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Abstract: The aim of this work is to developing sliding mode control of active and reactive stator powers produced by

a wind energy conversion system (WECS), based on doubly fed induction generator (DFIG). A flux estimation model

and rotor current sensor are no longer required. The controller is developed from the DFIG nonlinear-coupled model.

Moreover, the global stability and the DFIG states’ boundedness when our low-cost sliding mode control is applied are

established analytically. It is revealed that the (dq) components of the rotor flux remain near their nominal values. Our

approach is validated via simulation in the case of a WECS based on DFIG rating at 1.5 MW. The robustness and the

performances are verified with the presence of parametric variations and disturbances in the case of an unbalanced grid.

Key words: Doubly fed induction generator, robustness and stability, sliding mode control, rotor current sensorless,

wind energy conversion system

1. Introduction

During the past years, more attention and interest have been paid to wind energy utilization due to its economic

and environment advantages. Indeed, by the end of 2011, 238.5 GW of wind turbine capacity was installed across

the world [1]. Nowadays, many wind farms are based on doubly fed induction generator (DFIG) technology

due to its advantages compared to others generators, where the dimension of the electronic power converter is

reduced to about 25% to 30% of the generator rating, which leads to lower converter costs and power losses [2].

Several research works have been undertaken to enhance the operation efficiency of wind energy conversion

systems (WECSs) [2–19]. It is well established that a DFIG-based WECS, acting under variable speed, allows

extraction of the maximum available wind power [5–7]. For this goal, various methods have been presented in

the literature. Among them, we highlight the direct control of the rotor current scheme [8], direct torque control

[9,10], torque and reactive stator power control [11,12], active and reactive stator power control [2–4,13–18],

and speed control [19]. To overcome the drawbacks of this last one, the speed and reactive stator power or

flux control can be also considered. Practice in this field has shown that stator power control is more efficient

because it allows us to directly impose the power factor and to easily limit the active power transient from the

WECS in the case of overpowering.

The vector control (VC) method is the classical stator power control of a WECS based on a DFIG.

This control scheme is generally derived from a simplified and decoupled DFIG model [3,4,13,14,18] where
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some existing interactions are simply ignored. This VC control exhibits low performances and low robustness

compared to those of control methods based on the DFIG nonlinear model.

For this, two main methods have been proposed. One is based on the optimal switching table of the

switches’ states related to the rotor side converter where the control errors of the stator powers are minimized

using the DFIG electrical states [2,16,17]. This method is valid only in the case of the conventional DC/AC

converter and requires complicated online calculations, and it displays oscillations when the generator operates

near its synchronous speed [15]. The second method concerns sliding mode control (SMC) [15]. In this work, the

controller is derived in the stator reference frame. This latter one is independent of the angular position of the

vector, related to some electrical quantities, which is essential when a synchronous coordinate transformation

is used.

The classical method applied to estimate the stator or rotor flux, incorporating an integral function,

displays high sensibility to stator or rotor resistance variations. Therefore, the estimated flux can deviate

greatly from its real value. All control methods mentioned above require rotor current sensors.

In order to avoid the problem caused by the classical method of flux estimation, eliminating the rotor

current sensors and keeping the same performances and robustness as in [15], we intend in our work to elaborate

on the SMC of the stator powers based on a nonlinear state space model of a DFIG. The state vector contains

the stator powers, the rotor flux, and rotor speed pulsation. The control law is computed using the nominal dq

flux components instead of real ones. Notice that in our approach, a rotor flux estimation model is not used.

It is also worth noticing that the problems related to the global stability of the control and the boundedness

of DFIG states are not treated in the majority of papers, including [2–4,8–19]. In order to highlight the viability

of the proposed approach, the global stability and the boundedness of the DFIG electrical states are established.

The paper is organized as follows: in Section 2, the considered WECS is described concisely and some

important details about its operation are given. Moreover, the state model of the DFIG is presented, from which

the dynamics of the output are derived. This model allows us to determine the nominal rotor flux components.

