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Abstract: We introduce a fast bitwise exact pattern-matching algorithm, which speeds up short-length pattern searches

on large-sized DNA databases. Our contributions are two-fold. First, we introduce a novel exact matching algorithm

designed specifically for modern processor architectures. Second, we conduct a detailed comparative performance analysis

of bitwise exact matching algorithms by utilizing hardware counters. Our algorithmic technique is based on condensed

bitwise operators and multifunction variables, which minimize register spills and instruction counts during searches. In

addition, the technique aims to efficiently utilize CPU branch predictors and to ensure smooth instruction flow through the

processor pipeline. Analyzing letter occurrence probability estimations for DNA databases, we develop a skip mechanism

to reduce memory accesses. For comparison, we exploit the complete Mus musculus sequence, a commonly used DNA

sequence that is larger than 2 GB. Compared to five state-of-the-art pattern-matching algorithms, experimental results

show that our technique outperforms the best algorithm even for the worst-case DNA pattern for our technique.
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1. Introduction

Recent developments in biology led to an explosion in the data stored in sequence databases. As a consequence,

extractions of relevant patterns from databases have become an important research topic. Some of the recent

examples of relevant research could be found in [1,2].

The scope of pattern-matching is wide. On one hand, approximate pattern-matching or multiple pattern-

matching studies consider complex but crucial problems that require high-performance processors. On other

hand, recent exact pattern-matching algorithms aim to enhance the search speed and minimize hardware usage

and power consumption.

In terms of approximate pattern searching, recently [3] presented a parallel suffix tree construction

algorithm with wildcards. The algorithm divided the text into multiple segments. Afterwards, the segments

were indexed by suffix trees in parallel and searched. In general, suffix trees typically have two drawbacks.

These are poor memory locality and large memory footprint.

In terms of multiple-string matching, one recent example was presented in [4], which implemented a Bloom

filter to search thousands of patterns simultaneously in a text. The technique computes hash functions utilizing

Bloom filters for each pattern and text frame and stores them inside a large bit vector. However, Bloom filters

may cause false positives. Therefore, all positive results should be checked before drawing the final conclusion.

Inevitably, multiple-string matching is computationally demanding while having a large memory footprint.

∗Correspondence: giyasettin.ozcan@dpu.edu.tr
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It is a fact that approximate-string matching or multiple-string search techniques are critical during

genome analysis although they are computationally hard problems. Therefore, novel faster and reliable tech-

niques are required.

Another branch of studies considered exact pattern-matching; this is also our focus in this paper. The

exact matching problem is to find all occurrences of a pattern of interest inside a given text. The alphabet of

the text may vary. However, some of the most common alphabets are DNA bases and amino acids. In this

study, we consider texts that contain DNA sequences. We denote the text, T , as

T = t1, t1, . . . , tn, (1)

and the pattern, P, is represented as

P = p1, p1, . . . , pm. (2)

The literature denotes various exact pattern-matching algorithms. Two of the recent ones were presented in

[5,6]. Both algorithms are composed of preprocess and search phases and determine efficient skip distances when

a mismatch occurs. During the preprocess, the pattern is analyzed and, correspondingly, a shift distance table

is generated. In order to determine an efficient skip distance, [5] presented an algorithm that determines the

comparison order of pattern and text frame indices. The algorithm gives priority to the leftmost and rightmost

pattern indices for comparison. The third and the rest of the priorities are held by the leftmost not-compared

letters. Nevertheless, the algorithm requires three nested loops during implementation, which could increase

the branch misprediction rate. In addition, the algorithm does not present a bitwise algorithm solution where

bitwise operators could be executed very fast on modern processors. On the other hand, [6] combined two early

pattern-matching algorithms and designed a switch mechanism between them. However, the results denoted

that the algorithm does not outperform for DNA patterns where alphabet size is only four. In contrast, the

algorithm yields better results for amino acid sequences where the alphabet size is 20.

Since biological data volumes are very large, pattern searches on DNA sequences require efficient com-

putation. If a string-matching algorithm is not optimized for modern processor architectures, its associated

memory operations and data comparisons can cause inefficiency.

An architecture-friendly text search technique is the class of bitwise text search algorithms. These

algorithms exploit intrinsic parallelism of bitwise operators. Typically, pattern and text are represented in

bitwise form while comparisons are implemented through efficient bitwise operation instructions of contemporary
processors.

