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Abstract:Ground-penetrating radar (GPR) has been widely used in detecting or imaging subsurface targets. In many

applications such as archaeology, utility imaging, or landmine detection, three-dimensional (3D) images of the subsurface

region is required for better understanding of the sensed medium. However, a high-resolution 3D image requires wideband

data collection both in spatial and time/frequency domains. Match filtering is the main tool for generating subsurface

images. Applying match filtering with the data acquisition impulse response for each possible voxel in the 3D region

with the collected data requires both a tremendous amount of computer memory and computational complexity. Hence,

it is very costly to obtain 3D GPR images in most of the applications although 3D images are very demanded results.

In this paper, a new 3D imaging technique is proposed that will first decrease the memory requirements for 3D imaging

with possible implications for less computational complexity. The proposed method uses the shifted impulse response of

the targets that are on the same depth as a function of scanning position. This similarity of target responses for data

dictionaries for only 2D target slices is constructed with twice the length in scanning directions and this 2D dictionary

is mainly used for generating 3D images. The proposed method directly saves memory due to dimension reduction in

dictionary generation and also decreases computational load. Simulation results show generated 3D images with the

proposed technique. Comparisons in both memory and computational load with the standard backprojection show that

the proposed technique offers advantages in both areas.
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1. Introduction

Ground-penetrating radar (GPR) [1–3] has become an important technology in recent years due to its broad

applications in both military and civilian sectors. Traditional GPRs image the subsurface by transmitting

short electromagnetic pulses or a train of subpulses with stepped carrier frequencies and process the reflections

caused by permittivity discontinuities in the ground. GPRs can detect anything with dielectric contrast like

permittivity to the surrounding medium. Because of this wide applicability they are used in landmine detection

[4,5], environmental and archaeological investigations [6,7], through-the-wall imaging and detection [8,9], and

civil applications [10,11]. Imaging with GPR requires the formation of a synthetic aperture, which is done by

scanning a GPR sensor over the region of interest and recording the time/frequency signal returns for many

spatial positions.

In many applications the demand is towards obtaining 3D and high-resolution images of the medium.

This operation requires a very large amount of space-time/frequency data since high resolution in this range
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requires ultrawideband pulses and resolution in cross ranges requires longer synthetic apertures. Despite this

fact, 3D imaging in GPR is applied often in the literature. In [12], an overview of various aspects of using GPR

in archaeology was presented. The advantages of modeling were explained and presented with the range of

possible applications in four case histories, ranging from a survey of a lake to a 3D model of a part of a Roman

town. In some GPR surveys, sites containing continuous linear features extending over several meters in length

such as foundations, ditches, walls, or roads are imaged. Most archaeological surveyors have not yet pushed

GPR to its full potential and experienced the benefits of maximum resolution achieved with very dense data

acquisition and processing, but interesting 3D visualization research was proposed in [13]. In [14] 3D imaging

in geophysical structures was presented. Imaging of 3D bodies in mine detection and nondestructive testing

applications was used in [15].

The increasing need for detailed 3D imaging of the shallow subsurface and the higher horizontal and

vertical resolution required in many applications make 3D GPR one of the most important current research

topics. In GPR imaging match filtering-based backprojection [16] is the most commonly applied idea to obtain

an image. For 3D imaging backprojection is applied by synthesizing the model data for each voxel point in the

discretized 3D volume and correlating the measured data with this synthesized data model or data acquisition

impulse response for each voxel to be imaged. This model data can be created only once and stored in memory,

but this requires a huge memory size even for moderate size 3D images and resolution steps. The model

data can also be synthesized on the fly, but then the computational complexity of the technique increases

dramatically, requiring high-speed parallel CPUs and expensive data processing packages. Hence, most GPR

imaging applications still generate data by means of 1D and 2D techniques.

To present a solution for the disadvantages of 3D imaging and especially to decrease the computational

complexity of the imaging algorithms, an important amount of research has already been done. One of the

main techniques in faster 3D imaging is to use fast Fourier transform (FFT) in imaging stages. The imaging

algorithm in [17] is one of the methods that functions in the frequency domain. Hence for this method, the

data should be acquired in the frequency domain or transformed to it. Still, 3D dictionaries should be used,

but using FFT in the inherent calculations makes it faster compared to the standard backprojection method.

