
Turk J Elec Eng & Comp Sci

(2015) 23: 1294 – 1311

c⃝ TÜBİTAK
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Abstract:The problem of cylindrical wave incidence on a conducting half plane has been considered. A modal solution

for Green’s function of the problem is transformed into contour integral representations in a complex plane. Some

contour deformations and changes of variables are then made for the integrals. Finally, the resultant integrals are

transformed back into a series, which converges rapidly to the exact solution when the observation angles are close to the

reflection/shadow boundaries (RSBs) of the conducting half plane. The multiplicative calculus is employed in deriving

an expression that can be used for obtaining approximate solutions when the observation angles are away from the RSBs

of the conducting half plane. The derived expressions are seen to be very simple for implementing in any computational

environment.

Key words: Diffraction, conducting half plane, half plane screen, Sommerfeld problem, steepest descent method,
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1. Introduction

The wave behavior near the edge of a conducting half plane has many important consequences in high frequency

electromagnetics and acoustics. This famous problem has been considered for about a century by many authors.

An exact solution for the plane wave incidence case was first given in [1]. The given solution involved Fresnel

integrals, which can be evaluated by using the expressions given in mathematical handbooks such as [2].

A more general problem of cylindrical wave incidence on a conducting wedge was considered in [3], where

its solution was given as contour integrals after transforming the modal solution of the problem into some integral

representations. Later on, various asymptotic expansions were obtained from the integral representations by

many authors. Specifically, an edge diffraction coefficient (called so in the terminology of the geometrical theory

of diffraction (GTD)) was developed using asymptotically leading terms of those integral representations and

then making some postulations as given in [4] in 1962. The authors of [5,6] applied a more advanced technique

for the asymptotic evaluations of integrals and derived a more accurate expression for the edge diffraction

coefficient in accordance with a method called the uniform theory of diffraction (UTD). The edge diffraction

coefficient of UTD again involved Fresnel integrals, which have their own computational complexities.

The full details of the computational schemes of GTD and UTD for evaluations of the fields around

a conducting half plane are provided in Section 2 and the computational complexities in those methods are

demonstrated. After that we start from the modal solution of the conducting half plane problem and derive a

new series whose terms involve only elementary functions (sine, cosine, and exponential functions). The newly
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derived series has an interesting property of rapidly converging to the exact solution of the problem when the

observation angles are close to the reflection/shadow boundaries (RSBs) of the conducting half plane. We could

not detect a similar series for the exact solution of the problem in the literature.

In Section 3, we will also consider the complimentary case where the observation angles are away from

the RSBs. We employ the multiplicative calculus [7] to derive an approximate expression that may be used

whenever the series obtained in the first part of this paper is not rapidly convergent, i.e. when the observation

angles are away from the RSBs.

The numerical results are given in Section 4, wherein the fields calculated by employing our expressions

developed in Section 2 and Section 3 are compared with those calculated by using the schemes of GTD and

UTD. The numerical results show that the fields calculated by using our expressions are more accurate than

those calculated by the GTD or UTD methods.

2. Formulations for an exact solution

The electromagnetic waves around the edge of a conducting half plane can be determined by Green’s function of

the problem. There are two cases for Green’s function. The first one is the hard polarization case, wherein the

boundary condition is such that the derivative of Green’s function with respect to the surface normal should be

equal to zero on the surface of the conducting body. This type of boundary condition is also called the Neumann

type boundary condition. The second one is the soft polarization case, wherein the boundary condition is such

that Green’s function itself should be equal to zero on the surface of the conducting body. This type of boundary

condition is also called the Dirichlet type boundary condition. Green’s function in the hard polarization case

has been given as a modal solution [5] in the following form:

Gh(a, b, ϕ, ϕ
′) = g(a, b, ϕ− ϕ′) + g(a, b, ϕ+ ϕ′), (1)

where

g(a, b, β) = 1
2

∞∑
m=0

εmJm/2(ka)H
(2)
m/2(kb) cos (mβ/2), (2)

εm =

{
1 , m = 0

2 , m ≥ 1
, (3)

where the subscript h means hard polarization,b and a denote respectively the distances of the source and

observation points to the edge of the half plane, ϕ′andϕ denote respectively the angles of the source and

observation points with respect to the half plane as shown in Figure 1, k is the wavenumber, Jm/2(ka)denotes

the Bessel function of the first kind, and H
(2)
m/2(kb) denotes the Hankel function of the second kind. Green’s

function in the soft polarization case is equal to that obtained by negating the second term on the right-hand

side in Eq. (1), i.e.:

Gs(a, b, ϕ, ϕ
′) = g(a, b, ϕ− ϕ′)− g(a, b, ϕ+ ϕ′), (4)

where the subscript s means soft polarization.

The axial electric field due to an electric line source of strength Ie will be:

Ez = −ωµ

4
IeGs(a, b, ϕ, ϕ

′), (5)

where µ denotes the permeability constant of the medium.
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Figure 1. The conducting half plane problem. A line source at a point (b, ϕ′) radiates a cylindrical wave and the

field is observed at a point (a, ϕ) . The reflection and shadow boundaries are called the RSBs of the problem. The high

frequency methods have some difficulties for the field calculations near the RSBs.