In general, bitwise matching handles generally short-length patterns due to limitations of computer word

size. However, short length pattern searches can also be very useful for long patterns, since they reduce the

search space considerably.

We group the bitwise matching algorithms into five distinct base classes of algorithms: exploiting intrinsic

parallelism of bitwise operators, emulation of automata on bit strings, sliding alignment matrix over text, bitwise

bad character heuristics, and bitwise hash. The seminal implementations of these bases are, respectively, Shift

OR [7], BNDM [8], BLIM [9], Horspool [10], and Hash [11]. We now briefly discuss each algorithm base.

The Shift OR algorithm makes use of the intrinsic parallelism capabilities of bitwise operators. In each

step, the algorithm reads a character from the text and consequently leaves its trace inside the bits of an integer.

As a result, bit organization of the integer indicates whether a match occurred or not.

Following studies indicated that lack of a skip mechanism is the main deficiency of Shift OR. Concretely,

the original algorithm does not predict unfruitful pattern indices. This may cause significantly larger numbers of
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memory accesses and therefore the run time of the algorithm could slow down drastically for large sequence sets.

In terms of bitwise algorithms, BNDM presents one of the most compact algorithms that features coherence

among match and skip procedures. During the match phase, a mask counter ensures a maximum reliable skip

distance when a mismatch occurs. However, the code structure of BNDM is more complex than that of Shift

OR, since handling the skip mechanism puts in extra conditions. The characteristic of complex multilevel nested

loops in BNDM could lead it to perform suboptimally in modern processor architectures: it could suffer from

increased branch mispredictions due to complex control flow as well as cache misses due to reduced locality.

A recent algorithm looks at the problem from a different perspective. BLIM targets the pattern length

limitations of the bitwise algorithm. During preprocessing, BLIM computes a mask matrix, which helps to

determine match indices. In order to incorporate a skip mechanism, BLIM exploits the Sunday algorithm [12].

Variations of Shift OR [13–15], BNDM [13,14], and BLIM [16,17] exist in the literature. However, each

modification of base algorithms not only causes improvement, but also causes extra complexities. Finding a

balanced trade-off is generally difficult.

Since the DNA alphabet consists of four letters, each DNA letter can be represented by two bits. The

technique is defined as two-bit enumeration [18]. Two-bit enumeration of DNA enables us to implement

additional bitwise string-matching algorithms, which are derivates of general string-matching. For instance,

hash-based techniques and bad character heuristics can be implemented when two-bit DNA enumeration is

used.

A hash mechanism is able to map bitwise enumerated patterns and text fragments into fixed bit strings.

By two-bit enumeration, each pattern and text letter is replaced by two-bit equivalents. In this respect, pattern

and candidate text indices can be compared by bitwise operators that are directly supported by the processor.

The simple form of a bitwise hash technique does not have a skip mechanism. While the Karp–Rabin

algorithm embeds a skip mechanism on hash, it is still inferior to other faster pattern search algorithms.

An early study presented bad character heuristics as a general solution to exact match problems [19].

During bad character heuristics, if a mismatch occurs, the pattern will be shifted to the right until the rightmost

character is aligned to a match case. Although the original application is not bitwise, it can be implemented

for two-bit enumeration of DNA.

Our literature analysis shows that the researchers who work on string-matching generally develop their

algorithms without considering processor architecture, or they consider architecture to a limited degree as

described above. What is necessary is to design a string-matching algorithm from the ground up with an eye

towards its efficient execution on modern processors. In this paper, we develop such an algorithm that we call

the bitwise algorithm with packed variables and blind reads (BAPVBR). We introduce BAPVBR in Section 2

and describe how it is designed to leverage modern processor hardware for exact DNA sequence string-matching

by minimizing complex control flow (in order to decrease branch mispredictions), by decreasing register spills

(in order to decrease costly main memory accesses), and by an intelligent skip mechanism (in order to optimize

cache accesses).

2. Methods

In this section, we present our fast bitwise exact matching algorithm, which we call BAPVBR. The BAPVBR

is a fast string-matching algorithm for short-length DNA sequences.