Section 3 is devoted to the SMC of the stator powers, where the ideal control law and the proposed control

based on the nominal rotor flux components are developed. In this same section, the stability and robustness

of the proposed control law are studied. Discussion of the states’ boundedness and trajectories when this plant

is driven by the proposed SMC is carried out in Section 4. The simulation results and their analysis, related to

the considered WECS based on a DFIG of 1.5 MW power rating, are given in Section 5.

2. The considered WECS

2.1. Preliminary considerations

The scheme of the used WECS-based DFIG is given in Figure 1, where the stator is directly connected to the

grid and the rotor windings are also coupled to the network through an AC/AC converter. Under the effect

of the wind, the turbine produces a torque τw on its shaft that rotates at speed ωw . Due to the effect of the

multiplier, with coefficient mc , the speed related to the shaft generator ωG is augmented and the torque of the

shaft generator τG is reduced such that:

ωG = mcωw; τG = τw/mc. (1)

Torque τw and mechanical power Pw extracted from the wind can be calculated as follows:

τw = Pw/ωw, (2)

1699



DJOUDI et al./Turk J Elec Eng & Comp Sci

Figure 1. Scheme of the considered wind turbine system.

Pw =
1

2
πρCp (β, λ)R

2V 3
w ; λ = Rωw/Vw, (3)

where ρ,R , and λ are respectively the air density, the wind turbine radius, and the ratio of the blade tip speed

to wind speed Vw . Moreover, the coefficient Cp is related to the characteristic of the wind turbine and it

depends on the ratio λ and the inclination of the blades β .

The maximum power point tracking (MPPT) algorithm is exploited to detect the active stator power

reference Pref necessary to maintain the coefficient Cp at its maximal value in order to extract the maximum

power from the wind turbine. The reactive stator power reference Qref is given to get the desired power factor.

SMC allows us to force the stator powers (Ps, Qs) to track their respective references (Pref , Qref ). In our

case, the control law is computed using electric variables referred to as the synchronous reference frame (d, q)

We assume that the AC grid voltages (vasvbsvcs) and the DFIG stator currents (iasibsics) are measured and

projected on the (dq) axis to respectively obtain (vdsvqs) and (idsiqs). The real components of the DFIG rotor

flux (φdrφqr) are substituted by their nominal values (φ̄drφ̄qr). Moreover, the DFIG stator powers (Ps, Qs) are

deduced from measurements of stator currents and voltages. Speed ωG of the generator shaft is also measured.

The SMC synthesizes the desired rotor voltage sources (vdrvqr) corresponding in three-phase form

(varvbrvcr), which are used in the PWM block to generate the control impulses in order to drive the AC/AC

converter.
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2.2. DFIG state space model

In order to control the DFIG, its state space model is carried out in the (d, q) reference frame linked to the

vector of stator voltage that is represented by the components (vdsvqs). The considered state vector gathers the

components of rotor currents (idriqr), the rotor flux (φdr, φqr), and the rotor rotating pulsation ω . Moreover,

the rotor voltage components (vdrvqr) are the vector control. The wind turbine exerts a τG torque on the

generator shaft, and all frictions on this shaft are taken into account via the τvis torque.

Therefore, the state vector X and the control vector U are respectively given by:

X = (x1, x2, x3, x4, x5)
T
= (idr, iqr, φdr, φqr, ω)

T
and U = (vdr, vqr)

T
.

Using our notation, the state model of the DFIG (see Appendix A; on the journal’s website) is as given in Eq.

(4). 