The axial magnetic field due to a magnetic line source of strength Im is expressible in terms of

Gh(a, b, ϕ, ϕ
′) as in:

Hz =
ωε

4
ImGh(a, b, ϕ, ϕ

′), (6)

where ε denotes the permittivity constant of the medium. Note that Ez in Eq. (5) satisfies the Dirichlet type

boundary condition, whereas Hz in Eq. (6) satisfies the Neumann type boundary condition if the conducting

plane is an electric conductor. If the conducting plane is a magnetic conductor, which is a theoretical concept

and does not exist in nature, then Green’s function in Eq. (5) should be replaced by Gh(a, b, ϕ, ϕ
′) and that in

Eq. (6) should be replaced by Gs(a, b, ϕ, ϕ
′).

We need to focus on the evaluation of the function g(a, b, β) since both hard and soft polarizations

involve this function. Assuming a < b , the problem in the evaluation of this function is the slow convergence

of the series when ka is large. Additionally, the Bessel functions need some computational labor. To avoid

the slow convergence of the series and the intensive calculations of Bessel functions, GTD has developed a

diffraction coefficient. The coefficient was developed essentially by transforming the series of Eq. (2) into a

contour integral and then employing the steepest descent method [8]. According to GTD, the function g(a, b, β)

may be determined simply as a sum of two terms as in:

g(a, b, β) = H
(2)
0

(
k
√
a2 + b2 − 2ab cosβ

)
u(π − β) +

√
2

πkb
eiπ/4−ikbD(β)

1√
a
e−ika, (7)

where D(β) is called the diffraction coefficient of the edge, which is given as follows:

D(β) =
−e−iπ/4

4
√
2πk

(
cot π+β

4 + cot π−β
4

)
=

−e−iπ/4

2
√
2πk cos β

2

, (8)

where u(π − β) is the Heaviside unit step function that equals 1 when β < π , or equals 0 when β > π . The

first term on the right-hand side in Eq. (7) is called an incident wave in the terminology of GTD, while the

second term is called a diffracted wave. One limitation of the GTD is that the frequency (or the wavenumber

k) and the distances (a and b) are postulated to be large. That means it is not possible to use Eq. (7) for

determining the fields close to the edge of the half plane. Another limitation of the GTD is that the diffraction

coefficient D(β) in Eq. (8) loses accuracy as the RSB is approached (when cosβ/2 is small) and indeed it

equals infinity just at the RSB (when cosβ/2 = 0). This deficiency has been solved by the UTD, wherein the
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diffraction coefficient D(β) is given as:

D(β) =
−e−iπ/4

2
√
2πk cos β

2

F
(
2kL cos2 β

2

)
, (9)

where L = ab/(a+ b), and F (X) is called the transition function that is given in terms of a Fresnel integral:

F (X) = 2i
∣∣∣√X

∣∣∣ eiX ∞∫
|√X|

e−iτ2

dτ. (10)

This integral, in turn, has its own computational burden. Namely, approximations for this function are given

as follows:

F (X) ∼=


(∣∣∣√πX

∣∣∣− 2Xeiπ/4 − 2
3X

2e−iπ/4
)
ei(π/4+X) , X < 0.3

1 + i 1
2X − 3

4X2 − i 15
8X3 + 75

16X4 , X > 5.5
, (11)

whereas for intermediate values of the argument, 0.3 ≤ X ≤ 5.5, [9] suggests making linear interpolations by

using the data given in the Table. The implementation of this computational scheme for the calculation of

D(β) in Eq. (7) will be somewhat lengthy. Besides, the expression for the function g(a, b, β) in Eq. (7) is itself

an approximation for the original function given in Eq. (2), so even exact calculations of F (X) do not yield

an exact solution for the overall problem. Only for a plane wave incidence case does the expression of Eq. (7)

become an exact representation, and then exact calculations of F (X) will correspond to the exact solution for

the overall problem.

Table. The values of the transition function F (X) for linear interpolations as recommended by [9].

X F (X)
0.3 0.5729+0.2677i
0.5 0.6768+0.2682i
0.7 0.7439+0.2549i
1.0 0.8095+0.2322i
1.5 0.8730+0.1982i
2.3 0.9240+0.1577i
4.0 0.9658+0.1073i
5.5 0.9797+0.0828i

Now we propose a completely different approach for the calculation of the original function g(a, b, β)

given in Eq. (2). It is possible to partition the series in Eq. (2) into two parts, one being on the even values of

the summation index m and the other being on the odd values of m , as in:

g(a, b, β) = 1
2

∞∑
m=0

ε2mJm(ka)H
(2)
m (kb) cos (mβ) +

∞∑
m=0

J 2m+1
2

(ka)H
(2)
2m+1

2

(kb) cos
(
2m+1

2 β
)
, (12)

where the first summation on the right-hand side can be evaluated exactly upon utilizing the addition theorem

for Hankel functions [2], which can be expressed as:

1
2

∞∑
m=0

ε2mJm(ka)H
(2)
m (kb) cos (mβ) = 1

2H
(2)
0

(
k
√

a2 + b2 − 2ab cosβ
)
. (13)
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By using this property, the function g(a, b, β) becomes:

g(a, b, β) = 1
2H

(2)
0

(
k
√
a2 + b2 − 2ab cosβ

)
+

∞∑
m=0

J 2m+1
2

(ka)H
(2)
2m+1

2

(kb) cos
(
2m+1

2 β
)
. (14)

The product of the Bessel functions can be replaced by a contour integral representation given by [3]:

Jm+1/2(ka)Hm+1/2(kb) = − 1

2π

∫
C

H
(2)
0

(
k
√

a2 + b2 − 2ab cos τ
)
ei(m+1/2)τdτ, (15)

where C denotes a contour in a complex τ plane as shown in Figure 2, where the path starts at 3π/2 + i∞
and ends at −π/2 + i∞ . If we substitute Eq. (15) into the series in Eq. (14), we obtain two geometric series

under the integral operator as follows:

∞∑
m=0

Jm+1/2(ka)H
(2)
m+1/2(kb) cos [(m+ 1/2)β]

= − 1

2π

∞∑
m=0

∫
C

H
(2)
0

(
k
√
a2 + b2 − 2ab cos τ

)
ei(m+1/2)τ cos [(m+ 1/2)β] dτ

= − 1

4π

∫
C

H
(2)
0

(
k
√
a2 + b2 − 2ab cos τ

)( ∞∑
m=0

ei(m+1/2)(τ+β) +
∞∑

m=0

ei(m+1/2)(τ−β)

)
dτ. (16)

�

�

β

branch
point

β–

-planeτ

�

�

�

�

branch
point

ππ– 2π2π– 3π
� �

0

C

CC ‘‘ ‘

2π β–      + 2π β– 2π β+

�

polepole

Figure 2. The poles and branch points of the integrand and the contours C , C′ , and C′′ in the complex τ plane.

Assume the contours C′ and C′′ are joined together at point π/2− i∞ at infinity. The magnitude of the integrand in

the shaded regions is smaller when compared with the magnitudes in the unshaded regions.

We employ the usual geometric series summation formula for the evaluation of the infinite summations in Eq.

(16). For that, the absolute values of the term ei(m+1/2)(τ±β) must be less than one, or equivalently the real

part of iτ must be less than zero. This condition holds on the contour C since it lies on the upper half plane.

We can do the following evaluations:

∞∑
m=0

ei(m+1/2)(τ+β) +

∞∑
m=0

ei(m+1/2)(τ−β)

= ei(τ+β)/2
[
1 + ei(τ+β) + e2i(τ+β) + ...

]
+ ei(τ−β)/2

[
1 + ei(τ−β) + e2i(τ−β) + ...

]
=

ei(τ+β)/2

1− ei(τ+β)
+

ei(τ−β)/2

1− ei(τ−β)
=

i cos β
2 sin τ

2

cos2 β
2 − cos2 τ

2

. (17)
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Then, by substituting Eqs. (16) and (17) into Eq. (14), we get:

g(a, b, β) = 1
2H

(2)
0

(
k
√
a2 + b2 − 2ab cosβ

)
+

1

4πi

∫
C

H
(2)
0

(
k
√
a2 + b2 − 2ab cos τ

) cos β
2 sin τ

2

cos2 β
2 − cos2 τ

2

dτ, (18)

or we can simply write:

g(a, b, β) = 1
2f(β) +

1
4πi

∫
C

f(τ) cos
β
2 sin τ

2

cos2
β
2 − cos2 τ

2

dτ, (19)

where

f(τ) = H
(2)
0

(
k
√

a2 + b2 − 2ab cos τ
)
. (20)

The singularities of the integrand will be somewhat as shown in Figure 2. The poles will be at the points

satisfying the equation cos2 β/2 = cos2 τ/2, which are:

τ = ±β + 2πl; l = 0,±1,±2, ... (21)

The branch points due to the square root function in the argument of the Hankel function in f(τ) will be at

the points satisfying the equation a2 + b2 − 2ab cos τ = 0, which are:

τ = ±i log
a

b
+ 2πl; l = 0,±1,±2, ... (22)

Subsequently, we deform the contour C to C ′ ∪ C ′′ as seen in Figure 2 where C ′ is passing through the point

τ = π , and C ′′ is passing through the origin τ = 0. One of the poles at τ = β or τ = 2π − β will be

swept during the deformation and this sweeping can be accounted as 2πi times the residue of the integrand in

accordance with the Cauchy integral theorem. There are three possibilities: if β < π , then the pole at τ = β

will lie in the interval (0, π) and the residue contribution will be:

2πi lim
τ→β

{
τ − β

4πi

f(τ) cos β
2 sin τ

2

cos2 β
2 − cos2 τ

2

}
= 1

2f(β) cos
β
2 sin β

2 lim
τ→β

1
1
22 cos

τ
2 sin

τ
2

= 1
2f(β); (23)

if β > π , then the pole at τ = 2π− β will lie in the interval (0, π) and so the residue should be evaluated with

respect to this pole as follows:

2πi lim
τ→2π−β

{
τ − 2π + β

4πi

f(τ) cos β
2 sin τ

2

cos2 β
2 − cos2 τ

2

}
= lim

τ→2π−β

1
2f(β) cos

β
2 sin 2π−β

2
1
22 cos

τ
2 sin

τ
2

= −1
2f(β); (24)

if β = π , then the poles at τ = β and τ = 2π − β coincide and the integrand equals exactly zero. That means

the residue contribution will be zero.

