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Abstract: In this paper, robust PI controllers are designed to control the speed of induction motors based on a vector

control strategy. The design methodology defines the robust stability and robust performance regions in the kp − ki

(PI controller coefficients) plane using the Kharitonov theorem. In the control system design procedure, a nonlinear

induction motor is modeled as an uncertain linear model. The procedure of modeling the uncertainties is presented.

The required scientific foundations for designing a robust PI controller are also introduced in the general case while the

necessary equations are derived. In the final step, the design procedure for a special motor is presented thoroughly. The

simulation results indicate the efficiency of the method.
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1. Introduction

Induction motors are among the most commonly used motors in industry due to their appropriate size, lower

level of repair and maintenance, high efficiency, low cost, and high level of reliability [1]. The speed and torque

control algorithms of these motors are very complicated because of the strong coupling that exists between

the torque and the flux. Therefore, from the control science point of view, the analysis of these motors leads

to a nonlinear multivariable and time-variant control problem. These properties make the controller design

procedure difficult [2].

In the past years, various methods of controlling the motor speed have been investigated [3–15]. One of

the widely used methods in this regard is the theory of vector control, which controls the torque and flux in

separate channels [8]. The advances in semiconductor devices of power electronics and microprocessors have

made a major contribution to this method [8]. This method, which is also known as field-oriented control

(FOC), decomposes the stator current into flux and torque components, just like DC motor control methods.

In this way, accurate control of the induction motor by the components in the field flux direction and the

component perpendicular to it becomes possible. Depending on how the rotor flux angle is determined, vector

control methods can be categorized as direct field-oriented control (DFOC) and indirect field-oriented control

(IFOC). When it comes to application, the indirect method is generally used, because it uses fewer sensors and

offers a higher level of reliability. In this control method, a dynamic model of the motor in the d− q domain is

utilized to convert the nonlinear coefficients of the differential equations into constant ones and also to enhance

the control process efficiency [1]. The block diagram of the IFOC method is shown in Figure 1. This method,

in its classic form, needs 3 PI controllers (2 for current control and 1 for speed control).
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Figure 1. Block diagram of the IFOC method.

As shown in Figure 1, current is usually controlled in an inner loop, upon which the drive efficiency is

highly dependent. Therefore, it is necessary to have a fast and accurate current controller to achieve appropriate

dynamic and static performance [9]. In different papers various methods for designing an FOC current controller

were reported; these methods include fuzzy sliding mode [10,12], deadbeat current controllers [11], artificial

neural network controllers [15], multiobjective genetic fuzzy algorithms [13], and nonlinear controllers [14].

In [9], a sliding-mode current control scheme was presented for induction motor drives. This scheme used 2

sliding-mode controllers to regulate the d-axis and q-axis stator currents, respectively. This method exhibited

several advantages, such as fast dynamic response, perfect decoupling, and robustness to parameter variations.

In [10] and [12], a fuzzy sliding mode controller for IFOC was presented. It combined a sliding mode controller

and a fuzzy controller to reduce the problems of conventional sliding mode control strategy. In [11], a current

control scheme based on deadbeat control loops was presented. This method obtained good static and dynamic

performances in both the simulation and experimental verifications. In [13], a multiobjective optimization

method based on the genetic-fuzzy algorithm (GFA) was proposed. The GFA was employed to optimize the PI

controller gains in the IFOC of an induction motor drive. The PI controller gains were designed to optimize the

motor step response. In [14], the authors, by designing a nonlinear controller and a high gain speed estimator,

presented a new speed-sensorless output feedback control for the full-order model of induction motors with

unknown constant load torque on the basis of stator current measurements only. The main drawback of all

these methods is their complications, which make them difficult to implement.

As introduced previously, induction motors are nonlinear and time-variant. Therefore, the aim of a

few studies has been to design a robust control system that guarantees the closed-loop stability and desired

performance in a robust manner. The topic of PI controller design has always been a subject of interest for

control engineers; due to their relatively robust performance, simplicity of controller, applicability, and being

conceivable for operators, PI controllers are widely used in various industries [16]. In recent years, important

results in the field of robust control for uncertain linear systems based on the Kharitonov theorem have been

presented [17].