The basic philosophy of the BAPVBR is assigning multiple tasks to conditional statements and variables

in order to efficiently utilize modern CPU branch predictors and memory structures, and in particular cache

units. To achieve this, we pack multiple conditions inside bitwise variables and exploit back-to-back XOR and
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OR operators to handle fast string searches. Moreover, we use a heuristic skip mechanism to guarantee a simple

and plain search loop during pattern searches.

The algorithm belongs loosely to the bitwise hash family and implements packed variables. It splits

the packed variables into two segments. While the first segment of the packed variable counts back-to-back

character matches, the second segment of the variable handles the comparison of the most recent text character

and pattern. Sections 2.1 and 2.2 explain the structure of the packed variables, Section 2.3 details how the

BAPVBR operates on such packed variables, and Section 2.4 describes the BAPVBR bitwise operators. Section

2.5 explains our skip mechanism and finally Section 2.6 explains the pseudocode of the complete BAPVBR

algorithm.

2.1. The packed variable data structure

The basic data structure in the algorithm utilizes a 32-bit word integer. The bit structure of the word, W ,

is denoted in Figure 1, where the words are fragmented into two segments. By packing multiple uses in the

32-bit variable through segments, we aim to decrease register spills to the memory and thus decrease memory

accesses. In the structure, the leftmost bit is unused, reserved for keeping the sign of a 32-bit integer.

U 27-comparison bits Unbroken 
Match counter 

0              0 0 0 0 

Figure 1. Bit structure of BAPVBR words, W .

In the first segment in Figure 1, the rightmost four bits are reserved for counter bits. The counter keeps

cumulative unbroken matches between the text and pattern. As a result, four bits can handle a maximum of

15 unbroken matches.

As shown in Figure 1, the remaining 27 comparison bits are reserved for pattern matching. Given that

enumeration of each DNA character takes 2 bits inside a 32-bit word, we can align a maximum of 13 length

patterns inside 27 comparison bits and that determines the maximum pattern length.

2.2. Bitwise representation of pattern inside the packed variable

We compute the bitwise equivalent of the pattern in the 32-bit integer form as shown in Figure 1. Here, four

unbroken matching counter bits of the pattern must be 0. On the other hand, DNA characters of the pattern

are transformed into their 2-bit enumerations and aligned into pattern comparison bits.

The alignment procedure starts from the right side of the pattern comparison bits. For instance, Pm−1 is

aligned into [4,5] bit positions of the bit word. In general Pj is aligned into the [2(m+1−j), 2(m+1−j)+1]th

bit indices of the word.

2.3. Utilizing packed variables in BAPVBR

During a pattern search, two conditions have to be handled in each step. These are:

1. Did the last character match?

2. Did the cumulative matches reach the pattern size?

In our technique, a condition controller, cc, handles the two conditions jointly. The cc is a 32-bit integer

and its bit structure is in the same format as in Figure 1. During pattern searches, value cc can denote one of

the following three different cases:
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Case 1 - cc is less than m : All of the pattern comparison bits will be 0. On the other hand, some

unbroken match counter bits can be 1. Case 1 denotes that there exists a chain of unbroken letter matches.
However, all m characters of the pattern have not been tested yet.

Case 2 - cc is equal to m : All of the pattern comparison bits will be 0. On the other hand, unbroken

match counter bits denote pattern length m . Case 2 denotes that a chain of m unbroken characters has been

tested and matched, indicating that an exact match has been found.

Case 3 - cc is larger than m : At least one bit of the comparison bits is not 0. Here we do not need to

consider the bit structure of unbroken match counter bits. Case 3 denotes that a mismatch occurred and that
the value of the unbroken match counter is useless.

2.4. BAPVBR bitwise operators

In order to find a mismatch efficiently, at least one comparison bit of cc should be 1. The bitwise XOR operator

ensures this requirement since its output yields 1 when a mismatch occurs. If the text letter does not match

the pattern at the relevant index, the integer output of the XOR operator will be at least 16 due to pattern

comparison bit alignment at the 32-bit word boundary. In contrast, if the text letter matches, the result of

XOR will always be 0.

We incorporate the match/mismatch information into the cc variable using the OR operator. The OR

operator does not change the unbroken match counter bits of cc, since letter comparisons do not take place at

unbroken match counter bits. We illustrate the use of the operators through an example shown in Figure 2.