In [18], an algorithm for computation of the scattered fields from 3D inhomogeneous dielectric scatterers was

presented. In this method, Galerkin’s testing formulation of an integral equation for 3D electromagnetic fields is

represented by a multiinput and multioutput linear system with known kernels. On a regular grid with rooftop

basis functions, the kernels are discretized and accurately evaluated. Furthermore, they are represented by

Toeplitz matrices, which reduces the storage and computational complexity in solving for the scattered fields.

Another faster 3D imaging technique is to use quadtree imaging, which applies a multilevel resolution

scheme as shown in [19,20]. In this method, the 3D volume to be imaged is divided into 8 subvolumes at

each stage of the quadtree algorithm. The energy intensity or the pixel value for each of these subvolumes

is calculated. In the following iterations of the algorithm finer resolutions are obtained and potential target

subvolumes get higher intensity values as that of the background noise decreases. Subdivision of some volumes

can be buried if it is decided that there is no target in the volume in the previous iteration. Hence, possible

target areas are explored further with finer resolutions while clutter or noise regions are not explored, resulting

in savings in computational complexity.

In addition to these techniques, another significant research area is sparse reconstruction and compressive

sensing. Recent results in the theory of compressive sensing (CS) [21–24] show that reconstruction of unknown

signals, which have a sparse representation in a certain transformation domain, can be obtained from a much
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smaller set of measurements as compared to conventional techniques. If GPR applications admit a sparse

representation, reconstruction of target scenes can be formulated as a sparse signal reconstruction problem.

Application of CS to a GPR imaging problem was first demonstrated in [25]. In that work, the subsurface

area was modeled to consist of a small number of discrete point-like targets and a dictionary of model data

was generated for each possible discrete target point. The subsurface image was generated by solving an ℓ1

minimization-based optimization problem with a decreased number of measurements. Later, these results were

extended to the stepped frequency [26] and impulse GPR [27] cases. In [28], Yoon, et al. used CS for through-

the-wall imaging using wide-band beamforming, where the unmeasured frequency points were reconstructed

with CS and conventional wideband beamforming was applied on the reconstructed measurements. In all of

these works CS-based imaging provides the obtaining of less measurement, possibly both in the space and

time/frequency domains. Decreasing the number of measurements acquired provides advantages both in data

acquisition times and total memory requirements. On the other hand, CS-based imaging is only advantageous

if the target space is sparse and it requires the data dictionary to be constructed before the imaging. The CS-

based imaging actually requires a solution of a sparsity-enhanced optimization problem, which requires matrix

inverses at each optimization step and is practically much more computationally complex compared to standard

match filtering-based techniques and totally impractical for moderate-resolution 3D GPR imaging problems.

The CS imaging technique is advantageous in terms of data acquisition time, but since convex optimization

takes too much time, this advantage is lost. If the imaging area is large or fine resolution in imaging is used,

or if a 3D volume is going to be imaged, the algorithm starts to become unpractical. Mainly because of the

computational complexity of convex optimization, faster greedy techniques are pursued. One example of these

is orthogonal matching pursuit (OMP) [29], which is a suboptimal sparse solver. Although these suboptimal

solvers do not guarantee any globally optimal solution, they are computationally more efficient. An example

application of using OMP for GPR imaging was presented in [30]. OMP uses the same dictionary as CS but

iteratively removes the most correlated part of the measurement at each iteration. Hence, it uses a simpler

dictionary with a reduced number of measurements but applies several match filterings until converging.

Sparsity-based techniques offer great advantages such as decreasing number of measurements, high

resolution, and less cluttered images, but they require comparably higher computational complexity. To decrease

their computational load, mainly the dictionary sizes should be decreased without losing imaging performance.