ẋ1=f1 (X)+a3vdr; f1=−a1x1+ωsx2+a2x3−a3x5x4−a4vds

ẋ2=f2 (X)+a3vqr; f2= −ωsx1−a1x2+a2x4+a3x5x3−a4vqs

ẋ3=f3 (X)+vdr; f3= −bx1+ωsx4−x5x4

ẋ4=f4 (X)+vqr; f4= −bx2−ωsx3+x5x3

ẋ5=f5 (X)+c2 (τvis+τG) ; f5=c1 (x4x1−x3x2)

(4)

The positive coefficients of the system in Eq. (4) are given by the following:

a1=

(
1

σTs
+

1

σTr

)
a2=

1

σLrTs
, a3=

1

σLr
,

a4=
(1−σ)

σLm
, b=Rr, c1=

P 2

J
, c2=

P

J
, σ= 1− L2

m

LsLr
.

These coefficients are related to the following machine parameters:

Rr,Rs: rotor and stator resistances.

Lr,Ls,Lm: rotor, stator, and mutual inductances.

P : number of pole pairs.

J : rotor turbine inertia.

Tr,Ts: rotor and stator time constant.

σ: dispersion flux coefficient.

ωs : stator pulsation.

We assume a perfect orientation of the (q) axis along the stator voltage (vds = 0). Therefore, the active

and reactive stator powers of the DFIG are reduced to the following expressions:{
Ps= −d1x2+d2x4

Qs= −d1x1+d2x3

, (5)

with:

d1=
Lr

Lm
vqs,d2=

vqs
Lm

. (6)
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2.3. Dynamics of the output

From the DFIG state model, we can derive the following control model:{
Ż=g (Z,U) ; Z=(Ps,Qs,x3,x4,x5)

T
,U=(vdr,vqr)

T

Y=h (Z) ; Y=(Ps,Qs)
T

. (7a)

Indeed, from Eq. (5), we have:  x2=
d2x4−Ps

d1

x1=
d2x3−Qs

d1

. (7b)

The derivative times of Ps, Qs are given by Eq. (7c) as: Ṗs= −d1ẋ2+d2ẋ4

Q̇s= −d1ẋ1+d2ẋ3

. (7c)

Using the last equation system, the dynamics of Ps, Qs are obtained by substituting ẋ1ẋ2ẋ3ẋ4 by their

expressions given in Eq. (4) and x1, x2 by their relations given in Eq. (7b). The dynamics of x3, x4, x5 ,

based on Z , are obtained via replacing x1, x2 by their expressions from Eq. (7b) in the three last equations of

Eq. (4).

Thus, the state model based on the state vector Z is as follows:

Ṗs= −ξ1Ps−ωsQs−ξ2x5x3+ξ3x4+ξ4vqs−ξ2vqr

Q̇s=ωsPs−ξ1Qs+ξ3x3+ξ2x5x4+ξ4vds−ξ2vdr

ẋ3=γ1Qs−γ2x3+(ωs−x5)x4+vdr

ẋ4=γ1Ps−γ2x4− (ωs−x5)x3+vqr

ẋ5=
C1

d1
(x3Ps−x4Qs)+c2 (τvis+τG)

, (8)

where the positive coefficients of the system of Eq. (8) are given by:

ξ1=
1

σTs
+
(1−σ)

σTr
; ξ2=

(1−σ)

σLm
vqs; ξ3=

(1−σ)

σLmTr
vqs; ξ4=

(1−σ)Lr

σL2
m

vqs; γ1=
Lm

Trvqs
; γ2=

1

Tr
.

It is worth noticing that the dynamic model of Eq. (8) is independent of the rotor currents.

2.4. Nominal rotor flux

We intend, in this section, to determine the nominal values (φ̄drφ̄qr) of the rotor flux components. These values

will be used in place of the real value (x3,x4) in order to later calculate the proposed control law.