Here, a text letter is compared with a pattern. Concretely, the 8th and 9th bits of pattern and text letter words

are compared. The bit index implies that Pm−3 is being compared. The result of XOR operation contains a

nonzero bit, which denotes a mismatch. Finally, the mismatch information should be transferred into packed

variable cc by bitwise OR operator. Recall that the bitwise OR operator between the result and cc is able to

transfer nonzero bits of the result to cc. After the bitwise OR operation, the bit word structure of cc maintains

packed information, including whether a mismatch occurred or not.

 Pattern comparison bits Unbroken 
match counter 

U      a t g c     

      0 0 0 1 1 0 1 1 0 0 0 0 

Pattern 1 - Key 
U . . .    a    

        0 0     0 0 0 0 

Pattern 2 - Target 
U . . .    a    

        0 1     0 0 0 0 

Comparison Result 

Figure 2. Mismatch detection with XOR, where 8th bit of result is nonzero and denotes mismatch. Pattern key is

XORed with pattern target.

2.5. The BAPVBR skip mechanism

In this section we present a reliable skip mechanism, which does not skip over any correct match and is optimized

for short-length patterns. The goals of presenting a condensed algorithm and pattern occurrence probabilities

of DNA are the basic justifications of the skip mechanism introduced here.

During the start of a match phase, the algorithm reads two consequent characters from the text before

comparison. Reading multiple characters might seem to be counterintuitive at first. We next explain why we

read two characters instead of one (or any other number of characters) during the start.
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In terms of probabilistic views of bad character heuristics, there are three cases:

Case 1: If the first compared text letter does not exist in the pattern, general approaches skip m characters

from the text. In contrast, our technique reads an extra text letter and then skips m characters. Therefore, the

one extra memory access could be an overhead. Such a situation is the worst case in our heuristic technique.

Case 2: If the first read text letter is not a match, but the letter is not a bad character, general approaches

present skip distances smaller than m . Our technique is compatible with this situation, since we can determine

larger skip distances with two letters. Hence, for this case there is no overhead.

Case 3: If the first letter is a match, our technique outperforms other skip approaches since it requires

fewer comparisons.

Lemma: The worst scenario for our approach, Case 1, occurs infrequently.

Proof: By contradiction, we assume that a random text letter take place in the pattern. Since the DNA

alphabet has 4 letters, the combinatorial rules [20] denote that such a probability, E(m), for an m -length

pattern is:

E(m) = 1−
(
3

4

)n

. (3)

Eq. (3) denotes that, if m is 8, occurrence probability of a random text letter inside a pattern is nearly 90%.

When m increases, the occurrence probability converges to 100%. Hence, the lemma is true.

In fact, undesired case occurrences are the result of letter diversity depletion, where a pattern does not

contain all alphabet letters. Even further, the worst scenario case occurs when three of the four DNA letters do

not occur inside the pattern. Therefore, blind reads of BAPVBR cause maximum unnecessary memory access

rates.

It is possible to present a blind mechanism that reads more than two letters as a first step. However,

extra blind reading has its own risks, as well. If a mismatch occurs at the first letter, extra blind reads are

useless and may cause cache misses. On the other hand, redundant blind reads will not produce larger skip

distances since the skip distance is limited by the pattern length.

2.6. Pseudocode of BAPVBR

The pseudocode of the full algorithm is presented in Figure 3. The algorithm starts with four input parameters.

These are pattern, text, hash equivalent of the pattern pHash, and skip array SkipTable. The first two parameters

are in text format and take place in the memory. The third parameter, pHash, is the bitwise equivalent of the

pattern where each pattern letter is enumerated by two bits and congruent to W format, as shown in Figure 1.

The fourth parameter is an array that keeps the skip distance to shift unfruitful text frames without comparison.

Since the skip distance is determined by the two DNA letters, consequently the array size is 16.

During a search on a text frame, the rightmost two letters are compared simultaneously. In line 3, we

define a new variable, hashOfTwoPatternLetters, that keeps the rightmost two pattern letters in W format. In

line 4, hashOfTwoPatternLetters is shifted since the rightmost four bits of W are reserved for unbroken match

counter bits. In line 5, the variable is incremented by 2 in anticipation of possible matches of the letters before

the conditional loop starts. Such preprocess steps are aimed at reducing the overall computations before the

search loop starts.