In [31], it was shown that the underlying propagation model leads to a block-Toeplitz structure [32] in two of

the dimensions, which can be exploited to reduce both the storage and computational complexity. Thus, it is

shown that a reduction by three orders of magnitude in computational resources for the CS problem will make

3D imaging applications feasible. Although CS-based techniques offer good advantages, they are limited with

sparse images.

This paper presents a new approach based on data modeling symmetry in the scanning direction of GPR,

which leads to decreased dimension of dictionaries and allows using 2D dictionaries instead of huge 3D ones

for obtaining 3D images with efficient computational ideas. Figure 1 shows the data model of a two target 2D

slice as the GPR scans in one direction. It is observed from the space-time domain data that the responses for

each target are actually shifted versions of each other since the targets are at the same depth. This additional

information is used to decrease one dimension of the data and leads to more efficiency both in terms of memory

and computational complexity. Although this method offers advantageous solutions to CS-based problems, the

technique itself does not assume any prior sparsity requirement and hence can be used in a general 3D imaging

setting. An initial version of this idea was presented in [33].

The paper is organized as follows. Data acquisition types are briefly introduced in Section 2 for GPR and
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Section 3 details several state-of-the-art GPR imaging techniques. The proposed imaging method is presented

in Section 4. Section 5 presents the simulation results with memory and computation load comparisons.

Conclusions are drawn in Section 6.

x = – x o x =  x o

z = –z o

z

Targets

2D Target Space Space – time response

Figure 1. Data acquisition responses for targets at the same depth along the data scanning direction are shifted versions

of each other in the scan direction.

2. GPR data acquisition

GPR data can be collected and displayed in a number of different formats. These are generally represented as

a one-, two-, or three-dimensional dataset, denominated by the acoustic terminology A-, B- and C- scans [34].

Each presentation mode provides a different way of looking at and evaluating the sensed medium.

A single data waveform d (xi , yj , t) recorded with the antennas at a fixed scan position (xi , yj) is

referred to as an A-scan. An example A-scan for GPR is shown in Figure 2. Since the scan position is a fixed

A-scan it is a function of only time and the time delay is related with the depth of the target. A-scans and

their energies are generally used for target detection tests at the corresponding scan positions.

If the GPR antennas are moved along one direction (scanning direction) on a line, one can gather a set of

A-scans, which forms a two-dimensional data set. The collection of A-scans along the x-axis for a fixed yj scan

position as shown in Figure 3 forms the B-scan data. B-scan GPR data are generally shown as two-dimensional

images and mainly represent a vertical slice of data in the ground. Figure 3a shows a representation of a GPR

B-scan data. Figure 3b shows a B-scan image with a hyperbolic response due to a single point reflector.
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Object

t

Figure 2. Representation of a GPR A-scan data [34].
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This hyperbolic response can be easily obtained by the geometry of the scanning system. It is important

to note that this hyperbolic response due to a single target will shift in the scanning direction if the x-position of

the target also shifts. The shape of the hyperbola is the same for targets at the same depth but shape changes

with depth. The hyperbola becomes more flat for deeper targets. The main goal of imaging or migration

procedures is to invert back the hyperbolic responses to single points.

Finally, a collection of multiple parallel B-scans forms the C-scan data. Hence, if the GPR antenna is

moved in the x-y-plane over a regular grid the collected data d (x, y, t) forms the C-scan data. An example

C-scan is shown in Figure 4. For 3D image formation C-scan data are required to be acquired. The next section

details the standard 3D imaging algorithms assuming that this type of C-scan data is collected.

Air ground 

Object 

x 

t 

x 

t 

Antennas 

(a) (b)

Figure 3. (a) Representation of GPR B-scan data, (b) hyperbolic response due to a single point reflector in B-scan

data [34].
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Figure 4. Representation of GPR C-scan data that are a collection of multiple B-scans [34].