With this target, we consider that the system of Eq. (8) is in a steady-state regime under the nominal

stator voltage, and the rotor short circuits without load torque. Under these conditions, Eq. (8) is reduced to:

−ξ1Ps−ωsQs−ξ2x5x3+ξ3x4+ξ4vqs= 0

ωsPs−ξ1Qs+ξ3x3+ξ2x5x4+ξ4vds= 0

γ1Qs−γ2x3+(ωs−x5)x4= 0

γ1Ps−γ2x4− (ωs−x5)x3= 0

x5=ωs

, (9)
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which can be rewritten in the following form:
−ξ2ωsx3+ξ3x4=ξ1Ps+ωsQs−ξ4vqs

ξ3x3+ξ2ωsx4=−ωsPs+ξ1Qs

γ2x3=γ1Qs

γ2x4=γ1Ps

. (10)

The powers (PsQs) can be deduced, from the first two equations, as:

(
Ps

Qs

)
=

(
ξ1 ωs

−ωs ξ1

)−1{( −ξ2ωs ξ3

ξ3 ξ2ωs

)(
x3

x4

)
+

(
ξ4vqs

0

)}
. (11)

By replacing (Ps,Qs), in the two last equations of Eq. (10) by their expressions from Eq. (11), we obtain:

(
γ2 0
0 γ2

)(
x3

x4

)
=

(
γ1 0
0 γ1

)(
ξ1 ωs

−ωs ξ1

)−1{( −ξ2ωs ξ3
ξ3 ξ2ωs

)(
x3

x4

)
+

(
ξ4vqs
0

)}
(12)

The solution of the system of Eq. (12) related to (x3,x4) allows us to determine the nominal rotor flux values

as follows:

φ̄dr=

√
3

2

(γ2N−H1N )γ1Nξ4N |vs|
γ2
2N−H2

1N−H2
2N

, φ̄qr=

√
3

2

−H2Nγ1Nξ4N |vs|
γ2
2N−H2

1N−H2
2N

, (13)

where:

H1=
ωsγ1(ξ1ξ2+ξ3)

ξ21+ω2
s

,H2= −γ1(ξ1ξ3−ξ2ω
2
s)

ξ21+ω2
s

. (14)

γ1N , γ2N , ξ4N ,H1N , and H2N stand respectively for γ1, γ2, ξ4,H1 , and H2 in the case of DFIG nominal

parameters.

3. Determination of the sliding mode control

3.1. In ideal case

In this section, based on the DFIG nonlinear state space model of Eq. (8), we intend to develop a SMC of stator

powers in order to force the outputs Ps and Qs tracking their respective references, Pref and Qref . First, this

control law is established in the ideal case (i.e. absence of disturbances and parametric variations).

The sliding surface vector S=(S1,S2)
T

is taken as the tracking control error of the output vector [20]:{
S1=Ps−Pref

S2=Qs−Qref

. (15)

We assume that Pref , Qref , and their temporal derivatives Ṗref and Q̇ref are bounded and available. Using

Eq. (14), the dynamics of the sliding surface vector S are given by:{
Ṡ1=Ṗs−Ṗref

Ṡ2=Q̇s−Q̇ref

, (16)
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with: {
Ṗs−Ṗref= −ξ1Ps−ωsQs−ξ2x5x3+ξ3x4+ξ4vqs−Ṗref−ξ2vqr

Q̇s−Q̇ref=ωsPs−ξ1Qs+ξ3x3+ξ2x5x4+ξ4vds−Q̇ref−ξ2vdr
. (17)

On the other hand: {
Ṡ1= −B1−ξ2vqr

Ṡ2= −B2−ξ2vdr
, (18)

with:  B1= −(−ξ1Ps−ωsQs−ξ2x5x3+ξ3x4+ξ4vqs−Ṗref )

B2= −
(
ωsPs−ξ1Qs+ξ3x3+ξ2x5x4+ξ4vds−Q̇ref

) . (19)

We force the dynamics (Ṡ1,Ṡ2) of the sliding surfaces as follows:{
Ṡ1= −ks1sign (S1)−Gs1S1

Ṡ2= −ks2sign (S2)−Gs2S2

, (20)

where ks1ks2,Gs1 , and Gs2 are positive control gains.