1410
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1. BAPVBRSearch(P,T,pHash, SkipTable) 

2. { 

3. hashOfTwoPLetters = (enum[p[m-2]]<<2) | enum [p[m-1]]; 

4. hashOfTwoPLetters = hashOfTwoPLetters << 4; 

5. hashOfTwoPLetters += 2; 

6. curPos=m-1 

7. while (curPos < n)  

8.           { 

 9.            hashOfTwoTextLetters = (enum[t[curPos - 1]] << 2) | enum [t[curPos]]; 

10.          cc = (hashOfTwoPLetters ^( hashOfTwoTextLetters << 4)) ;                

11.          while (cc< m)  

12.                     { 

13.                     cc |= (((enum [t[curPos - cc]] << (4 + 2 * cc)) ^ pHash) & (3<<(4+2*cc))); 

14.                     cc++; 

15.                     } 

16.            if (cc == m)   output →  ( curPos-m+1); 

17.            curPos += SkipTable[hashOfTwoTextLetters]; 

18.            } 

19. } 

Figure 3. BAPVBR algorithm.

Line 6 defines the curPos variable, which handles the current text index. Its first value is m – 1, since

the initial text frame index is [0, m– 1]. On the other hand, line 7 denotes that the program should iterate

until the last letter of DNA text. In line 9, two consequent characters are read from the text frame and their

footprints are aligned into four bits. The bits are moved to pattern comparison bit indices with shift operators.

In line 10, the rightmost two characters of the pattern and text frame are compared with the XOR operator. If

both two letters match, the value of cc becomes 2; otherwise, the value of cc becomes large enough to denote a

mismatch.

In order to encounter an exact match, the value of cc should be m , which denotes an unbroken m

letter match in the text frame. Line 11 is a condition that signifies “repeat until m characters are matched

or a mismatch occurs”. The loop continues, unless the value of the unbroken match counter becomes m or a

mismatch occurs. In line 13, the next character is taken from the text and compared with the pattern. The

XOR operator determines any mismatch and traces its footprint into cc. In line 14, cc is incremented by one,

since a new character has been compared.

The output of the algorithm is generated only in line 16. The program can arrive at line 16 through two

different cases. Either a mismatch occurred or consequent m characters have matched. If cc is equal to m ,

then its pattern comparison should still be 0, and consequently an exact match has occurred. Otherwise, some

of the pattern comparison bits have been set to 1, which signifies that a mismatch has occurred.

In line 17, the text index should be skipped to a reliable distance. In order to determine such a distance,

the hashOfTwoTextLetters variable is utilized again. Recall that the hashOfTwoTextLetters variable had another

mission in line 9, as well. Therefore, we ensure that each variable of the algorithm has packed information to

handle.

3. Results and discussion

3.1. Test data and analysis technique

In order to compare the algorithms, we use a common test bed. The test bed is composed of DNA sequences

of Mus musculus genes. The original test bed is from PubMed in FASTA format and composed of 23 files and

nearly 2.3 billion nucleotides. Before experimentation, we eliminated nonnucleotide characters from FASTA

files. The experiments assume that DNA is loaded into the main memory.
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We exploit eight different patterns with various lengths. Patterns and their specifications are denoted in

Table 1. Patterns, which are identified as P1, P2, and P3, are exploited to evaluate the effect of letter diversity

depletion. P1 is the theoretical worst possible case of BAPVBR since all letters of the pattern are same. The

remaining patterns are used to evaluate the effect of pattern length.

In order to minimize jitter such as operating system noise in the results, we repeat each experiment five

times; discard the outliers, i.e. the best and worst results; and report the average of the remaining three results

as the final.

Table 1. Patterns and their specifications.

Pattern id (Pid) Pattern m Letter diversity
P1 AAAAAAAAAA 10 1
P2 TCTCCCTCTTTTT 13 2
P3 CGCGCGCCA 9 3
P4 AAGCTTGG 8 4
P5 TGCCAGGGAG 10 4
P6 TGTATATGTCA 11 4
P7 GATGCCTGTAGT 12 4
P8 GAGGGTAGCTGAT 13 4

Our experiments are based on elapsed time and hardware counters. In order to determine the elapsed

time, we exploit the stopwatch in .NET, which reports final time in milliseconds. In terms of hardware counters,

we utilize the performance counters for the Intel X86 architecture. Briefly, we consider the branch and cache

counters. In terms of branching, we consider branch instruction executions and mispredicted branches. To

analyze the cache, all references to L1 data cache and L2 data requests counters are observed. Finally, the last

level cache misses counter hints on the performance of memory.