3. GPR imaging techniques

3.1. Standard backprojection

Standard backprojection (SBP) is a space-time domain algorithm that performs matched filtering of the

synthetic aperture radar for each point in the space domain. The impulse response of the data acquisition

1246
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process is a spatially variant hyperbolic surface. The SBP algorithm implements the matched filtering as a

coherent summation along all such hyperbolas for every pixel in the image. With an infinite aperture path, the

SBP can be represented as:

f (xn, yn, zn) =

∫∫∫ ∞

−∞
d (ux, uy, t)δ

(
t− 2

c

√
z2n + (yn − uy)

2
+ (xn − ux)

2

)
dtduxduy (1)

where d (ux , uy , t) is the A-scan data collected at point (ux , uy) and f (xn , yn , zn) is the reconstructed

3D image. SBP is a computationally complex algorithm. For 2D processing of an N × N image with N scan

positions, the algorithm performs O((N
3
) computations. For 3D processing of an N × N × N volume with

N2 scan positions, the computational complexity increases to O(N
5
).

Although the SBP is given in the time domain in Eq. (1), similar correlation-based ideas can be applied.

F-K migration or Stolt migration [35] is one of the methods that can be applied in the frequency domain. In

this technique the data is transformed to frequency-k space using Fourier transforms in each time and spatial

dimensions. Stolt interpolation is applied in the frequency domain and the inverse Fourier transform is applied

to obtain the 3D spatial domain. The procedure of F-K migration is briefly given in Figure 5. Although this

method is comparably faster than backprojection, it can be only applied for a homogeneous medium.

3.2. Sparsity-based imaging

Sparsity-based GPR imaging techniques depend on the compressive sensing theory. CS techniques assume that

the target space is sparse, which can be accepted in applications such as landmine detection.

2D Fourier Transform
s(t, y) ( , )

s(t, y) ( , )

Interpolation/ Mapping

= 4 2 − 2

Division
1/(P(w))

2D Inverse FT

( , ) f(x, y)

( , )
f(x, y)

Figure 5. F-K migration method.

CS imaging needs a linear relation with the measurements and the sparsity domain to invert the under-

determined linear system. Such a linear relation can be stated as:

d (ux, uy, f) = ψπT (x, y, z) (2)

In Eq. (2), d (ux, uy, f) is the space frequency measurements, andπT (x, y, z)is the target space and is the

operator defining the transform between two spaces. CS needs to discretize the continuous target space, which

is in [xi , xf ] × [yi , yf ] × [zi , zf ], to construct a linear forward model ψ . Here (xi , yi , zi) and (xf , yf , zf )

denote the initial and final positions of the target space to be imaged. After discretization B = {π1, π2 , . . . ,

πN } , points are obtained where each πj is a 3D vector [xj ; yj ; zj ]. The model data for each frequency/time
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measurement at each scan position can be calculated using a forward data model for each grid point. This

means that a random subset of measurements are taken at each scan position instead of taking all of them.

Additionally, random spatial sampling is shown to produce correct sparse images. In this technique the data

acquisition time is reduced.

It was shown in previous research about CS that stable recovery of the target space can be done by

solving a convex optimization problem of the form:

b̂ = argmin ||b||1 s.t.
∣∣∣∣AT (β −Ab)

∣∣∣∣
∞ < ε1 (3)

where A is the forward model, β is the compressive measurements, and variable b is the resultant target space

solution. Although this type of convex optimization offers globally optimal solutions, they are computationally

complex. Suboptimal solvers such as OMP are generally used to obtain faster sparse solutions. OMP does

not guarantee any global optimal solution, but it is computationally very efficient, and it also has certain

recovery guarantees [36] that make it a robust and preferred technique. OMP iteration relies on projecting

the measurements on dictionary columns and selecting the most correlated column. The measurements are

projected for the span of selected columns and at each iteration the residual is compared to a threshold. If the

residual norm is small enough iterations are terminated and the least squares solution to the span of the selected

columns is given as the output of OMP algorithm. Detailed algorithm steps can be found in the references cited

in the introduction section.

4. Proposed 3D GPR imaging method

The goal of the proposed technique is to provide a 3D display of the sensed medium using the C-scan GPR

data. To develop the proposed technique the sensed medium is first discretized into pixels as shown in Figure 6.