Based on the relation of Eq. (18), the condition in Eq. (20) can be fulfilled if the sliding control law is

forced as follows: {
vqr=

B1−ks1sign(S1)−Gs1S1

−ξ2

vdr=
B2−ks2sign(S2)−Gs2S2

−ξ2

. (21)

At this level, we consider the Lyapunov function:

V c=
1

2
STS. (22)

Its time derivative is:

V̇c=ṠTS. (23)

By using Eq. (20), V̇c is reduced to:

V̇c= −
∑2

i=1
(ksi |Si|+GsiS

2
i ). (24)

Therefore:

V̇c<0,∀Si ̸= 0, (25)

which means that the control law of Eq. (21) ensures the convergence of Si to zero, and the outputs Ps and

Qs track their respective references Pref and Qref .

3.2. The proposed control law

The proposed control is computed as: vqr=
B10(Ẑ)−ks1sign(S1)−Gs1S1

−ξ20

vdr=
B20(Ẑ)−ks2sign(S2)−Gs2S2

−ξ20

, (26)
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with: 
B10

(
Ẑ
)
= −(−ξ10Ps−ωsQs−ξ20x5φ̄dr+ξ30φ̄qr+ξ40vqs−Ṗsref )

B20

(
Ẑ
)
= −

(
ωsPs−ξ10Qs+ξ30φ̄dr+ξ20x5φ̄qr+ξ40vds−Q̇sref

)
Ẑ=(Ps,Qs,φ̄dr,φ̄qr,x5)

T

. (27)

The elements ξ10 , ξ20 , ξ30 , ξ40 , B10 , and B20 stand respectively for ξ1 , ξ2 , ξ3 , ξ4 , B1 , and B2 (see Eq.

(50)).

We remark from our control law (Eq. (26)) that only the stator currents and voltages are required.

Therefore, the rotor current sensor is not used.

3.3. Stability analysis and robustness

In the sequel and under some certain conditions, we establish that the control law (Eq. (26)) is able to ensure

the convergence of the sliding surface vector S even in the presence of disturbances (flux estimation errors,

modeling errors, parametric variations, and bounded disturbances).

In the real case and under the effects of all disturbances, the terms B1 , B2 , and ξ2 deviate from their

ideal values with ∆B1,∆B2 , and ∆ξ2 , respectively. Hence, B1,B2 , and ξ2 can be rewritten as follows:

B1=B10

(
Ẑ
)
+∆B1; ∆B1=εB1B10

(
Ẑ
)
,

B2=B20

(
Ẑ
)
+∆B2; ∆B2=εB2B20

(
Ẑ
)
, (28)

ξ2=ξ20+∆ξ2; ∆ξ2=εξ2ξ20,

where, εB1,εB2 , and εξ2 are ratios of deviations.

By using the relations of Eq. (28) and the control law of Eq. (26), the dynamics of sliding surfaces (Eq.

(18)) become: 
Ṡ1= − (1+εB1)B10−(1+εξ2)ξ20

B10(Ẑ)−ks1sign(S1)−Gs1S1

−ξ20

Ṡ2= − (1+εB2)B20−(1+εξ2)ξ20
B20(Ẑ)−ks2sign(S2)−Gs2S2

−ξ20

. (29)

This last relation can be put in the following form:

{
Ṡ1=(εξ2−εB1)B10− (1+εξ2) ks1sign (S1)− (1+εξ2)Gs1S1

Ṡ2=(εξ2−εB2)B20− (1+εξ2) ks2sign (S2)− (1+εξ2)Gs2S2

. (30)

We link to the dynamic of Eq. (30) the Lyapunov function Vor=
1
2S

TS . Its time derivative is given by V̇or=ṠTS .