Determining gains of PI controllers for induction motors is generally carried out using trial and error [10]

or evolutionary algorithms, like the genetic algorithm, particle swarm optimization, or honey bee algorithms.

The main shortcoming of these methods is that the boundaries of the search space are not known and this

changes the optimal control problem to a suboptimal one.
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In this paper, the design procedure of robust PI controllers that can guarantee the stability and per-

formance of the motor under control is investigated. In the PI controller design methodology, we employ the

Kharitonov theorem and its stability conditions. We also derive appropriate equations to determine the stabi-

lizer PI parameters in the kp − ki plane based on frequency response analysis. This method also conveniently

calculates a space of PI controller parameters that results in appropriate performance of the closed-loop system.

After this brief introduction, the paper aims to provide information organized in the following sections.

Section 2 presents the principle of the induction motor and IFOC. Section 3 covers the valuable equations

for closed-loop stability of minimum phase transfer functions. In Section 4, stability regions that satisfy the

desirable performance of the closed-loop system are introduced. In Section 5, the design procedure of the PI

controller for uncertain systems is presented. Section 6 shows the design of PI controllers for the specified

induction motor based on the Kharitonov theorem. Simulation results and conclusions are presented in Sections

7 and 8, respectively.

2. Induction motor and field-oriented control

FOC is a control technique that made AC drives equivalent to DC drives and it has become the industrial

standard for high-performance motor applications due to its superior dynamic performance. Figure 1 shows the

block diagram of the vector control method of an induction machine, where the torque and speed are controlled

by 2 perpendicular components, field and armature currents, respectively.

The dynamic equations of an induction motor in the domain of the d − q axis and in the synchronous

reference frame are as given in Eqs. (1)–(5). These equations are for a squirrel cage induction motor with stator

star connection considering linear magnetic circuit [8,18]. Table 1 lists all available variables of the induction

motor.

Table 1. Variables of induction motor and their definitions.

iqs , ids q− and d−axis stator currents Ls Inductance in stator phase
Vqs , Vds q− and d−axis stator voltages Lr Inductance in rotor phase referenced

to stator direction
λqr , λdr q− and d−axis rotor fluxes ωr Rotational speed of the rotor

Rs Resistance in stator phase Tr = Lr/Rr
Time constant of the rotor

Rr Resistance in rotor phase referenced
to stator direction

σ = 1−
(
L2
m
/
LsLr

)
Leakage coefficient

Lm Magnetizing inductance in phase np Number of pole pairs
J Overall rotational inertia B Overall friction coefficient
Tl External load torque of the motor ωe Speed of rotating synchronous frame

i̇ds = −
(

Rs

σLs
+

1− σ

σTr

)
iqs − ωeids +

Lm

σLsLrTr
λqr −

Lmωr

σLsLr
λdr +

1

σLs
Vqs (1)

i̇ds = −
(

Rs

σLs
+

1− σ

σTr

)
ids + ωeiqs +

Lmωr

σLsLr
λqr +

Lm

σLsLrTr
λdr +

1

σLs
Vds (2)

λ̇qr =
Lm

Tr
iqs −

1

Tr
λqr − (ωe − ωr)λdr (3)

λ̇qr =
Lm

Tr
ids + (ωe − ωr)λqr −

1

Tr
λdr (4)
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Te =
3

2
np

Lm

Lr
(λdriqs − λqrids) = Jω̇r +Bωr + Tl (5)

To apply the IFOC method, the corresponding equations should be derived by putting (or fixing) the d-axis

of the synchronous reference frame on the d-axis rotor flux vector (λdr) coaxially and setting the q -axis flux

vector of the rotor (λqr) equal to zero. Consequently, the resulting components of the d-axis and q -axis of

rotor flux are:

λqr = 0
λdr = λr

. (6)

By applying the conditions in Eq. (6) to motor dynamic equations, the equations of the IFOC method are

achieved as in Eqs. (7)–(9). From Eq. (3), the rotation slip speed can be found:

ωsl =
LmRr

Lrλr
iqs, (7)

and from Eq. (4) we have:

λr =
Lm

(1 + pTr)
ids, (8)

In Eq. (8), p is the differentiation operator. Since λr is kept constant during its operation (pλr = 0), Eq. (8)

can be rewritten as Eq. (9) [19]. In other words, the d-axis current of the stator can be used as the reference

input instead of flux.

i∗ds =
λ∗
r

Lm
(9)

3. Closed-loop stability conditions of minimum phase plants using PI controllers

In this section, we derive appropriate equations to specify the regions of the kp − ki plane that can provide

closed-loop stability under PI controller action. Consider a SISO minimum-phase plant with transfer function,

G (s), and corresponding PI controller C (s). The goal of the design procedure is to find all kp and ki that

can result in closed-loop system stability.

C (s) =
kps+ ki

s
(10)

According to the Nyquist stability criterion, one of the conditions of marginal stability is that the magnitude

of open-loop transfer function must be equal to 1:

|G (jω)C (jω)| = 1. (11)

Using Eqs. (10) and (11), we have:

|C (jω)| = 1

|G (jω)|
→

∣∣∣∣jωkp + ki
jω

∣∣∣∣ = ∣∣∣∣ 1

G (jω)

∣∣∣∣ → |jωkp + ki| =
ω

|G (jω)|
. (12)

Another condition for the closed-loop system to be marginally stable is that the open-loop system phase angle

must be equal to (2k + 1)π , ∀k ∈ Z .

∠G (jω) + ∠C (jω) = (2k + 1)π (13)
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Therefore, by using the PI controller phase characteristics, we have:

∠G (jω) + tan−1

(
ωkp
ki

)
− π

2
= (2k + 1)π → tan−1

(
ωkp
ki

)
= 2kπ +

3π

2
− ∠G (jω) →

ωkp
ki

= tan

(
2kπ +

3π

2
− ∠G (jω)

)
. (14)

By using Eqs. (12) and (14), equations that can specify the marginal stability regions in terms of kp and ki

can be expressed as: 
kp

ki
=

tan(2kπ+ 3π
2 −∠G(jω))
ω

ω2k2p+k2i=
ω2

|G(jω)|2

. (15)

By simplifying Eq. (15), the governing conditions for marginal stability of the closed-loop control system are:



ki =
ω

|G (jω)|
1√

1 + tan2
(
2kπ + 3π

2 − ∠G (jω)
) =

ω cos (∠G (jω))

|G (jω)|
(16a)

kp =
tan

(
2kπ + 3π

2 − ∠G (jω)
)

|G (jω)|
√
1 + tan2

(
2kπ + 3π

2 − ∠G (jω)
) =

sin (∠G (jω))

|G (jω)|
. (16b)

Eq. (16a) suggests that the line ki = 0 is a solution of this equation for zero frequency. Besides this one, other

solutions may be found for Eq. (16) that can determine the boundaries for stable and unstable regions of the

closed-loop system in the kp − ki plane. In order to determine the stable region, a test point may be utilized.

A major characteristic of Eq. (16) is that, unlike other ones proposed in [17], the PI controller design is just

dependent on magnitude and phase of the open-loop plant that can easily be available.

4. Robust stability and robust performance conditions

In control system design, in addition to satisfying the stability conditions, it is very important to achieve a

desirable performance [15]. Desirable performance means having a time response in line with the designer’s

desired characteristics. In the frequency domain, desirable performance requires a reasonable gain margin,

appropriate phase margin and bandwidth that are related to the upper bound of the sensitivity function,

restriction of maximum overshoot in the time-domain response, and achievement of suitable settling time [20].

The objective of this section is to find regions in kp − ki that satisfy the desirable performance of the

closed-loop system. To achieve an appropriate gain margin and phase margin, the following equation can be

derived. If the system has a gain margin of A and a phase margin of φ , Eqs. (11) and (13) should be rewritten
as: 

A |C (jω)G (jω)| = 1 → ω2k2p + k2i = ω2

A2|G(jω)|2

∠G (jω)C (jω)− π = φ → kp

ki
=

tan(2kπ+ 3π
2 −∠G(jω)+φ)
ω .

