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Abstract: Incremental encoders have attracted significant attention to measure motor speed worldwide. Due to the

advantages of incremental encoders a noticeable percentage of Servo system drives have been built based on these sensors.

The nonideality of encoders, especially mechanical misalignments, is one of their most important problems, affecting the

precision of calculations. In the current paper we present an analytical formula to model the nonideal incremental

encoder and calculate both the frequency and magnitude of vibrations due to this nonideality. Moreover, a nonideality

identity parameter of the encoder is defined. This parameter can be used for quality assurance purposes. Moreover, it is

possible to design flexible filters for measured speed based on this parameter, especially in low resolution encoders. The

simulation and experimental results corroborate the precision of the proposed method in a wide range of speeds.
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1. Introduction

The technology of sensors measuring rotational speed has gained significant attention worldwide. Recent

developments in Servo motor drives have heightened the need for using precise sensors and currently it is

becoming increasingly difficult to ignore the role of incremental encoders in this field [1–4]. The incremental

encoders benefit from accuracy, repeatability, high performance, and flexibility [4–6]. Furthermore, their low

price makes them useful in many applications. Despite their safety and efficiency, incremental encoders have

several major drawbacks such as limited controller bandwidth in slow speeds, quantization error, and the

nonideality effect of the encoder on the measured speed. The debate continues about the best strategies for the

manipulation of incremental encoders. More recently many studies have proposed interesting methods in order

to eliminate quantization error such as using synchronized pulse counting [7], but the lack of a precise model

for a nonideal encoder has been an intricate problem for many years. The objectives of the present research

are to determine the behavior of a nonideal encoder and analytically model it. Although synchronized pulse

counting eliminates quantization error [8,9], the nonidealities of the incremental encoder can cause fluctuations

of the measured speed in steady state conditions [10]. One of the most common nonidealities of the incremental

encoder is misalignment and discrepancy of the gap intervals on the encoder’s disk due to mechanical errors.

Figure 1 depicts the captured speed data of a servo system coupled with an incremental encoder. In both (a)

and (b) the motor rotates at a speed of 30 d/s (5 rpm), but in (a) sampling time (TS) is 0.001s, while in (b) it

is 0.01s. By comparing (a) and (b) we observe that a change in TS corresponds to a change in magnitude and

frequency of fluctuations.
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Figure 1. Constant steady state speed in a nonideal encoder. A change in sampling time leads to a change in measured

speed. In (a) the real speed is 5 rpm and sampling time equals 0.001 s, the magnitude of vibrations on the measured

speed is more than 1 d/s (0.16 rpm). In (b) the real speed is 5 rpm and sampling time equals 0.01 s, the magnitude of

vibrations on the measured speed is less than 0.2 d/s (0.03 rpm).

Hence, it can be concluded that the fluctuations in measured speed are dependent not only on motor

characteristics but also on incremental encoder nonideality. In order to evaluate the nonideality effect of the

encoder on the characterization of these fluctuations (magnitude and frequency), we must assume an ideal motor

with a constant rotational speed. In this case the nonideality of the shaft encoder would be the only cause of

vibrations. Experimental results show that fast frequency vibrations superimpose on slow-frequency ones, and

both depend on sampling time, rotational speed, and encoder resolution. Throughout this paper NE is used

to show the number of encoder’s gaps (number of output pulses per 360 degree rotation), ∆N denotes counted

pulses during a synchronized time interval TM , and ωr indicates the rotating speed in degree/s.

2. Slow-frequency vibrations

Speed measurement systems can eliminate quantization error by synchronizing sampling time with encoder

output pulses. This method is explained in many studies [11] and for an ideal encoder it can measure the

rotating speed precisely. Figure 2 shows the output pulse of an encoder.