The tests are implemented with Intel Core i3 CPU 550 @3.20 GHz with 4 GB RAM and the 64-bit

Windows 7 operating system. All codebase is written in C# and hardware counters are obtained from the Intel

Vtune Performance analyzer.

Our effective performance criterion is the speed of the algorithm, based on elapsed time. The algorithms

are compared in each pattern style, where P1 is the theoretical worst case for the BAPVBR.

In order to understand the factors of elapsed time, we analyze CPU counters and implement detailed

CPU counter analysis to observe the effect of letter depletion and short and longer patterns.

Implementations of Shift OR [7], BNDM [8], and BLIM [9] algorithms abide by their original presenta-

tions. On the other hand, Bitwise Horspool is a modification of [10] where each DNA letter is represented by

two bits. In general, algorithms are implemented in optimized forms. For code simplicity, few variables are

defined as global in each experiment, where contributions of the global variables to speed are less than 3%.

3.2. Comparison of the algorithms based on elapsed time

Our results indicate that the cost of the preprocess step is negligible when data are GB in size. In our test bed,

the preprocess cost is 5 × 10−4 times less than string-matching time.

Based on the stopwatch, performance comparisons of algorithms can be seen in Table 2. For clarity,

the results are transformed into milliseconds. Results denote that BAPVBR outperforms in all patterns. The

improvement becomes substantial when all alphabet letters exist in the pattern.
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Table 2. Execution time of algorithms in milliseconds.

Pid
Bitwise algorithm
BLIM Shift OR Bitwise Hash Bitwise Horspool BNDM BAPVBR

P1 121,210 68,090 63,337 29,850 21,349 18,397
P2 133,533 66,342 61,201 26,407 22,463 14,277
P3 150,280 68,361 61,455 30,880 28,336 15,597
P4 125,896 66,450 62,122 50,787 39,242 20,483
P5 149,181 66,832 62,943 39,786 29,697 17,175
P6 200,281 67,102 61,457 66,240 29,724 15,118
P7 195,644 66,784 63,548 61,844 26,767 14,805
P8 217,325 66,108 61,154 75,123 25,079 13,954

During experimentation, Bitwise Hash and Shift OR present constant and moderate execution times,

regardless of the pattern property. This is not a surprise since both algorithms lack the skip mechanism.

Given that the pattern contains at least three different letters, BAPVBR presents 85% improvement

over the previous best-performing algorithm, BNDM. We think that such an improvement rate provides an

interesting first step in architecture-sensitive design of DNA search algorithms.

During execution of P2, TCTCCCTCTTTTT, BAPVBR outperforms BNDM by 57%. Since P2 contains

two different letters, unnecessary blind read occurrences are less frequent than in P1. However, the performance

of BAPVBR surpasses that of BNDM with the help of its simple and hardware-level bitwise operations.

In the worst case for BAPVBR, all pattern letters should be same. In terms of P1, which is AAAAAAAAAA,

BAPVBR outperforms BNDM by only 16%. The reduction from 85% to 16% gain is not a surprise. The basic

factor is the heuristic skip mechanism, which runs faster on patterns that have large letter diversity. During

the first comparison step, if ‘T’, ’G’, or ‘C’ occurs, the BAPVBR unnecessarily reads a second text character

blindly before launching the skip mechanism. Hence, these unnecessary memory accesses decrease the advantage

of BAPVBR over BNDM.

In summary, performance test results strongly suggest that the BAPVBR outperforms for short-length

DNA sequences.

3.3. Hardware counter perspective

Results of the previous section showed that simplification of the code (in order to minimize branch mispredictions

while maximizing cache hit rate) and keeping condensed information inside variables (in order to minimize

register spills) had strong contributions to the speed of searches. In this section, we introduce a detailed

performance analysis based on hardware counters. The goal of this section is to present the factors of execution

time on modern hardware. For better analysis, we present both positive and negative CPU counter aspects of

the algorithms. We analyze P1 since it is the worst case of BAPVBR and contains only one alphabet letter.

On the other hand, P4 and P8 evaluate the contribution of minimum/maximum pattern lengths over CPU

counters.

