voltage are assumed to change linearly with respect to time

between the two successive measurements.
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r  
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Figure 9. Travel on a circular track. Figure 10. Current and voltage measurement.

The actual values are then approximated as:

i(t) = at+ b; v(t) = ct+ d; p(t) = v(t)i(t);WB1 =

t2∑
t1

p(t)dt, (33)

In Eq. (33), (a, b) are stated in terms of (I1 , I2 , t1 , t2), and WB1 is the amount of energy drawn from the

battery in the first period. The accumulation starts at the beginning of the race and is checked at the end of

each lap to make sure the energy consumption remains in a safe band around the battery reserve.

3.3.2. Estimation of solar power

Assume that for a given location the maximum power that a car can take is PMax during the daytime. Between

0600 and 1800 hours the solar power can then be formulated as:

Ps(t) = Pmaxsin(π/13t). (34)

Here, t is set to 0 at 0600 hours and 13 at 1800 hours. The total solar energy between times t1 and t2 is

WS =
t2∫
t1

Ps(t)dt . If time t1 is the beginning time and t2 is the approximate ending time of the race, then WS

/ (t2 − t1) is the average expected power during the race. The algorithm can be run with either the average-

solar-power constraint or total-energy constraint. In the latter approach, the battery capacity is assumed to

expand so that it stores all the energy reserve. While the solar power constraint is set to zero it is run with the

same battery reserve per lap as in the previous case.

3.3.3. Test in a real circuit

Assuming a 30-lap race, the battery reserve per lap is 3.3%, or 31 W-h. Table 3 gives the performance of the

car against solar power. At 1200 W, 0.5% of the reserve remains unconsumed. In this case, the total energy
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consumption is 60.8 W-h. The average speed of the car per lap does not improve further despite the additional

energy available. At the time of the test the official best time is 91.2 s, which is 1.8 s longer than the best

performance predicted by the algorithm. In this lap, the racing line is 1795 m long, as given in Figure 11.

Table 3. Performance of the car as solar power increases.

Solar Lap Length of the Battery Solar energy Total energy
power (W) time (s) racing line (m) use (%) use (W-h) use (W-h)
0 120.0 1774 3.3 0.0 31.0
200 108.7 1778 3.3 6.0 37.0
400 101.4 1782 3.3 11.3 42.3
600 96.3 1786 3.3 16.1 47.1
800 92.3 1790 3.3 20.5 51.5
1000 89.5 1794 3.3 24.9 55.9
1200 89.4 1795 2.8 29.8 60.8
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Figure 11. Racing line of the car: solar power is 1200 W.

The speed and current profiles for this lap are given in Figure 12. They demonstrate the positions of the

acceleration and deceleration phases. At zero solar power, the racing line in Figure 13 tends to be the shortest

path on the track. Figures 14a and 14b show the speed and the current profiles of the car. It is notable that

almost the same pattern in each profile repeats itself as solar power increases. The lateral acceleration limit kg

in Eq. (25) is identified by experience. It is set by checking the maximum safe speed into corner 3 in Figure 11.

The maximum speed into this corner is measured between 55 and 60 km/h. The algorithm results in the speed

of 58 km/h when kg is set to 0.50. The other cornering speeds predicted by the algorithm are also consistent

with the measurements in the race.

4. Remarks

Note that the BLDC motor is operated in current-control mode. According to the manufacturer’s specification,

the current of the controller can be controlled linearly as long as the speed is under its critical value set by the

condition in Eq. (12).

Although it is not an easy task to reproduce the speed and the current profiles in actual race conditions,

these profiles help the human driver identify where and how much to accelerate along the track for the best

performance of the car.
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Figure 12. Speed and current profiles of the car: solar power is 1200 W.
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Figure 13. Racing line of the car: no solar power.
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Figure 14. a) Speed profiles of the car as solar power increases. b) Current profiles of the car as solar power increases.

The number of segments modeling the circuit primarily affects the total computation time. With the

numbers of segments given in Table 1, the algorithm searches for up to 368 variables. In this case, with a Pentium

3.4 GHz processor the computation times might change between 2 and 4 h for different energy constraints.
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However, if it is assumed that the car follows a specified path, then the algorithm searches for only speed

variables and as a result the total number of variables decreases to half. In this case, because the constraint

functions are simplified, the algorithm can be speeded up further by providing the NLP with the derivatives of

these functions. This process saves a considerable amount of time by avoiding the finite differencing calculations.

For instance, the computation time may decrease down to 20–30 s.

There are two novelties in this study. First, to the best of the author’s knowledge, this study is the first

in the literature to investigate the energy management problem of solar car in circuit racing. The algorithm

combines the search for the optimal speed profile with the search for its consistent path, a problem that is not

a concern in long-distance races. Second, it models the motor as a torque source with variable efficiency unlike

in long-distance events, where a constant efficiency model is sufficient.

The actual best lap times approximate the predictions within reasonable bounds. This validates the

models used to describe the circuit, the motion of the car, and the motor.

The BLDC motor has a low weight-power ratio, which makes it proper for electric car applications.

Therefore, the algorithm presented here can serve as a tool not only for solar car energy management but also

for the performance evaluation of an electric car at different road conditions. With such a capability, it can

help in choosing the best settings for both the car and the motor, like wheel radius, motor maximum current,

and battery capacity.

The algorithm has room for improvement. It assumes a BLDC motor, and it needs modification to model

the asynchronous motor as well, a second type of motor that is common in electric cars.