Discretization on the continuous target space in (xa , xb), (ya , yb), (za , zb) creates Nx , Ny , Nz discrete points

in the x, y, and z directions, respectively. The subsurface volume is sensed with GPR on a two-dimensional grid

over the surface. Assume that the antenna has Mx ×My scan positions and at each scan position an A-scan of

the GPR data is measured, resulting in a total C-scan measurement.

Ny

Nx

Nz

Along track (Mx)
Crossrange (My)

Figure 6. Discretized 3D target space and the GPR scan scenario.
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The proposed method depends on the correlation of the measurements with the data model for each

discrete data point. Hence, a dictionary of model data should be used. To generate the data dictionary a

similar procedure as explained in Section 3.2 is followed. The data dictionary is constructed by synthesizing the

GPR model data for each discrete spatial position. Discretization generates a finite set of target points B =

{1,2 , . . . , N } , where N=Nx ×Ny ×Nz determines the resolution and each j is a 3D vector [xj ,yj ,zj ]. The

received signal at the GPR receiver antenna reflected from a point target can be represented as a time-delayed

and scaled version of the transmitted signal s(t ) as

ζi (t) =
σps(t− τi(p))

Ai,p
, (4)

where τi(p)is the total round-trip delay between the antenna at the ith scan point and the target at p , σp is the

reflection coefficient of the target, and Ai,p is a scaling factor used to account for any attenuation and spreading

losses. Hence, the reflected signal for a given element of B using σp = 1 in Eq. (4) can be calculated and placed

in the corresponding column of the dictionary. The dictionary formation procedure is illustrated in Figure 7.

Such a dictionary matrix is also used in sparse imaging algorithms such as CS and OMP.

p  = x  , y  j i i

Stack the model j    column
correspond to

p  = x  , y  j i i

th

Space-time response

Dictionary
matrix

Figure 7. Construction of GPR data model dictionary matrix.

For standard 3D imaging a single column should be placed for each discrete voxel. Hence, the column

number of the dictionary will be N = Nx NyNz . For each possible target point the sensor scans Mx My

spatial positions and at each scan position collects Ntmeasurements. Combining all these measurements makes

up a single column of the dictionary and the size of each column will be MxMyNt by 1. In total the dictionary

size will be MxMyNt by NxNyNz . To emphasize the size of a dictionary for a moderate 3D GPR imaging case,

an example scenario is given. In this example case, let us assume that a 1-m3 volume is to be imaged with

2-cm grid sizes in each direction. Then Nx, Ny, Nz will be 50, making the column number of the dictionary

125,000. Assuming 100 time samples are collected on 20 × 20 scan points results in a dictionary of the size

4 × 104 by 1 .25 × 105 This means a total of 5 × 109 values to be stored for the dictionary. Each point

of the dictionary is a complex number. Each complex number includes real and complex numbers and each

number is a float. In MATLAB, a float variable is kept in memory at 32 bits. This means that each point

of the dictionary requires 64 bits or 8 bytes in the memory. Consequently, the total memory requirement of

the dictionary will be (5 × 109)×8 = 4 × 1010 bytes, which is approximately 37 gigabytes. Even imaging a

moderate volume with practical number of measurements and scan points, storing the dictionary is very hard.

Making computations with it requires dramatic computational power. Compressive sensing decreases the size

of this dictionary depending on the sparsity of the sensed medium, but even with that the dictionary will still
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be large. Additional information about the structure of the dictionary should be used, possibly together with

compressive sensing, to get dictionary sizes that can be used in practical systems.

Our proposed technique uses the shifting structure of the data model in the scan direction to remove

one of the dimensions of the dictionary. In the previous section space-time domain responses of two point-like

targets at the same depth were shown. It can be seen that these responses are space-shifted versions of each

other in the direction of the GPR scan. Our idea is to keep only one of these responses, and hence our goal is

to construct a dictionary for just one slice of target space and represent any correlation calculations using this

dictionary only.

The proposed scenario is shown in Figure 8. Normally GPR scans in the direction y from −y0 to y0

and data models for each data point in 3D space are constructed. In the proposed technique we plan to only

construct the data model for the 2D target space slice shown in Figure 8, which is in the middle of the 3D target

space for the scan direction, which is y = 0 slice.

z= –z

Antenna

0

y = –y 0
y = y0

Figure 8. Dictionary dimension reduction: dictionary is created for only the corresponding target slice.