We divide the CPU counters into two fragments. At first we consider branch executions rates. In the

second phase, we consider cache interactions.

3.3.1. Branch execution and prediction

Current CPU architectures are pipelined and exploit branch prediction to enable high speed computation. The

branch predictor, which is a digital circuit composed of a large lookup table, is typically found at the decode
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pipeline stage of modern processors. The predictor estimates the branch outcome (whether it is taken or not

taken) and the branch target address (in the case of indirect branches) of a branch instruction and speculatively

pushes it into the processor pipeline. The branch is resolved later in the pipeline during the execute stage. The

resolved branch outcome is compared with the predictor result. If both match, then the branch instruction is

allowed to commit [21]. Hence, successful prediction of branches enhances the flow in the instruction pipeline

of the CPU. In case of a misprediction, the instructions in the pipeline will be flushed and the CPU stalls

until instructions from the correct path have been fetched into the pipeline. Thus, efficient branch prediction

is crucial for high performance.

In this step, we analyze performance counters of P1, P4, and P8. Recall that P1 represents letter

depletions. P4 is the shortest and P8 is the longest pattern.

We present the results about branch instructions executed in Table 3. Results show that BAPVBR

and BNDM require minimum branch executions. In contrast, the BLIM algorithm presents the worst branch

execution performance. Although Shift OR and Bitwise Hash have the simplest match procedures, they have a

large number of branches.

Table 3. Total number of branch instructions.

P1 P4 P8
BAPVBR 3,013,600,000 4,067,733,333 2,978,933,333
BNDM 2,870,933,333 5,298,666,666 3,302,933,333
Bitwise Horspool 7,927,733,333 14,742,933,333 22,262,133,333
Bitwise Hash 9,765,066,666 9,837,600,000 9,833,333,333
Shift OR 9,930,400,000 9,842,133,333 9,852,266,666
BLIM 22,913,600,000 23,833,066,666 40,907,200,000

BAPVBR, BNDM, and Bitwise Horspool results show that the highest branch executions occur in P4.

Recall that P4 is the shortest pattern. Therefore, it introduces smaller shifts during a mismatch. In contrast,

pattern length does not affect Bitwise Hash and Shift OR since they do not have a skip mechanism.

We present the mispredicted branch executions in Table 4. Test results show that mispredicted branch

rates of algorithms are very small when compared to the total number of branch instructions executed. For

instance BAPVBR’s misprediction rate is around 1%. We observe that BNDM and Bitwise Horspool present

six-fold more misprediction. The results help to explain the performance differences between BAPVBR and

BNDM and Bitwise Horspool.

Table 4. Total number of mispredicted branch instructions.

P1 P4 P8
BAPVBR 67,066,666 51,920,000 38,880,000
BNDM 136,533,333 335,440,000 207,786,666
Bitwise Horspool 210,320,000 312,186,666 520,266,666
Bitwise Hash 586 266 240
Shift OR 426 266 373
BLIM 2,053,333 693,653 1,546,666

Test results show that Shift OR and Bitwise Hash do not cause considerable amounts of misprediction.

We think that such a result is not a surprise, since the algorithms do not require a condition to skip characters.
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The observation denotes that adding complex control-flow instructions to the string-match algorithms could

sometimes be detrimental.

In terms of overall branching, BAPVBR presents a well-balanced performance. While Bitwise Hash, Shift

OR, and BLIM present approximately four million less mispredictions, they cause an extra 4.8 billion branch

executions.

3.3.2. Cache accesses

Another performance criterion of search algorithms is based on cache efficiency. Caches are used to reduce

average memory access time during execution and are a critical structure to scale the so-called memory wall,

which refers to the limited performance gains for the main memory technology compared to the processor core

performance with increased transistor scaling. Modern CPU architectures can typically contain at least three

level caches. During execution, the CPU first accesses its cache in order to find the required instruction or data.

In the case of a cache miss the instruction or data should be fetched from higher-level memory, which may cause

CPU stalls.

In Table 5, we present the “All references to L1 data cache” performance of the algorithms. L1 data

cache results validate the results of the stopwatch. The results denote that BAPVBR requires the minimum

number of data from the cache.

Table 5. Number of all references to L1 data cache.