(17)

By simplifying Eq. (17), the boundary of a region in the kp − ki plane in which the gain margin and phase
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margin of the system are in agreement with the designer’s desired values can be found using Eq. (18).

 ki =
ω cos(ϕ−∠G(jω))

A|G(jω)|

kp = sin(ϕ−∠G(jω))
A|G(jω)|

(18)

These equations provide conditions related to suitable gain margin and phase margin simultaneously, while in

[17], the aforementioned conditions have to be obtained separately each time.

As discussed earlier, the response speed or, in other words, the bandwidth of the closed-loop system is

very important in the analysis and design of control systems. In [17], this was considered by moving all the

closed-loop poles to the desired region in the s-plant. Here, however, we recommend bandwidth analysis. It is

obvious that by increasing the system bandwidth, the settling time of the controlled system will decrease. We

try to find a region in which all the values of kpand ki cause the system speed to remain at a desirable level.

To obtain this goal, the designer’s desired bandwidth (ωBw) is selected based on the settling time of desired

time response, for which we have:

∣∣∣∣ G (jωBw)C (jωBw)

1 +G (jωBw)C (jωBw)

∣∣∣∣ = √
2

2

∣∣∣∣ G (j0)C (j0)

1 +G (j0)C (j0)

∣∣∣∣ . (19)

As in this paper the PI controller has been used, Eq. (19) can be rewritten as:∣∣∣∣ G (jωBw) (jωBwkp + ki)

jωBw +G (jωBw) (jωBwkp + ki)

∣∣∣∣ = 1√
2
. (20)

This equation can also be expressed as:

√
2 |G (jωBw)| |jωBwkp + ki| = |jωBw +G (jωBw) (jωBwkp + ki)| .

Using the triangle inequality, we have

√
2 |G (jωBw)| |jωBwkp + ki| ≤ |jωBw|+ |G (jωBw)| |(jωBwkp + ki)| →

|jωBwkp + ki| ≤ |jωBw|
(
√
2−1)|G(jωBw)|

, (21)

where in the marginal state we have

ω2
Bwk

2
p + k2i =

ω2
Bw(√

2− 1
)
|G (jωBw)|2

. (22)

Using Eq. (21), the regions of the kp − ki plane in which the desired bandwidth is at an appropriate level can

be obtained and Eq. (22) presents the boundary condition of the desired bandwidth region.

5. PI controller design for uncertain plants

Since most of the present systems in the real world are nonlinear [21], and modeling them as linear systems

lacks accuracy, an uncertain linear modeling technique is used to model them. Uncertain linear modeling is
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a useful approach in describing unmodeled dynamics, the alterations of the operating points, and changes in

parameters due to the environmental conditions.

In these 2 recent decades, significant results regarding the stability analysis of uncertain systems have

been presented [22–25]. In most control systems, the controller remains almost unchanged during the plant

operation, while systems parameters undergo changes in a wide range. Thus, robustness of the controller

against plant parameter changes is very important [21]. One of the theorems that are used in robust stability

analysis is the Kharitonov theorem, which is discussed in the following text [17,21].

The Kharitonov theorem investigates the stability of uncertain linear systems by investigating the stability

of 4 special polynomials, known as Kharitonov polynomials. If the characteristic equation of uncertain system

is like Eq. (23), where its coefficients can vary in a specified range, the overall system is stable if and only if

the 4 Kharitonov polynomials of Eq. (24) are Hurwitz.