In this case the problem is how can we represent all the responses of other pixels using only this dictionary.

There the shifting property of data responses comes into play. The target responses for a corresponding (xi , zj ,

0) position of the target slice should be able to represent all 3D pixels at (xi , zj , y). To have such a capability

first we propose to construct the data dictionary for this 2D slice at twice the length in scan direction. Although

GPR scans the region from −y0 to y0 we will model the response for each target point in the 2D slice as the

GPR scans the region from −2y0 to 2y0 . This will make the dictionary for the 2D slice twice as big, but since

it will allow us to get rid of one whole scan dimension, gain in memory will be big. The extension of modeling

in the scan direction is illustrated in Figure 9.

To understand now how we will be able to represent the responses of whole 3D volume using just the

response of a 2D slice, consider first the scenarios shown in Figure 10. In the scenario shown in Figure 10

consider the data response for the target space at the y = y0 slice.

In conventional 3D imaging we would create the data model for this slice as the GPR scans the region

from −y0 to y0 . Using the shifting property, the same data model can be achieved with the 2D dictionary

created for the y = 0 slice; that is, the GPR sensor scans from −2y0 to 0 in the y direction. Similarly for

representing responses of the data slice at y = −y0 , GPR scans from −y0 to y0 can also be done by the

proposed dictionary representation using the part from y = 0 to y = 2y0 . These two cases show that the
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boundaries and data models for all other 3D pixels can be represented by using the corresponding part of the

data model constructed for the 2D slice and modeled from −2y0 to 2y0 .

z = –z

Antenna

0

y =–y
0

y = y 0y = –2y0 y = 2y 0

Figure 9. Modeling twice the length in scan direction for the 2D slice target space.

y = 0

Antenna

y = –2y0 y =–y
0

y = 2y0y = y0
y = 0

Antenna

y =–2y
0

y =–y0 y = 2y0y = y0 0

Figure 10. Parts of the GPR scan that correspond to other 3D target slices in 3D volume.

In summary, instead of creating a dictionary of size MxMyNt by NxNyNz for the conventional 3D

imaging, one dimension of the dictionary is reduced by Ny but the scan size is doubled, so the size of the new

dictionary is now 2 MxMyNt by NxNz . Hence, the total dictionary memory is reduced by Ny/2 times. Since

construction of the dictionary is changed, evaluation of correlations for all 3D voxels using this new dictionary

should also change. The next subsection details constructing the 3D image using the new reduced dictionary.

4.1. 3D imaging using the new reduced dictionary

Our goal is to construct the same 3D image as standard backprojection does using this new reduced dictionary.

To do so we need to correlate the measurements with the dictionary, but now we do not have the data models

for all 3D voxels. The measurement size is MxMyNt by 1 but the size of our dictionary columns are twice

that as 2 MxMyNt . This is illustrated in Figure 11. The j th column of the dictionary corresponds to points

having (xj , zj) with varying y values. The column part from 1 to MxMyNt of this column has the data model

for point (xj , zj , y0), and the column part of 2 to Mx MyNt + 1 corresponds to target (xj , zj , y0 − ∆y)

and shifts like this until the column part of MxMyNt + 1 to 2 MxMyNt that will correspond to target (xj ,

zj , −y0). We need to correlate the measurement with these corresponding column parts to create the related

correlation value that will be the voxel image value in the 3D image. Interestingly, calculating this correlation

for all y values for a specific (x ,z) position is only the convolution of the measurements with the corresponding
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column of the proposed dictionary. Thus, the only thing to create the 3D image with the proposed method is

to convolve the measurements with each column of the dictionary.

2*Nf*Nt

Nx*Nz

*

Nf*Nt

Figure 11. Proposed dictionary and the measurement vector sizes. Correlation is done by convolving the measurement

vector with each column of dictionary.