As we see, the sign of the answer depends on the magnitude of β . This sign variation is expressible in

terms of the sign function sgn so that the residue contribution will be

1
2f(β)sgn

(
cos β

2

)
(25)
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for any value of β . The function g(a, b, β) after deforming C to C ′ ∪ C ′′ will be

g(a, b, β) = 1
2f(β) +

1
2f(β)sgn

(
cos β

2

)
+

1

4πi

∫
C′

f(τ) cos β
2 sin τ

2

cos2 β
2 − cos2 τ

2

dτ +
1

4πi

∫
C′′

f(τ) cos β
2 sin τ

2

cos2 β
2 − cos2 τ

2

dτ. (26)

One can easily show that the integral along C ′′ must be exactly zero. This is so because the path of C ′′ is

symmetric with respect to the origin on the τ plane, while the integrand is an odd function of τ ; that is:

f(−τ) cos β
2 sin −τ

2

cos2 β
2 − cos2 −τ

2

= −
f(τ) cos β

2 sin τ
2

cos2 β
2 − cos2 τ

2

(27)

and

1

4πi

∫
C′′

f(τ) cos β
2 sin τ

2

cos2 β
2 − cos2 τ

2

dτ =
1

4πi

0∫
π/2−i∞

f(τ) cos β
2 sin τ

2

cos2 β
2 − cos2 τ

2

dτ +
1

4πi

−π/2+i∞∫
0

f(τ) cos β
2 sin τ

2

cos2 β
2 − cos2 τ

2

dτ

=
1

4πi

0∫
−π/2+i∞

f(−τ) cos β
2 sin −τ

2

cos2 β
2 − cos2 −τ

2

(−dτ) +
1

4πi

−π/2+i∞∫
0

f(τ) cos β
2 sin τ

2

cos2 β
2 − cos2 τ

2

dτ

=
1

4πi

0∫
−π/2+i∞

f(τ) cos β
2 sin τ

2

cos2 β
2 − cos2 τ

2

dτ +
1

4πi

−π/2+i∞∫
0

f(τ) cos β
2 sin τ

2

cos2 β
2 − cos2 τ

2

dτ. (28)

The function in Eq. (26) reduces to:

g(a, b, β) = 1
2f(β) +

1
2f(β)sgn

(
cos β

2

)
+ 1

4πi

∫
C′

f(τ) cos
β
2 sin τ

2

cos2
β
2 − cos2 τ

2

dτ. (29)

For the integration along C ′ , it is convenient to make a change of variable, τ = z + π . Then the contour C ′

will be translated to Cz as shown in Figure 3 and Eq. (29) becomes:

2π–

�

�

-planez

π

�

�

�

�

π– 0

z
C

3π– 2ππ β– +
� �

3 π β–  + π β–
� �

π β+
�

π β–     –

Figure 3. The contour Cz in the z plane, which is simply a translation of C′ due to the change of variable τ = z+π .
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g(a, b, β) = 1
2f(β) +

1
2f(β)sgn

(
cos β

2

)
+ I(a, b, β), (30)

where

I(a, b, β) =
1

4πi

∫
Cz

f(z + π)
cos β

2 sin z+π
2

sin2 z+π
2 − sin2 β

2

dz, (31)

or, by using

sin2 z+π
2 = 1− sin2 z

2

1− sin2 β
2 = cos2 β

2

f(z + π) = H
(2)
0

(
k
√
a2 + b2 − 2ab cos(z + π)

)
= H

(2)
0

(
k
√
(a+ b)2 − 4ab sin2 z

2

) (32)

we can write:

I(a, b, β) =
1

4πi

∫
Cz

H
(2)
0

(
k
√
(a+ b)2 − 4ab sin2 z

2

)
cos β

2 cos z
2

cos2 β
2 − sin2 z

2

dz. (33)

Consider a change of variable:

sin z
2 =

∣∣∣cos β
2

∣∣∣ sin w
2

cos z
2dz =

∣∣∣cos β
2

∣∣∣ cos w
2 dw

. (34)

The integral in Eq. (33) with the change of variable becomes:

I(a, b, β) =
1

4πi

∫
Cw

H
(2)
0

(
k
√
(a+ b)2 − 4ab cos2 β

2 sin2 w
2

) cos β
2

∣∣∣cos β
2

∣∣∣ cos w
2

cos2 β
2 − cos2 β

2 sin2 w
2

dw

=
sgn( cos β

2 )

4πi

∫
Cw

H
(2)
0

(
k
√
(a+ b)2 − 4ab cos2 β

2 sin2 w
2

)
dw

cos w
2

. (35)

The contour Cw in the w plane will be somewhat as shown in Figure 4. Cw may be taken to be the image of

the contour Cz under a mapping:

2π  –

�

�

-planew

π

�

�

�

�

π– 0

w
C

3π– 2π
���

Figure 4. The contour Cw in the w plane, which is the image of the contour Cz under a mapping

w = 2 sin−1
(
sin z

2
/
∣∣cos β

2

∣∣) , where Cz is shown in the previous figure.
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w = 2 sin−1
(
sin z

2/
∣∣∣cos β

2

∣∣∣) . (36)

It can be shown that the end points of Cw and Cz are the same, and so are their intersection points with the

real axes as seen from Figures 3 and 4, because:

2 sin−1
[
sin
(

π/2+i∞
2

)
/
∣∣∣cos β

2

∣∣∣] = π/2 + i∞

2 sin−1
[
sin
(
0
2

)
/
∣∣∣cos β

2

∣∣∣] = 0

2 sin−1
[
sin
(

−π/2−i∞
2

)
/
∣∣∣cos β

2

∣∣∣] = −π/2− i∞

. (37)