P (s) =
n∑

i=0

dis
i , d−i ≤ di ≤ d+i (23)

P1(s) = d−0 + d−1 s+ d+2 s
2 + d+3 s

3 + d−4 s
4 + · · ·

P2(s) = d−0 + d+1 s+ d+2 s
2 + d−3 s

3 + d−4 s
4 + · · · (24)

P3(s) = d+0 + d−1 s+ d−2 s
2 + d+3 s

3 + d+4 s
4 + · · ·

P4(s) = d+0 + d+1 s+ d−2 s
2 + d−3 s

3 + d+4 s
4 + · · ·

In this section, the method of calculating specific regions of the kp − ki plane that guarantee the stability and

desirable performance of uncertain systems is presented and investigated. Consider a system with the following

uncertain transfer function:

G =
N(s)

D(s)
=

a0 + a1s+ a2s
2 + · · ·+ amsm

b0 + b1s+ b2s2 + · · ·+ bnsn
, (25)

where n ≥ m, am ̸= 0 , bn ̸= 0 , ai ∈
[
a−i , a

+
i

]
, bi ∈

[
b−i , b

+
i

]
[17]. The controller parameters kp, ki have

to be designed so that it is possible to satisfy the desirable performance of the closed-loop system in addition

to stability. This design is carried out based on the Kharitonov theorem. First, the Kharitonov polynomials

related to the numerator and denominator of the transfer function are taken as follows.

N1(s) = a−0 + a−1 s+ a+2 s
2 + a+3 s

3 + · · · D1(s) = b−0 + b−1 s+ b+2 s
2 + b+3 s

3 + · · ·
N2(s) = a−0 + a+1 s+ a+2 s

2 + a−3 s
3 + · · · D2(s) = b−0 + b+1 s+ b+2 s

2 + b−3 s
3 + · · ·

N3(s) = a+0 + a−1 s+ a−2 s
2 + a+3 s

3 + · · · D3(s) = b+0 + b−1 s+ b−2 s
2 + b+3 s

3 + · · ·
N4(s) = a+0 + a+1 s+ a−2 s

2 + a−3 s
3 + · · · D4(s) = b+0 + b+1 s+ b−2 s

2 + b−3 s
3 + · · ·

All the possible combinations of numerators and denominators will give 16 open-loop transfer functions

(M t, t = 1, 2, . . . , 16)as shown below, which are called Kharitonov transfer functions.

Gk(s) = Gij(s) =
Ni(s)

Dj(s)
, i, j = 1, 2, 3, 4 (26)

Mt (s) = C (s)Gij (s) , t = 1, 2, · · · , 16 (27)
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It can be proved that if a controller is capable of satisfying the stability of the 16 Kharitonov transfer functions

and maintaining their performance at a suitable level, it can guarantee the stability and desirable performance

of the uncertain system [17]. Consequently, these 16 transfer functions may be used to design an appropriate

controller for the whole uncertain system with robust stability and performance. Using Eq. (16), the kp − ki

regions related to uncertain closed-loop system stability can be found from the overlapping stability regions

resulting from Eq. (28).  ki =
ω sin(∠Gij(jω))

|Gij(jω)|

kp =
cos(∠Gij(jω))

|Gij(jω)|

i, j = 1, 2, 3, 4 (28)

Using Eq. (18), Eq. (29) can be utilized to find the regions that guarantee the robust performance of the

closed-loop system corresponding to the 16 transfer functions in the kp − ki plane. ki =
ω sin(∠Gij(jω)+φ)

A|Gij(jω)|

kp =
cos(∠Gij(jω)+φ)

A|Gij |

i, j = 1, 2, 3, 4 (29)

Finally, from Eq. (21), the region related to the desirable robust bandwidth can be found.

|jωBwkp + ki| ≤
|jωBw|(√

2− 1
)
|Gij (jωBw)|2

i, j = 1, 2, 3, 4 (30)

The overlapping region obtained by Eq. (30) is related to guaranteeing the closed-loop system response speed.

6. Designing the robust PI controllers for the IFOC method

In the IFOC method, 3 PI controllers exist. Two of them are used to generate q -axis voltage and one of them is

used to generate d-axis voltage. The design of these PI controllers is done in a special order. First, the PI1 and

PI3 controllers of Figure 1 are designed, and then the same procedure is done for the PI2 controller. To design

the PI controllers, the transfer function relating the input and output for each case has to be determined.

The induction motor, in addition to being nonlinear, includes variations in parameters during the motor

operation. The variations in motor parameters take place due to heating and influence the resistance of the

rotor and stator in such a way that the rotor resistance can vary up to 100% and the stator up to 50% [26].