TS

TM

ΔN= 5

Figure 2. Synchronization of sampling time with output pulses of the encoder.
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In Figure 2 TS indicates sampling time. As it is shown, if during the synchronized sampling time (TM )

the measuring system counts the output pulses (∆N ), it can calculate the rotating speed using (1) and (2):

∆θ =
∆N × 360

NE
(1)

ωr =
∆θ

∆t
=

∆θ

TM
=

360.∆N

NE .TM
(2)

Figure 3 shows an encoder that rotates at a speed of ωr and a sampling time of TS and so the number of

counted pulses per TS can be calculated as

∆N =
ωr × TM ×NE

360
=

⌊
ωr × TS ×NE

360

⌋
(3)

where ⌊x⌋ indicates the largest integer smaller than or equal to x.

T
S

T
M

ΔN= 2

Figure 3. Calculating ∆N based onTS ,ωr andNE .

In order to calculate the slow-frequency vibrations we present the term “Round Number” or RN . Figure

4 shows a simple encoder with 9 gaps. We assume that each gap represents a state and so we have 9 states. If

we assume that we start moving from state number one and in each movement we pass ∆N states through the

encoder disk, after RN movements we will get to state number one again. Therefore, the value of RN depends

on both NE and ∆N . Mathematically, RN can easily be calculated as follows:

RN =
LCM(NE ,∆N )

NE
=

LCM(NE ,
⌊
ωr×TS×NE

360

⌋
)

NE
(4)

where LCM(x, y) is the least common multiple of x and y. In order to clarify the problem, a numerical example

has been explained based on the encoder shown in Figure 4.
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Figure 4. An example encoder in order to evaluate slow frequency vibrations.

If ∆N equals 6, after the first TS we move from state 1 to state 7. In the second TSwe move from state

7 to state 4, and in the third TS we move from state 4 to state 1. Therefore, in this example Round Number

(RN ) equals 2 because we rotate 720 degree (2 × 360) before arriving at the first state. Table 1 shows the

calculated RN and transient states for different values of ∆N in the above example. After arriving at the first

state it is obvious that this chain repeats periodically, and so if we measure the time interval between the two

periods we can calculate the frequency of the slow fluctuations. Using (2) we can write:

fslow−fluc =
1

360× ωr ×RN
(5)

Based on (4), the slow-frequency of the encoder’s fluctuations can be calculated as follows:

fslow−fluc =
NE

360× ωr × LCM(NE ,
⌊
ωr×TS×NE

360

⌋
)

(6)

Table 1. Calculating RN and transient states for different values of ∆N .

∆N 1 2 3 4 5 6 7 8 9

T
ra
n
si
en
t
st
at
es

1 1 1 1 1 1 1 1 1
2 3 4 5 6 7 8 9 1
3 5 7 9 2 4 6 8
4 6 1 4 7 1 4 7
5 9 8 3 2 6
6 2 3 8 9 5
7 4 7 4 7 4
8 6 2 9 5 3
9 8 6 5 3 2
1 1 1 1 1 1

RN 1 2 1 4 5 2 7 8 1
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3. Fast-frequency of fluctuations

Experimental results show that the frequency of fast vibrations of the measured speed is not perfectly constant

and these fluctuations have disorganized behavior. Therefore, in order to evaluate the frequency of fast-

vibrations it is important to consider the actual location of each gap through the encoder disk. Figure 5

shows a nonideal incremental encoder with 8 gaps per round (NE= 8). For each gap a nominal and actual

location has been depicted. In addition, we assume that the encoder rotates ideally at a speed of 45 d/s.
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Figure 5. Actual and nominal locations of gaps on the encoder’s disk withNE= 8.