Using Eq. (30), V̇or takes the following form:

V̇or = (εξ2−εB1)B10

(
Ẑ
)
S
1
+(εξ2−εB2)B20

(
Ẑ
)
S
2

− (1+εξ2) (ks1 |S1|+ks2 |S2| )− (1+εξ2) (Gs1S
2
1+Gs2S

2
2). (31)
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We assume that ratios εB1,εB2 , and εξ2 are bounded such that ε̄B1=max( |εB1 (t)| ), ε̄B2=max( |εB2 (t)| ),

and ε̄ξ2=max (εξ2 (t) ); moreover, εξ2 > 0 (see Appendix B; on the journal’s website). Therefore, V̇or fulfills

the following inequality:

V̇or ≤ (ε̄ξ2+ε̄B1)
∣∣∣B10

(
Ẑ
)∣∣∣ |S1|+(ε̄ξ2+ε̄B2)

∣∣∣B20

(
Ẑ
)∣∣∣ |S2| − (ks1 |S1|+ks2 |S2|)

−(Gs1S
2
1+Gs2S

2
2). (32)

The control coefficient ks1 and ks2 are imposed as:

ks1≥ (ε̄ξ2+ε̄B1)
∣∣∣B10

(
Ẑ
)∣∣∣+Ts1 and ks2≥ (ε̄ξ2+ε̄B2)

∣∣∣B20

(
Ẑ
)∣∣∣+Ts2 (33)

where Ts1 and Ts2 are positive constants. Therefore, V̇or≤ −(Gs1S
2
1+Gs2S

2
2) < 0, ∀S1 ̸= 0, and ∀S2 ̸= 0, which

means that Si(i = 1, 2) converge asymptotically toward zero. The global stability and robustness of the SMC

is then established if the relation from Eq. (33) is verified.

4. Boundedness of DFIG electrical states

In this section, a discussion about the states’ boundedness when the DFIG is driven by the proposed low-cost

SMC is presented.

4.1. Boundedness of stator powers and their trajectories

Under Eq. (33), it is clear that:

ks1 ≥ Ts1 and, ks2≥Ts2 (34)

We select two positives constants Fs1, Fs2 as follows:{
Fs1=min ((1+εξ2)Gs1)

Fs2=min ((1+εξ2)Gs2)
, (35)

and so {
Fs1≤ (1+εξ2)Gs1

Fs2≤ (1+εξ2)Gs2

. (36)

Taking into consideration Eqs. (34), (36), and (30), the sliding regime is involved in such way that:{
Ṡi≤ −Tsisign (Si)−FsiSi; Si≥ 0

Ṡi≥ −Tsisign (Si)−FsiSi; Si≤ 0
i= 1, 2. (37)

The system inequality of Eq. (37) implies that:{
Si (t)≤ (Si (0)+(Tsi/Fsi)) e

−Fsit−(Tsi/Fsi); forSi≥ 0

Si (t)≥ (Si (0)−(Tsi/Fsi)) e
−Fsit+(Tsi/Fsi); forSi≤ 0

. (38)

Using Eq. (38) and starting from Si (0) , the convergence times tci of Si (t) to zero are then deduced as:

tci≤tmi with tmi=
1

Fsi
ln

(
|Si (0)|

Fsi

Tsi
+1

)
and i= 1, 2. (39)
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In the case where the active and reactive stator power references are constants over time intervals greater than

tmi, (i= 1, 2), the active and reactive powers are bounded and their trajectories are expressed as follows.
Ps (t)≤ ((Ps (0)−Pref )+(Tsi/Fsi)) e

−Fs1t−(Ts1/Fs1)+Pref ; Ps (0)≥Pref ; t≤tc1

Ps (t)≥ ((Ps (0)−Pref )−(Tsi/Fsi)) e
−Fs1t+(Ts1/Fs1)+Pref ; Ps (0)≤Pref ; t≤tc1

Ps (t)=Pref ; t≥tc1

(40)


Qs (t)≤ ((Qs (0)−Qref )+(Tsi/Fsi)) e

−Fs2t−(Ts2/Fs2)+Qref ; Qs (0)≥Qref ; t≤tc2

Qs (t)≥ ((Qs (0)−Qref )−(Tsi/Fsi)) e
−Fs2t+(Ts2/Fs2)+Qref ; Qs (0)≤Qref ; t≤tc2

Qs (t)=Qref ; t≥tc2

(41)

4.2. Boundedness and trajectories of rotor flux components

In this subsection, we find the evolution of the (dq) components of the rotor flux while our low-cost SMC is

applied.