Due to the highly nonlinear dynamics of the induction motor [2] (Eqs. (1)–(5)), the linearization process and

uncertainty modeling are carried out using multiple-model modeling approaches [27].

For this purpose, the time response of the induction motor, from the starting time until reaching the

steady state, has been divided into several parts, and for each part an equivalent linear model has been calculated

and presented. This modeling in the simulation contributes to 13 linear transfer functions. The first transfer

function models a portion of model startup, and by transferring the initial conditions to the second model, the

response is modeled by a new linear model. This process goes on to reach its steady state. By comparing the

13 transfer functions, an uncertain linear model is obtained. As understood from induction motor Eqs. (1)

through (5), it is clear that this motor is a system of order 5 and, therefore, it can be modeled by a linear

transfer function with order 5 as in Eq. (31).

Induction motor transfer function ≡ output

input
=

a0 + a1s+ a2s
2 + a3s

3 + a4s
4

b0 + b1s+ b2s2 + b3s3 + b4s4 + b5s5
(31)
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The uncertainty ranges of parameters can be stated as follows:

ai ∈
[
a−i , a

+
i

]
, i = 0, 1, ..., 4,

bj ∈
[
b−j , b

+
j

]
, j = 0, 1, ..., 5.

7. Simulation results

In this section, the proposed robust PI controller design procedure is applied to a typical induction motor and

the results are presented, accordingly. The motor under study is a 2300 V motor and its parameters are listed

in Table 2 [1].

7.1. Designing the first PI controller (PI1 )

Figure 2 presents and compares time responses of the induction motor based on the nonlinear model and linear

multiple models. The results are similar to each other. However, to show the modeling accuracy, time responses

at 3 points, m1, m2, and m3, have been magnified.
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Figure 2. Time responses of nonlinear and linearized model for an induction motor. Solid line (blue) is the time

response of linearized model and dashed line (Red) is the time response of nonlinear model.

Therefore, the transfer function of q -axis current can be presented as follows:

g =
iqs
iqs

=
375660s4 + 27133000s3 + a2s

2 + a1s+ a0
s5 + 141.9s4 + b3s3 + b2s2 + b1s+ b0

(32)
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Table 2. Parameters of a 3-phase induction motor in d− q domain.

Parameter Value Parameter Value
Rs(Ω) 0.262 J(kg.m2) 11.06
Rr(Ω) 0.187 Lm(H) 0.143
Ls(H) 0.0032 f(Hz) 60
Lr(H) 0.0032 nP 4

In this equation, uncertain parameters are varied in the following intervals.

a2 ∈ [20911000000, 20966000000] b3 ∈ [203110, 204990]
a1 ∈ [330660000000, 1499900000000] b2 ∈ [12366000, 12500000]
a0 ∈ [373220000000, 1845500000000] b1 ∈ [8035500000, 8316600000]

b0 ∈ [233990000000, 242110000000]

(33)

Therefore, in a similar way, 16 open-loop Kharitonov transfer functions (gij , i, j = 1, 2, 3, 4) can be obtained

using Eqs. (26), (32), and (33). To show the presence of uncertainty in the model of the induction motor and

its effect, bode diagrams of some transfer functions (gij) are shown in Figure 3.

The stability region of the first controller (PI1) has been obtained using Eq. (28). The shaded region in

Figure 4 shows a region of kp−ki in which the corresponding PI1 controller can stabilize all gij , i, j = 1, 2, 3, 4.
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Figure 3. Bode diagram of the Kharitonov transfer func-

tions for assumed induction motor.

Figure 4. Closed-loop robust stability region (hatched

area) inkp − ki (coefficients of PI1 controller) plane.

In order to achieve robust performance, desirable features should be presented and the corresponding

regions need to be extracted, accordingly. The design assumptions are as follows:

1. The upper limit sensitivity function must be lower than 0.4. In other words, it is necessary that∥∥∥(1 +Gij(jω)C(jω))
−1

∥∥∥ < 0.4. This condition guarantees the low sensitivity of the closed-loop transfer

function against the open-loop transfer function variations. Thus, the appropriate gain margin will be

above 0.7 and so we consider A =
√
2
2 in the simulation.