As seen from Figure 5, the nominal distance between gaps 1 and 2 is 45 degrees, while the actual distance

between them is 40 degrees. Using (2), the time interval between these two gaps can be calculated as follows:

∆t =
∆θ

ωr
⇒ ∆t =

40

45
= 0.88s (7)

Now we can calculate the measured speed (ωm) easily as follows:

ωm =
∆θ

∆t
⇒ ωm =

45

0.88
= 51.13d.s−1 (8)

By comparing Eqs. (7) and (8), the error of the speed measurement (∆ω) due to nonideality of the encoder

has been obtained:

∆ω = |ωr − ωm| = |45− 51.13| = 6.13d.s−1 (9)
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where |x| shows the absolute value of x. Figure 6 represents the repetition of this procedure for different values

of sampling time (TS).
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Figure 6. The measured speed for different values of sampling time by means of a nonideal encoder.

As seen from Figure 6, the frequency of fast vibrations of the measured speed was decreased by increasing

the sampling time. As shown in Figure 6 part (d), if the multiplication of sampling time and real speed equals

360, after one TS the encoder sees the first gap again and the nonideality of the other gaps does not influence

calculations. It means that in this condition the measurement error equals zero.

TS × ωr = 8× 45 = 360 ⇒ ωr = ωm = 45d.s−1 (10)

The frequency of fast fluctuations is obtained based on Figure 6 and Eq. (2) as follows:

ffast−fluc =
1

2.TM
=

1

2× 360.∆N

NE .ωr

(11)

From (3) we have

ffast−fluc =
ωr ×NE

720×
⌊
ωr×TS×NE

360

⌋ (12)

4. Magnitude of fluctuations

As depicted in Figure 6, changing the sampling time will change the magnitude of vibrations. However, vibration

magnitude also depends on another important variable, θfault , which denotes the angle between the nominal
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and actual location of each gap on the encoder’s disk. Figure 7 shows θfault for one gap. It is undeniable that

in a real incremental encoder each gap has its own θfault , but obviously it can be a complicated procedure

to measure θfault separately for each gap, especially in high resolution encoders. Therefore, in this paper we

assume θfault as a normal random variable with a mean value of zero and a standard deviation of σ as follows:

θfault ∼ N(0, σ2) (13)

This distribution is often used in natural and social sciences for real-value random variables whose distribution
is totally unknown [12]. Therefore, we can conclude that σ indicates the precision of the mechanical design and

construction of the encoder.

Tfault

T
M

Nominal GapLocation

Actual GapLocation

θ=θfault

ω
 m

ω
 r

Figure 7. Angle between the nominal and actual locations of each gap on the encoder disk.

As seen from Figure 7, real and measured speeds are calculated respectively as follows:

ωr =
360.∆N

NE .(TM + Tfault)
(14)

ωm =
360.∆N

NE .TM
(15)

In Eq. (15) , Tfault denotes the time interval between the actual and nominal location of a gap when the

encoder rotates at ωr speed. Therefore, we can write

Tfault =
θfault
ωr

(16)

From (14) and (16) we have

ωr =
360.∆N

NE .(TM +
θfault

ωr
)

(17)

1495



MAAREF and REZAZADEH/Turk J Elec Eng & Comp Sci

Thus, the ratio of ωm to ωr be equal to

ωm

ωr
=

1
TM

1

TM+
θfault

ωr

= 1 +
θfault
TM .ωr

(18)

This will lead to

∆ω = |ωm − ωr| =
θfault
TM

(19)

Eq. (19) shows that the measurement error depends on both the standard deviation of the encoder and the

measuring time. For an ideal encoder, the standard deviation goes to zero and so ∆ω is infinitely small. For a

nonideal encoder, if we allocate high values for TM , we can decrease the error based on (19). Now, in order to

calculate the value of ∆ω we can use (11) and so

∆ω = 2× θfault × ffast−fluc (20)

As we mentioned before, θfault is a normal random variable with a mean value of zero and a standard deviation

of σ . Therefore, the absolute moments of θfault are written as

E(|X|p) = σp.
2

p
2 × Γ(p+1

2 )
√
π

(21)

where p is the order of the absolute moments and Γ(x) denotes the Gamma function. In this article we use the

first order of absolute moment (p = 1). Thus, we can calculate the absolute expected value of θfault as follows:

E(|X|) = σ

√
2

π
(22)

and we can rewrite (20) as follows:

∆ω = 2

√
2

π
× σ × ffast−fluc (23)

From (12), ∆ω is obtained as

∆ω =

√
2σ.ωr.NE

360
√
π ×

⌊
ωr×TS×NE

360

⌋ (24)

5. Simulation results

In order to simulate the proposed method, a Matlab/Simulinx program is developed. In this program an ideal

incremental encoder with NE pulses per round is simulated as follows:

A(θ) =

{
1 θ ∈ GAPS
0 Otherwise

(25)

where A(θ) is a function of the encoder’s output pulses and GAPS is defined as a set of angles that demonstrate

the place of encoder gaps. For example, for an encoder with NE gaps we have

GAPS ≡
{
0× 360

NE
,
1× 360

NE
,
2× 360

NE
, ...,

(NE − 1)× 360

NE

}
(26)
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Now, based on Eqs. (25) and (26) we can model a nonideal encoder easily. It is enough to modify GAPS sets

as follows:

GAPS ≡
{
0× 360

NE
+ a0,

1× 360

NE
+ a1,

2× 360

NE
+ a2, ...,

(NE − 1)× 360

NE
+ an

}
(27)

whereαi ∼ N(0, σ2). Figures 8 and 9 show the results. In this simulation we assumedNE = 10, 000, σ = 0.005,

TS = 0.01s , and ωr = 5d/s . We used large scale zoom in order to see both slow and fast frequency vibrations

in Figure 8. Figure 9 shows the simulation and the proposed method results. As can be seen, the precision of

the frequency calculation by the proposed method is very good. We repeat the simulations for different values

of TS and σ in order to gain a comprehensive comparison between simulation and the proposed method results

presented in Tables 2 and 3. Table 2 shows the calculated measures of fast frequency vibrations for different

amounts of TS and under the assumption of constantNE , σ , andωr . It can be seen that in the worst case there

is only 0.08% error in detecting the frequency of fast fluctuations. Similarly, in Table 3 we present the amounts

of vibration magnitude calculated using the proposed method under the assumption of constantNE ,TS , ωr ,

and for different values ofσ . In this case the worst case estimation error would be 0.22%, which is still quite

precise.
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Figure 8. Both low and fast fluctuations. Figure 9. Comparison between simulation results and the

proposed method results.

Table 2. Comparison between simulation results and the proposed method results for fast frequency vibrations. For

the case of σ = 0.005and ωr = 50d/s .

TS
Simulation results Proposed method results

Error
of frequency of frequency

0.001 s 688.3 Hz 694.44 Hz 0.00892%
0.05 s 11.03 Hz 10.0644 Hz 0.08754%
0.01 s 54.82 Hz 53.41 Hz 0.02572%
0.1 s 5.29 Hz 5.03 Hz 0.04914%
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6. Experimental study

In this study the experimental approach is developed in two totally different stages. First, we propose a method

in order to calculate σ for any desired incremental encoder. Then we run the motor in different steady-state

speeds and evaluate the accuracy of the proposed method by comparing fluctuations that are calculated both

experimentally and analytically.

Table 3. Magnitude vibrations comparison between simulation results and the proposed method results in the case

ofNE = 10, 000,ωr = 35d/s , andTS = 0.05.

σ Simulation results of ∆ω Proposed method results of ∆ω Error
0.001 0.021 (d/s) 0.0162 (d/s) 0.2285%
0.03 0.5324 (d/s) 0.4848 (d/s) 0.0894%
0.95 14.2391 (d/s) 15.3530 (d/s) 0.0782%

7. Calculating σ for any desired incremental encoder

The main goal of this approach is to calculate σ as a quantity to identify the ideality of an incremental encoder.

In other words, we define σ as an identification parameter of the encoder. This parameter can be used for

quality assurance purposes and for designing a filter for the measured speed.