The poles of the integrand in Eq. (35) will be at the points satisfying the equation cosw/2 = 0, which are:

w = ±π + 2πl; l = 0,±1,±2, ..., (38)

as shown in Figure 4. The branch points will be at the points satisfying the equation (a+b)2−4ab cos2 β
2 sin2 w

2 =

0, which yields a solution:

w = ±π ± i log
a+ b−

√
a2 + b2 − 2ab cosβ

a+ b+
√
a2 + b2 − 2ab cosβ

+ 2πl; l = 0,±1,±2, ... (39)

We proceed by writing an equation:

(a+ b)2 − 4ab cos2 β
2 sin2 w

2 = (p+ q)2 − 4pq sin2 w
2 (40)

and solving it for p and q as follows. It holds if:

a+ b = p+ q

ab cos2 β
2 = pq

. (41)

Therefore, the solution for p and q will be

p = 1
2

(
a+ b−

√
a2 + b2 − 2ab cosβ

)
q = 1

2

(
a+ b+

√
a2 + b2 − 2ab cosβ

) (42)

and Eq. (35) can be written as:

I(a, b, β) =
sgn

(
cos β

2

)
4πi

∫
Cw

H
(2)
0

(
k
√
(p+ q)2 − 4pq sin2 w

2

)
dw

cos w
2

=
sgn

(
cos β

2

)
4πi

∫
Cw

H
(2)
0

(
k
√

p2 + q2 + 2pq cosw
) dw

cos w
2

. (43)

If we deform the contour Cw to C ′
w ∪ C ′′

w as seen in Figure 5, we need to write:
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2π–

�

�

-planew

π

�

�

�

�

0

w
C

3π– 2π
�

w
C ‘‘

w
C‘

π–
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Figure 5. The contours C′
w and C′′

w after the deformation of Cw in the w plane. The pole at w = −π is encircled

one-half times in the clockwise direction by the contour C′′
w and this will amount to a residue contribution that is equal

to −πi times the residue of the integrand at w = −π as calculated in Eq. (45). Assume the contours C′
w and C′′

w are

joined together at point −3π/2 + i∞ at infinity.

I(a, b, β) =
sgn

(
cos β

2

)
4πi

∫
C′

w

H
(2)
0

(
k
√
p2 + q2 + 2pq cosw

) dw

cos w
2

+
sgn

(
cos β

2

)
4πi

∫
C′′

w

H
(2)
0

(
k
√
p2 + q2 + 2pq cosw

) dw

cos w
2

. (44)

Note that a pole at w = −π is encircled 1/2 times in the clockwise direction by the contour C ′′
w . Its contribution

will be equal to −πi times the residue of the integrand, according to the Cauchy integral theorem, which is:

−πi lim
w→−π

(w + π)
sgn

(
cos β

2

)
4πi

H
(2)
0

(
k
√
p2 + q2 + 2pq cosw

) 1

cos w
2


= −1

2sgn
(
cos β

2

)
H

(2)
0

(
k
√
a2 + b2 − 2ab cosβ

)
= − 1

2sgn
(
cos β

2

)
f(β). (45)

Hence, I(a, b, β) becomes:

I(a, b, β) = − 1
2sgn

(
cos β

2

)
f(β)

+
sgn

(
cos β

2

)
4πi

∫
C′

w

H
(2)
0

(
k
√
p2 + q2 + 2pq cosw

) dw

cos w
2

. (46)

Let us make a change of variable w = τ − π in this integral. Then C ′
w becomes C in the τ plane (shown in
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Figure 2), and I(a, b, β) becomes:

I(a, b, β) = −1
2sgn

(
cos β

2

)
f(β) +

sgn

(
cos

β
2

)
4πi

∫
C

H
(2)
0

(
k
√

p2 + q2 + 2pq cos(τ − π)
)

dτ

cos
τ−π
2

= −1
2sgn

(
cos β

2

)
f(β) +

sgn

(
cos

β
2

)
4πi

∫
C

H
(2)
0

(
k
√

p2 + q2 + 2pq cos τ
)

dτ

sin
τ
2
. (47)

After substituting Eq. (47) into Eq. (30), we get:

g(a, b, β) = 1
2f(β) +

sgn

(
cos

β
2

)
4πi

∫
C

H
(2)
0

(
k
√
p2 + q2 − 2pq cos τ

)
dτ

sin
τ
2
. (48)

If we expand 1/ sin(τ/2) into a series

1

sin τ
2

=
2i

eiτ/2 − e−iτ/2
= −2ieiτ/2

1

1− eiτ
= −2ieiτ/2

(
1 + eiτ + e2iτ + ...

)
= −2i

∞∑
m=0

ei(2m+1)τ/2 (49)

because
∣∣ei(2m+1)τ/2

∣∣ < 1onC , then g(a, b, β) becomes:

g(a, b, β) = 1
2f(β) +

sgn

(
cos

β
2

)
4πi

∫
C

H
(2)
0

(
k
√

p2 + q2 − 2pq cos τ
)(

−2i
∞∑

m=0
ei(2m+1)τ/2

)
dτ

= 1
2f(β)−

sgn

(
cos

β
2

)
2π

∞∑
m=0

∫
C

H
(2)
0

(
k
√
p2 + q2 − 2pq cos τ

)
ei(m+1/2)τdτ. (50)