2. Desirable maximum percent overshoot has been considered as less than 10% in this paper. Therefore, the
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damping ratio needs to be greater than 0.6, and consequently the minimum desirable phase margin will

be φ = π
3
(rad).

3. The induction motor with the parameters listed in Table 2 will achieve its nominal speed within 1.5 s in

free acceleration. We therefore consider the desirable settling time as less than or equal to 1.5 s under

control. Thus, the desirable bandwidth will be greater than 4 rad/s.

Figure 5 shows the shaded region in the kp − ki plane that satisfies the gain margin and phase margin

constraints.

The desirable speed region can be defined by using Eq. (30). Notice that this region should be in the

stable region of the PI1 controller. Figure 6 shows a shaded region that satisfies the bandwidth constraint.
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Figure 5. Closed-loop robust stability and robust perfor-

mance region (hatched area) in kp−ki (coefficients of PI1

controller) for specified gain and phase margin.

Figure 6. Closed-loop robust bandwidth region (hatched

area) in kp − ki (coefficients of PI1 controller) plane.

Now parameters kp and ki of the robust PI controller should be chosen in the common shaded regions

of Figures 4, 5, and 6. Therefore, we recommend PI1 as in Eq. (34).

PI1 =
30s+ 50

s
(34)

The step response of the nonlinear system to the designed controller is shown in Figure 7. It can be said that

the design goals have been achieved by the PI1 controller completely.

7.2. Designing the third PI controller (PI3 )

Since the state-space equation matrix of the symmetrical 3-phase induction motor is symmetric, transfer

functions
Iqs
Vqs

, IdsVds
will be similar. As a result, the transfer function of this controller is the same as in Eq.

(34) and the result will be similar to the responses shown in Figures 3–7.

7.3. Designing the second PI controller (PI2 )

Design of the second controller has been performed with a similar process. Interior loops of the PI1 and PI3

controllers are closed and the transfer function of ωm

Iqs
will be obtained, accordingly. The design process for this
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controller is similar to the design of the PI1 and PI3 controllers. The corresponding desired regions have been

shown in Figures 8–10.
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Figure 7. Time response of d -axis stator current in the

presence of PI1 controller.

Figure 8. Closed-loop robust stability region (hatched

area) in kp − ki (coefficients of PI2 controller) plane.
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Figure 10. Closed-loop robust bandwidth region

(hatched area) in kp − ki (coefficient of PI2 controller)

plane.

The desirable rotor speed for this induction motor is assumed as 100 rad/s. According to Figures 8–10,

we choose the coefficients of PI2 as (35):

PI2 =
50s+ 250

s
. (35)

Time responses of the controlled induction motor are shown in Figure 11. As can be seen in Figure 11, all

design aims have been achieved using controllers PI1 , PI2 , and PI3 .

To evaluate the robustness of the IFOC method, the rotor and stator resistances have been changed up

to 100% and 50%, respectively, and corresponding step responses are shown in Figure 12. It can be seen that

the motor under control has a desirable performance.
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Figure 11. Speed of the rotor in assumed induction motor

under robust control.

Figure 12. Speed of the rotor for the rotor and stator

resistances variation up to 100% and 50%, respectively.

8. Conclusions

In this paper, we have introduced a robust PI controller design procedure for induction motors that guarantees

robust stability and performance of the nonlinear induction motor. First we derived useful equations in order

to demonstrate the stability and performance conditions of the system including the PI controller, by assuming

that the whole derived models of the induction motor are minimum-phase. We then obtained specific regions

of the kp − ki plane to achieve the aforementioned goals. Using all these conditions, the relations between

frequency-domain characteristics and the performance of the designed controllers were validated by simulations

using MATLAB software. Other than ensuring the robust stability and performance of the closed-loop system,

the proposed method provides a systematic approach to design PI controllers for an induction motor and could

be used to easily compute the stability region. The design procedure method can also specify regions as search

spaces for intelligent optimization methods to optimize the coefficients of the PI controllers. It is recommended

that further research be undertaken to implement this control methodology and analyze its performance.
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