Recall that in the (dq) reference frame, the usual DFIG model is given by the following equations:

vds = Rsids +
dφds

dt − ωsφqs

vqs = Rsiqs +
dφqs

dt + ωsφds

vdr = Rridr +
dφdr

dt − (ωs − ω)φqr

vqr = Rriqr +
dφqr

dt + (ωs − ω)φdr

(42)

and 

φds = Lsids + Lmidr

φqs = Lsiqs + Lmiqr

φdr = Lridr + Lmids

φqr = Lriqr + Lmiqs

. (43)

From Eq. (43), we have the expression of the rotor flux components as follows:(
φdr

φqr

)
=

Lr

Lm

(
φds

φqs

)
− σ

LsLr

Lm

(
ids
iqs

)
. (44)

By neglecting the terms Rsids and Rsiqs in two first equations of Eq. (42), we obtain: vds ∼= dφds

dt − ωsφqs

vqs ∼=
dφqs

dt + ωsφds

. (45)

By assuming that the (q) axis is linked to the voltage vector ( vds = 0), the stator flux components are

approximated by:  φds
∼= vqs

ωs

φqs
∼= 0

. (46)
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Using expressions of the nominal rotor flux components from Eq. (12) and taking into account DFIG parameters

values as given in the Table, we obtain: {
φds

∼= φ̄dr

φqs
∼= φ̄qr

, (47)

and Eq. (44) becomes: (
φdr

φqr

)
=

Lr

Lm

(
φ̄dr

φ̄qr

)
− σ

LsLr

Lm

(
ids

iqs

)
. (48)

Taking into account the magnitude order of the DFIG parameters ( Lr

Lm

∼= 1, σLsLr

Lm
≪ 0.001), the relations of

Eq. (48) confirm well that the rotor flux components values evolve around their nominal values. Therefore, the

boundedness of the flux in transient and steady-state regime is confirmed.

Table. Wind turbine chain parameters.

Symbol Quantity Numerical value
PN DFIG nominal power 1.5 MW

P fs RsN

Pole pairs number 2
Grid frequency 50 Hz
Nominal stator resistance 0.012Ω

RrN Nominal rotor resistance 0.021Ω
LsN Nominal stator inductance 0.0137H
LrN Nominal rotor inductance 0.0137H
LmN Nominal mutual inductance 0.0135H
f Viscosity coefficient 7.110−3

J Inertia 50kgm2

FreN Nominal grid frequency 50 Hz

|vs| Nominal grid voltage amplitude 690
√
2 V

Pal Pole number 3
R Pole diameter 35.5 m
Cp Turbine characteristic 0.5 sin (π(λ+0.1)/18.2)
β Orientation angle 0
mc Multiplier gain 65
Gsiksi ( φ̄drφ̄qr) SMC gains Nominal rotor flux 105,104 (3.8, 0) Web

4.3. Boundedness of rotor current

Since the stator powers and rotor flux components are bounded, and based on Eq. (5), the rotor currents

components can be bounded as follows:


|x1| ≤

∣∣∣ 1
d1

∣∣∣Max (|Qs (0)| , |Qref |)+
∣∣∣d2

d1

∣∣∣ |x3|

|x2| ≤
∣∣∣ 1
d1

∣∣∣Max (|Ps (0)| , |Pref |)+
∣∣∣d2

d1

∣∣∣ |x4|
. (49)

Consequently, in Section 4, we have proved the boundedness of the DFIG electrical states, such as the stator

powers, rotor flux, and current components, when our control law is applied. The boundedness is well established

in the transient and steady-state regime.
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5. Simulation results

The simulations of the considered WECS, as shown in Figure 1, are carried out in the case of a DFIG rated at

1.5 MW. Its parameters and those related to the AC grid, the wind turbine, and our low-cost SMC are given in

the Table. We assume that the WECS operates beyond the starting step. The lumped inertia constant of the

system is set to a relatively small value of 50 kg m 2 in this study to reduce the simulation time.