Now we can replace the integral by products of the Bessel functions by employing Eq. (15) in the reverse

direction: ∫
C

H
(2)
0

(
k
√

p2 + q2 − 2pq cos τ
)
ei(m+1/2)τdτ = −2π

∞∑
m=0

Jm+1/2(kp)Hm+1/2(kq), (51)

which leads to:
g(a, b, β) = 1

2f(β) + sgn
(
cos β

2

) ∞∑
m=0

Jm+1/2(kp)Hm+1/2(kq), (52)

or, using Eq. (20) and Eq. (42):

g(a, b, β) = 1
2H

(2)
0

(
k
√
a2 + b2 − 2ab cosβ

)
+ sgn

(
cos β

2

)
·

∞∑
m=0

Jm+1/2

[
k
2

(
a+ b−

√
a2 + b2 − 2ab cosβ

)]
H

(2)
m+1/2

[
k
2

(
a+ b+

√
a2 + b2 − 2ab cosβ

)]
, (53)

which will be convenient for numerical computations when β is close to the RSB. The convergence of this series

will speed up as the RSB is approached (when β → ±π). More interestingly, it is valid even if the distances

to the edge (a , b , or both of them) are lowered. This behavior is in contrast to all high frequency methods

wherein, as a postulation, those distances should be large in terms of the wavelength. Such a representation for
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conducting half plane problems does not exist in the literature and it must be novel. Note that we have not

made any approximation and g(a, b, β) in Eq. (53) is still an exact representation.

The Bessel functions of half-integer order, as in Eq. (53), are expressible in terms of elementary functions

as follows [2]:

J
m+

1
2
(z) =

√
2z√
π
zm
(
− 1

zDz

)m { sin z
z

}
H

(2)

m+
1
2

(z) =
√
2z√
π
zm
(
− 1

zDz

)m { ie−iz

z

} , (54)

where Dz means the differentiation operator with respect to z . A few of those functions, which we use in our

numerical calculations, are as follows.

J0.5(z) =
√
2z

z
√
π
sin z

J1.5(z) =
−
√
2z

z2
√
π
[z cos z − sin z]

J2.5(z) =
−
√
2z

z3
√
π

[ (
z2 − 3

)
sin z + 3z cos z

]
J3.5(z) =

√
2z

z4
√
π

[(
z3 − 15z

)
cos z −

(
6z2 − 15

)
sin z

]
J4.5(z) =

√
2z

z5
√
π

[(
z4 − 45z2 + 105

)
sin z −

(
105z − 10z3

)
cos z

]
J5.5(z) =

−
√
2z

z6
√
π

[(
z5 − 105z3 + 945z

)
cos z −

(
15z4 − 420z2 + 945

)
sin z

]

(55)

H
(2)
0.5 (z) =

i
√
2ze−iz

z
√
π

H
(2)
1.5 (z) =

i
√
2ze−iz

z2
√
π

(1 + iz)

H
(2)
2.5 (z) =

i
√
2ze−iz

z3
√
π

(
−z2 + 3iz + 3

)
H

(2)
3.5 (z) =

i
√
2ze−iz

z4
√
π

(
−iz3 − 6z2 + 15iz + 15

)
H

(2)
4.5 (z) =

i
√
2ze−iz

z5
√
π

(
z4 − 10iz3 − 45z2 + 105iz + 105

)
H

(2)
5.5 (z) =

i
√
2ze−iz

z6
√
π

(
iz5 + 15z4 − 105iz3 − 420z2 + 945iz + 945

)

(56)

3. Formulations for an approximate solution

When β is not close to the RSB, the expression in Eq. (53) does not give an appreciable advantage. In such

a case one may employ the conventional GTD or UTD techniques wherein g(a, b, β) may be determined via

Eq. (7) and the approximations given in Section 2. Alternatively, we can derive a more accurate expression

by employing the steepest descent method to the integral in Eq. (43). To begin with, we need to replace the

Hankel function by an asymptotically leading term:

H
(2)
0

(
k
√

p2 + q2 + 2pq cosw
)
∼=

√
2i

πk(p+ q)

e−ik(p+q)
√

1−4M sin2 w/2(
1− 4M sin2 w

2

)1/4 ; as p+ q → ∞, (57)

where

M =
pq

(p+ q)2
, (58)

1305



UZER/Turk J Elec Eng & Comp Sci

and so I(a, b, β) in Eq. (43) can be written as

I(a, b, β) ∼=
sgn

(
cos β

2

)
4πi

√
2i

πk(p+ q)
J(p, q, β), (59)

where

J(p, q, β) =

∫
Cw

e
−ik(p+q)

√
1−4M sin2 w

2(
1− 4M sin2 w

2

)1/4 dw

cos w
2

(60)

is to be evaluated as p+ q → ∞ by using the steepest descent method [8]. Let us make a change of variable:

s = e3iπ/4 sin w
2

ds = e3iπ/4 1
2 cos

w
2 dw

. (61)

This will map the critical points (the end points and the origin) of the contour Cw onto the real axis since

e3iπ/4 sin π/2+i∞
2 = −∞

e3iπ/4 sin 0
2 = 0

e3iπ/4 sin −π/2−i∞
2 = ∞

(62)

so that J(p, q, β) becomes an integral along the real axis:

J(p, q, β) ∼=
∞∫

−∞

e−ik(p+q)
√
1−4iMs2

(1− 4iMs2)
1/4

2e−3iπ/4ds

1− is2
. (63)