In this experimental test we use a low resolution encoder as a desired encoder whose σ must be calculated,

and a high resolution encoder as an ideal reference one. Therefore, we assembled an NSK direct drive servo

system (with internal 1,200,000 reference encoder) and an FPGA based controller (Figure 10). The synchronized

speed measurement method is implemented in Xilinx Spartan 3E FPGA. The source code is written in Verilog

language and a TCP/IP Ethernet protocol is used aimed at real time data transportation. Then a low resolution

encoder with 3600 pulses per round was coupled to the rotor. The goal was to calculate theσ parameter for

this encoder.

Direct Drive

Motor

Driver

FPGA Based 

Controller

Interface Board

 

Figure 10. A case study including an NSK direct drive servo system and an FPGA based controller.

After running the motor at a speed of 20 d/s (3.3 rpm) and reaching a steady-state speed we calculated

the real speed (ωr) using a reference high resolution encoder (1,200,000 pulses per round). In this test TSwas

set to 0.01 s. Then we measured the speed using a low resolution encoder and calculated the magnitude of

vibrations (∆ω). Both ωr and ∆ω are depicted in Figure 11. In Figure 11 ωr is shown in red and ∆ω is
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shown in blue. Based on these results, ωr and ∆ω are equal to 19.78 d/s (3.29 rpm) and 0.63 d/s (0.105 rmp)

respectively.

Now, regarding Eq. (24), it is easy to find the value of σ .However, it is important to mention that NE

in this equation is 3600 instead of 1,200,000 because we want to calculate the σ parameter for a low resolution

encoder. Therefore, using (24), the σ value is calculated as 0.0041.

8. Evaluating the accuracy of the proposed method

In order to evaluate the accuracy of the presented method, we run the motor in different steady-states speeds

and compare experimental and analytical values of∆ω . Figure 12 and Table 4 show the results, which indicate

that the proposed method benefits from stability and accuracy during different ranges of steady-state speeds.

These results validate the precision of the analytical calculations proposed in this approach.
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Figure 11. Measured speed of low and high resolution

encoders.

Figure 12. Experimental results in steady states.

Table 4. Experimental results under different steady-state motor speeds.

ωr Experimental results of ∆ω Proposed method results of ∆ω Error
1.6 rpm 0.052 rpm 0.054 rpm 0.03852%
4.16 rpm 0.0687 rpm 0.0681 rpm 0.00807%
9.16 rpm 0.062 rpm 0.0599 rpm 0.03751%
12.5 rpm 0.056 rpm 0.058 rpm 0.032525%

9. Conclusion

In this paper we developed analytical calculations in order to model a nonideal incremental encoder. First

we proved experimentally that some parts of vibrations in the measured speed are due to nonideality of the

encoder. Then we modelled the nonideal incremental encoder and calculated the frequency and magnitude of

vibrations separately. Parameter σ was defined in order to identify the nonideality of an encoder and calculate

the magnitude of fluctuations sampling time (NE), rotational speed (ωr), and encoder resolution (NE). This

parameter denotes the merit gauge of an encoder and can be used for many purposes. As a case in point, we

can design flexible filters for output speed due to the fact that at any speed the characterization of speed error
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is known. In order to validate the proposed method, both simulation and experimental evaluations were used.

The results show that the presented algorithm is valid in a wide ranges of speeds and reaches accurate and

stable responses while dealing with low level calculations.

List of Abbreviations and Symbols

∆N Counted pulses in one sampling time.
∆θ Rotated angle in degrees.
NE Number of encoder’s gaps per 360

degrees.
∆t Time interval between two events in

seconds.
TM Measured time synchronized with

encoder’s output pulses.

TS Sample time.
RN Round Number (number of rounds that

must go through the circle in order
return to the first state).

fslow−fluc Frequency of slow fluctuations.
ffast−fluc Frequency of fast fluctuations.
Tfault Time interval between nominal and actual

gaps.
∆ω Magnitude of fluctuations ( |ωm − ωr|).
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