In classical backprojection for 3D imaging, the computation requires MxMyNt multiplications and

additions for each column. Taking into account having NxNyNz number of columns for the standard dictionary,

the total number of multiplications and additions will be MxMyNtNxNyNz . In the proposed case, NxNz times

a convolution should be applied. The convolution calculations can be applied with FFT which will further reduce

the computational complexity. The proposed technique is also suitable for the OMP algorithm. In that case,

the dictionary will be further reduced due to a low number of random measurements in both time/frequency or

space and the proposed convolution-based technique calculates the correlation values that will also be required

in each OMP iteration. In the next section, simulation results for 3D imaging and comparisons for memory and

computational complexity are given.

5. Experimental results

In this section, a 3D GPR data acquisition system is simulated and the proposed imaging method is tested. To

do this a two-layer stepped frequency continuous wave GPR system is modeled. Start frequency of the system

is chosen as 0 .5 GHz, stop frequency is chosen as 5.5 GHz, and step frequency is chosen as 80 MHz. Frequency

length (Mf ) is thus going to be 63. Hence, at each scan position this GPR system measured 63 complex values

as its measurements. The imaging volume or the 3D target space is taken to be from −0 .5 m to 0 .5 m in x ,

−1 m to 1 m in y , and 0 m to −1 m in the z axis. In each axis the target space is discretized by 2-cm step

sizes creating a pixel volume of 2 × 2 × 2 cm3 . This discretization creates 51 points in the x and z directions

and 101 points in the y direction. In simulation, three point targets are placed at (0, –0.25, –0.13), (0, 0.44,

–0.16), and (0, 0.76, –0.49) positions. The GPR data are simulated with a signal to noise ratio of 20 dB using

a rectangular grid over the surface as the scan positions. The true 3D target space is shown in Figure 12a.

As the proposed method suggests, only the dictionary for the y = 0 slice is constructed assuming that

the GPR scans from −2 m to 2 m in the y direction. The obtained 3D image after applying the proposed

method is shown in Figure 12b. All 3 targets can be seen at their correct locations. The shown image is an

isosurface image of the 3D volume. The proposed technique saved nearly 50 times the memory for this specific

example as compared to standard backprojection.

To compare the memory performance of the classical backprojection and the proposed method, the grid

size used in discretization of the 3D target space is changed and the required dictionary memories for both
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methods are compared. The obtained results are shown in Figure 13a. It can be seen in simulation results that

the proposed method requires much lower memory to save the dictionary as compared to backprojection for

all grid sizes. It can be also observed that decreasing grid size dramatically increases memory requirement of

backprojection while this increase is more limited for the proposed technique.

(a) (b)

Figure 12. (a) True target space, (b) constructed 3D image with the proposed technique.

Another advantage of the proposed method is the computational complexity. The computational load

depends on the discrete target number or correspondingly the column number of the dictionaries. Hence,

the computational load of both methods is compared as the number of spatial points, N , is changed. The

computational comparison is shown in Figure 13b and it can be seen that the proposed method provides a

computational advantage in constructing the 3D image due to inherent convolution calculations.
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Figure 13. Comparison of standard backprojection and the proposed method in terms of (a) memory

requirement and (b) computational load.
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6. Conclusions

A new technique for 3D imaging for time domain or stepped frequency GPR systems is presented. Compared

to the conventional backprojection, which requires creating the data model for each discrete target point in 3D

space, the proposed technique only creates a dictionary for one slice of the target space, creating a dimension

reduction in the scanning direction of the GPR system by using the shifting property of GPR data models in the

down-track scan direction. Similar ideas can also be applied to the cross-track direction as well. In this way the

huge memory requirements for 3D GPR imaging are significantly reduced. The proposed method is also suitable

to be used for sparse representation algorithms such as OMP, and dictionary reduction advantages of OMP such

as random time or space measurements can be incorporated with the proposed method. The proposed technique

also decreases the computational load of the 3D imaging by using convolution-based correlation calculations.

Simulation results show that correct 3D subsurface images could be obtained with the proposed technique. As

a future work, we think that combining the proposed technique with the data reduction ideas of compressive

sensing might result in more practical and successful 3D imaging systems.
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