Note that s = 0 is a saddle point and, therefore, we need to expand the amplitude and phase terms into Taylor

series. An alternative way for achieving a more accurate expansion, according to our experience, is to employ

the multiplicative calculus [7] when making expansions for the functions. The Taylor “series” expansion in the

classical calculus is analogous to a Taylor “product” expansion in the multiplicative calculus. In the sense of

the multiplicative calculus, we can do the Taylor product expansions as follows:

1

1− is2
= e− log(1−is2) = eis

2−s4/2−is6/3+O(s8), (64)

e−ik(p+q)
√
1−4iMs2

(1− 4iMs2)
1/4

= e−ik(p+q)
√
1−4iMs2− 1

4 log
(
1− 4iMs2

)
= e−ik(p+q)−(2k(p+q)−i)Ms2−2(ik(p+q)+1)M2s4−4(−k(p+q)+4i/3)M3s6+O(s8), (65)

where O denotes the Landau symbol. Then J(p, q, β) becomes

J(p, q, β) ∼= 2e−3iπ/4−ik(p+q)

∞∫
−∞

e−c2s
2−c4s

4−c6s
6+O(s8)ds, (66)
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where the coefficients are:

c2 = (2k(p+ q)− i) pq
(p+q)2 − i

c4 = 2 (ik(p+ q) + 1) p2q2

(p+q)4 + 1
2

c6 = 4
(
−k(p+ q) + 4i

3

)
p3q3

(p+q)6 + i
3

. (67)

It can be shown that

e−c2s
2−c4s

4−c6s
6+O(s8) = e−c2s

2

− c4s
4e−(c2−c6/c4)s

2

+O(s8). (68)

The proof can be given simply by expanding both sides of the equation into power series in s and then collecting

the same powers of s . By substituting Eq. (68) into Eq. (66), we obtain:

J(p, q, β) ∼= 2e−3iπ/4−ik(p+q)

∞∫
−∞

e−c2s
2

ds− 2e−3iπ/4−ik(p+q)c4

∞∫
−∞

s4e−(c2−c6/c4)s
2

ds. (69)

Such integrals can be evaluated by using identities given in [2]:

∞∫
−∞

e−κx2

dx =
√
π√
κ

∞∫
−∞

x4e−κx2

dx = ∂2

∂κ2

{
∞∫

−∞
e−κx2

dx

}
= ∂2

∂κ2

{√
π√
κ

}
= 3

4

√
π

κ2.5

, (70)

provided Re {κ} > 0. The answers are found to be

J(p, q, β) ∼=
2e−3iπ/4−ik(p+q)

√
π

√
c2

−
2e−3iπ/4−ik(p+q)c4

3
4

√
π

(c2 − c6/c4)
2.5

= 2e−3iπ/4−ik(p+q)
√
π

[
1

√
c2

−
3
4c4

(c2 − c6/c4)
2.5

]
. (71)

Finally, by substituting Eqs. (71), (60), and (59) into Eq. (30), we get:

g(a, b, β) ∼= 1
2H

(2)
0

(
k
√
a2 + b2 − 2ab cosβ

)
+1

2H
(2)
0

(
k
√
a2 + b2 − 2ab cosβ

)
sgn

(
cos β

2

)
−

sgn

(
cos

β
2

)
e−ik(p+q)

π
√

2k(p+q)

[
1√
c2

−
3
4c4

(c2−c6/c4)
2.5

]
, (72)

or, using an identity sgn(t) = 2u(t)− 1, we can write:

g(a, b, β) ∼= H
(2)
0

(
k
√
a2 + b2 − 2ab cosβ

)
u
(
cos β

2

)

−
sgn

(
cos β

2

)
e−ik(p+q)

π
√
2k(p+ q)

[
1

√
c2

−
3
4c4

(c2 − c6/c4)
2.5

]
. (73)

This will be convenient for numerical computations whenever Eq. (53) is not rapidly convergent. The accuracies

of Eqs. (53) and (73) for various cases are compared in the next section.
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4. Numerical results

Numerical results were obtained for a half plane problem in the case of a perfect electric conductor existing on

the ϕ = 0◦ plane as shown in Figure 1. When the source was an electric current, we used Green’s function in

Eq. (4) for calculating the electric fields from Eq. (5); when the source was a magnetic current we used Green’s

function in Eq. (1) for calculating the magnetic fields from Eq. (6). The exact solutions, Eexact
z or Hexact

z ,

were obtained by summing up the terms of the original series given for g(a, b, β) in Eq. (2) until the magnitudes

of the new terms relative to the total sum became less than 10−15 . The exact results were compared with our

approximate calculations, wherein g(a, b, β) was calculated by using only 5 terms in Eq. (53) whenever kp ≤ 2,

or using Eq. (73) whenever kp > 2. We also implemented the schemes of GTD and UTD for obtaining g(a, b, β)

via Eq. (7) and the approximations given in Section 2; the corresponding fields were calculated for comparison.

The accuracies of the fields were compared as relative errors with respect to the exact solution, which can be

expressed as

εr =
∣∣Ez − Eexact

z

∣∣ / ∣∣Eexact
z

∣∣ (74)

or

εr =
∣∣Hz −Hexact

z

∣∣ / ∣∣Hexact
z

∣∣ . (75)

When the parameters of the conducting half plane problem (shown in Figure 1) were k = 1rad/m , a = 50m, b =

60m , and ϕ′ = 30◦ and the fields were observed at 0 ≤ ϕ ≤ 360◦ for an electric current filament Ie = 1A ,

the electric fields were found as shown in Figure 6. Our results and those of the UTD overlapped with the

exact solution, whereas those of the GTD diverged close to the RSB at ϕ = 150◦ and ϕ = 210◦ as expected.