P1 P4 P8
BAPVBR 9,784,000,000 12,544,000,000 9,205,333,333
BNDM 10,394,666,666 20,741,333,333 13,189,333,333
Bitwise Horspool 14,456,000,000 26,968,000,000 41,064,000,000
HASH 36,602,666,666 36,864,000,000 36,850,666,666
Shift OR 39,760,000,000 39,317,333,333 39,421,333,333
BLIM 57,688,000,000 58,245,333,333 103,949,333,333

The results are very important since they imply that the BAPVBR minimizes register spills. Register

spills occur when the compiler cannot find a free register to assign to a frequently used data item, and this

is especially the case for architectures with a limited number of architectural registers such as the X86 [22].

We think that intensely used variables reduce the risk of register spills, especially for architectures that have a

limited number of registers.

3.3.3. Memory access

Finally, we present our findings about the last level cache (LLC) miss. When the data are not found in the LLC,

they should be fetched from RAM and current high-performance out-of-order processors do not tolerate LLC

misses well. The reason for that is their pipeline structures, which extract available instruction-level parallelism

such as load/store queues, reorder buffers, issue queues, and physical register files that get filled up in the

shadow of a long-latency LLC miss (which can take hundreds of cycles), leading to pipeline stalls.

The results in Table 6 denote that Shift OR and Bitwise Horspool outperform during LLC miss analysis,

where both algorithms have the simplest loop structures. The results present LLC misses triggered by loads

only, and they do not include misses triggered by either software or hardware prefetches. Such an observation

implies that new algorithms must consider prefetching capability of modern hardware.

While the BAPVBR is moderate on LLC misses, other performance counters compensate such a drawback.

When all hardware counters are considered, the BAPVBR has the overall best performance. It presents
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satisfactory branch execution and misprediction rates. In terms of L1 cache interactions, it denotes the best

performance as well. Finally, the hardware counter results are confirmed by elapsed time.

Table 6. Total number of last level cache misses.

P1 P4 P8
BAPVBR 1,413,333 1,626,666 1,480,000
BNDM 1,680,000 2,933,333 2,626,666
Bitwise Horspool 1,493,333 ,880,320 1,080,000
Bitwise Hash 1,186,666 1,160,000 1,200,000
Shift OR 1,186,666 866,973 1,186,666
BLIM 1,293,333 1,506,666 1,253,333

4. Conclusion

This study presents a new bitwise exact string-matching algorithm, which aims at fast DNA pattern searches on

large DNA sequence files. Due to computer hardware advances, large DNA files can be stored in memory and

sequence comparisons can be sped up by modern algorithmic techniques. For instance, bus communication could

be minimized and computational procedures could be generally executed inside the CPU and cache. Interactions

inside the CPU and cache also affect the performance. For instance, bitwise string-matching exploits intrinsic

parallelism properties. In general, bitwise algorithms introduce satisfactory performance under the condition

that the pattern length is small.

In this study, we numerically establish that CPU pipelining and cache miss rates have substantial

contributions on the DNA search performance. Hence, we consider hardware counters of the CPU to enable

fast pipeline computation. In order to obtain the best performance from the CPU, we optimize the match code

to minimize branch mispredictions and cache misses. In our approach, algorithmic components have multiple

missions. In addition, we compress conditions and reduce possible condition lines. Test results show that such

actions help successful branch prediction and reduce cache access. During pattern searches, we tested a 32-bit

integer as the bitwise condition. The algorithm permits maximum 13-length DNA patterns. In fact, such a

length reduces the search space for 2 GB of data drastically. For terabyte-sized text data, the algorithm can be

modified to a 64-bit word. As a consequence, maximum pattern length limit can be increased.

Test results show that our algorithm outperforms in short-length DNA patterns, even for the worst

possible pattern, where all pattern letters are same. Results imply that searches on shortest pattern sequences

take more time. Basically, lengths of patterns limit larger skip distances. On the other hand, there is no

limitation on text length. Therefore, the algorithm can be executed on large DNA databases and jointly

executed with heuristic algorithms as a tool to find initial pattern seeds.

The results denote that hardware counter analysis should become a requirement for pattern-matching

algorithm design and optimization. Therefore, we can help the CPU for better branch prediction and L1, L2

cache data hits. We also observe that modern prefetch technologies help to reduce cache misses. Hence, exact

matching algorithms must take into account recent hardware technologies such as prefetching.
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