5. Conclusion

This work proposes an energy management strategy for a solar car in a circuit race. In a circuit race, the best

performance depends not only on the optimal speed profile but also on its consistent path. This complicates the

problem. Numerous near-optimal solutions can be found by actually driving the car on a given circuit, which

is the case most of the time. However, this is an expensive and time-consuming experiment, and it might not

always yield the true optimal result. On the other hand, this study assures a reliable solution to the energy

management of a solar car and predicts its best possible performance. Finding the optimal speed profile with its

consistent racing line, the algorithm guides the driver towards using the energy in the most efficient way. Other

than its racing aspect, the algorithm given in this work can also serve as a tool for the performance evaluation

of the electric car at different road conditions. Simulating the actual paths that are frequently used in an urban

area as a circuit, this tool is proper for the performance testing of various settings of the car, the motor, and

the battery.
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A. Appendix

The error in power calculation due to the error in speed.

Omitting the error in time due to the linearization of the speed, the error in the work done by the motor

to overcome the resistance of the car is:

∆W/W ≈ ∆PR/PR, PR = PRR + PRA, (A.1)

where PR is the total resistance power, PRR is the rolling resistance power, and PRA is the aerodynamic

resistance power:

PRR = mgCrrv +mgCrr/44.7v
2 = Mdv +Md/44.7v

2, (A.2)

PRA = 0.5ρcDAv3 = Adv
3. (A.3)

The error in rolling resistance power is ∆PRR due to the error ∆v in speed v .

PRR +∆PRR = Mdv +Md/44.7v
2 +Md∆v +Md/44.7(∆v)2 + 2Md/44.7v∆v (A.4)

Neglecting the higher order terms,

∆PRR ≈ Md(
2v

44.7
+ 1)∆v = Mdβ∆v. (A.5)

The speed range in the actual race conditions is 0 ≤ v ≤ 22 m/s. This leads to:

∆PRR < 2Md∆v, (A.6)

∆PRR

PRR
<

2Md∆v

Mdv +Md/44.7v2
<

2Md∆v

Mdv
< 2

∆v

v
= 2ε. (A.7)

The error in aerodynamic power is ∆PRA :

PRA +∆PRA = Ad(v
3 + 3v2∆v + 3v(∆v)2 + (∆v)3). (A.8)

Neglecting the higher order terms,

∆PRA ≈ 3Adv
2∆v, (A.9)

∆PRA

PRA
≈ 3Adv

2∆v

Adv3
= 3

∆v

v
= 3ε. (A.10)

Write the rolling resistance power as a ratio of the aerodynamic power:

PRR = αPRA .

∆PR

PR
=

∆PRR +∆PRA

PRR + PRA
<

2εPRR + 3εPRA

PRR + PRA
=

2εαPRA + 3εPRA

αPRA + PRA
=

2α+ 3

α+ 1
ε (A.11)

The factor α changes in actual speed range as the following:

0 < v < 30; 50 > α > 0.1. (A.12)

Thus, it results in:

∆PR/PR < 3ε. (A.13)
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B. Appendix

The optimal path of a car traveling on a circular track.

The problem of minimizing the lap time of a car on a circular track with no energy

constraint can be stated as:

min(
2πr

υ
), (B.1)

subject to

υ2

r
− kg ≤ 0, ri − r ≤ 0, r − ro ≤ 0, (B.2)

where υ is the optimal speed of the car, r is the radius of the path at the optimal speed,

and ri and ro are the inner and outer radii of the track, respectively. The Lagrangian of this problem

can be written as:

L =
−2πr

υ
+ λ1(kg −

υ2

r
) + λ2(−ri + r) + λ3(ro − r). (B.3)

The Kuhn–Tucker conditions for a point to be a minimum are:

∂L

∂r
≤ 0, r ≥ 0, r

∂L

∂r
= 0, (B.4)

∂L

∂υ
≤ 0, υ ≥ 0,υ

∂L

∂υ
= 0, (B.5)

υ2

r
≤ kg, λ1 ≥ 0,λ1(kg −

υ2

r
) = 0, (B.6)

−r ≤ −ri, λ2 ≥ 0, λ2(−ri + r) = 0, (B.7)

r ≤ ro, λ3 ≥ 0, λ3(ro − r) = 0. (B.8)

The right-hand side terms in (B4) and (B5) are the complementary slackness

conditions. In the explicit form these equations are written as:

−2π

υ
+ λ1

υ2

r2
+ λ2 − λ3 ≤ 0, r ≥ 0, (B.9a)

r(
−2π

υ
+ λ1

υ2

r2
+ λ2 − λ3) = 0, (B.9b)

2πr

υ2
− 2λ1

υ

r
≤ 0, υ ≥ 0, (B.10a)

υ(
2πr

υ2
− 2λ1

υ

r
) = 0. (B.10b)

Since υ > 0 and r > 0, Eq. (B.10a) requires λ1 > 0. As a result, from Eq. (B.6),

υ2

r
= kg.
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If the car follows a path at optimal speed such that ri < r < ro , then from Eqs. (B.7) and (B.8) it is written

that λ2 = λ3 = 0. If this condition is put into Eq. (B.9b), it follows that λ1 = 2πr
kgυ .

However, Eq. (B.10b) requires that λ1 = πr
kgυ . This is a contradiction. Thus, the condition ri < r < ro

does not hold. That is to say, the car will traverse the track either along the inner circle or the outer circle.

Assume r = ro . Thus, in Eq. (B.7) λ2 = 0 and in Eq. (B.8) it follows that λ3 > 0. From Eq. (B.10b) it results

that λ1 = πro
kgυ . If this is put into Eq. (B.9b), then −2π

υ + πro
kgυ

kg
ro

− λ3 = 0 ⇒ λ3 = −π
υ . This is a contradiction

because λ3 > 0.

Now assume r = ri . Thus, in Eq. (B.7) λ2 > 0 and in Eq. (B.8) λ3 = 0. Finally, Eq. (B.9b) results in

λ2 = π
υ > 0. This result implies that the car will always traverse the circular track through the inner circle.
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