The accuracies of the three results were compared, as shown in Figure 7; our results were fairly accurate when

compared with the results of the GTD and UTD.
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Figure 6. The electric field magnitudes for a line source

Ie = 1A , k = 1rad/m , a = 50m , b = 60m , and ϕ′ = 30◦

versus the angle ϕ .

Figure 7. The relative errors of electric fields in the case

mentioned in the previous figure versus the angle ϕ .

We also considered the case of the source in the problem mentioned above being a magnetic current

filament Im = 1V . Then the boundary conditions were of the hard polarization type. Correspondingly, the

magnetic fields for parameters k = 1rad/m , a = 50m , b = 60m , ϕ′ = 30◦ , and 0 ≤ ϕ ≤ 360◦ were calculated

as shown in Figure 8. Again, we see that our results and those of the UTD are indistinguishable from the exact

solution. However, the fields of the GTD become inaccurate near the RSB at ϕ = 150◦ and ϕ = 210◦ , as

was the case in the previously considered problem. The accuracies of the results were compared as shown in

Figure 9. We can conclude from Figure 9 and also from Figure 7 that the fields calculated from the scheme in
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this paper are as accurate as the fields calculated from the scheme of the UTD, whose implementation involves

calculations of the Fresnel integrals.
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Figure 8. The magnetic field magnitudes for a line source

Im = 1V , k = 1rad/m , a = 50m , b = 60m , and ϕ′ = 30◦

versus the angle ϕ .

Figure 9. The relative errors of magnetic fields in the

case mentioned in the previous figure versus the angle ϕ .

In the next example, we consider a case of the field observation point being too close to the edge, i.e.

when ka is too small. The parameters of the conducting half plane problem were chosen to be k = 1rad/m ,

a = 0.5m , b = 60m , and ϕ′ = 30◦and the fields were observed at 0 ≤ ϕ ≤ 360◦ for an electric current filament

Ie = 1A . The corresponding electric fields were calculated as shown in Figure 10. We see that the curves of

our results and those of the UTD almost overlap with the curve of the exact results, but those of the GTD

diverge completely. A comparison between the accuracies of results was made as shown in Figure 11. The figure

shows that our results are much more accurate than the results of the UTD. Namely, a relative error of 10−6 is

numerically equivalent to 6 significant digits of accuracy, and therefore our results are very accurate.
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Figure 10. The electric field magnitudes for a line source

Ie = 1A , k = 1rad/m , a = 0.5m , b = 60m , and ϕ′ = 30◦

versus the angle ϕ .

Figure 11. The relative errors of electric fields in the case

mentioned in the previous figure versus the angle ϕ .

Finally, we calculated the fields in the case of the current source in the preceding problem being a magnetic

current filament, while the other parameters were the same at k = 1rad/m , a = 0.5m , b = 60m , and ϕ′ = 30◦ ,

and the fields were observed at 0 ≤ ϕ ≤ 360◦ for a magnetic current filament Im = 1V . The magnetic fields

were obtained as shown in Figure 12. We see again that our results and those of the UTD overlap, but those

of the GTD are completely inaccurate. The relative errors of the fields for this case of the problem are given in

Figure 13. We see that our numerical results in the worst case are accurate up to 6 significant digits.
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Figure 12. The magnetic field magnitudes for a line

source Im = 1V , k = 1rad/m , a = 0.5m , b = 60m ,

and ϕ′ = 30◦ versus the angle ϕ .

Figure 13. The relative errors of magnetic fields in the

case mentioned in the previous figure versus the angle ϕ .

5. Conclusion

The asymptotic techniques in the literature such as the GTD and UTD have a limitation that the wavenumber k

must be large or, equivalently, the frequency must be high. The calculations of the fields near the RSB also have

some computational complexities as mentioned previously. We started from the modal solution of the problem

and after some transformations, but without making any approximation, we developed a rapidly convergent

series (Eq. (53)) that may be used in calculating the fields near the RSB even in the low frequency case. The

terms of the series are seen to be expressible in terms of the elementary functions such as sine, cosine, and

exponential functions, and therefore the summation process can be implemented easily on any computational

environment.

The only limitation regarding the rapid convergence of the series in Eq. (53) is that the observation angle

must be close to the RSB. For a case of the observation angle being away from the RSB, one can use the very

simple expression in Eq. (73). The numerical results have shown that Eqs. (53) and (73) together yield very

accurate results for electric or magnetic fields when compared with those obtainable by the schemes of GTD

and UTD.

The ideas related to contour deformations when deriving Eq. (53) may be extended to other canonical

problems such as diffraction by a conducting wedge or scattering by a conducting cylinder. We also demonstrated

a practical application of the multiplicative calculus in the steepest descent method. When deriving Eq. (73), we

evaluate an integral approximately by expanding the integrand into a Taylor “product” expansion in the sense of

the multiplicative calculus. We assume that the usage of Taylor product approximations in the steepest descent

method is novel since we could not detect a similar technique in the literature. The multiplicative calculus may

be advantageous in many cases in electromagnetics. It may be used to improve several high frequency methods

or asymptotic techniques that employ any one of the steepest descent or stationary phase methods.
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