5.1. Comparative study

In order to evaluate the SMC performances, two simulations are carried out. The first simulation (SMC-I)

concerns the computation of the SMC using Eq. (21) in the ideal case, where the real rotor flux values ( x3x4)

and DFIG parameters are assumed to be available. The case of an unbalanced grid is not considered. The

second simulation (SMC-II) is carried out in the case where the SMC is computed using Eq. (26), and all DFIG

parameters are supposed to not be well known.

In order to evaluate the performances of the proposed SMC-II, it is sufficient to compare its results with

those of SMC-I. The control law of SMC-II is tested in the presence of perturbations (parametric variations

related to ∆Rs= +25%, ∆Rr= +50%, ∆Ls= −50%, ∆Lr= −50%, and ∆Lm= −50) and also an unbalanced

voltage grid (Figure 2a). The simulation results related to SMC-II and SMC-I are shown in the Figures 2b and

2c, respectively. From these results, it appears that the active and reactive powers track their references with

acceptable error bounds. The stator and rotor currents remain in acceptable limits for this rated machine.

These results reveal that the responses of the DFIG driven respectively by SMC-II and SMC-I are basically

the same. These results highlight the good robustness of the proposed control law.

5.2. Response to MPPT

We assume that the wind turbine is moved by the wind with the speed ( Vw) profile given in Figure 3a. The

low-cost SMC is computed using the control law of Eq. (26). The parametric variations and an unbalanced

voltage grid are applied in the time interval of [100s , 150s] . We consider the variation of voltage frequency

with +5% and the variation of voltage phase modulus with +20%. The parametric variations are represented

by the variation of all resistances with +50% and by the variation of all inductances with –50%.

The wind turbine operates near the optimal speed necessary to extract the maximum wind power (Figure

3b). This is confirmed by the evolution of the power coefficient, which sensibly remains at its maximum value

(Figure 3c) since the active stator power follows its reference (Figure 3d) and the reactive stator power varies

within a weak bound around its reference (Figure 3e). Furthermore, the rotor currents and flux remain in

acceptable limits for this rated generator (Figures 3f and 3g), so we can deduce that this wind turbine is well

adapted to the DFIG operation for this wind speed regime. As we have demonstrated above, the rotor flux

components remain near their nominal values.

6. Conclusion

In this paper, we have developed a sliding mode control of the powers provided by a WECS incorporating a

DFIG without using any estimation model of rotor flux or any rotor current sensor. The proposed control law

can be qualified as low-cost SMC. Indeed, the synthesis of the controller is carried out based on the nonlinear

and coupled DFIG model. On one hand, we have established the global stability of the control law even in the

presence of disturbances affecting the plant model (i.e. parametric variations, flux estimation error, modeling
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Figure 2. Simulation results: (a) the unbalanced voltage of the grid, Vn = |vs| ; (b) SMC-II; (c) SMC-I.

errors, and unbalanced voltage grid). On the other hand, we have verified the boundedness of the electrical

states when the proposed control law drives the plant. It is proved that the components of the rotor flux remain

near their nominal values when our low-cost SMC is applied. Our low-cost SMC is developed based on this

latter point, the robustness of the SMC, and the DFIG state model, which contain as states only the stator

powers, the rotor flux components, and rotating pulsation. Rotor current components are not used (thus, no

rotor current sensor is used).

The simulation tests of the proposed method are achieved in the case of a WECS based on a DFIG
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Figure 3. Wind chain simulation results.

rated at 1.5 MW. The obtained results confirm that the proposed control law keeps the same robustness and

performances compared to SMC with real rotor flux and known parameters, and it is feasible with the MPPT

algorithm.

Note: the DFIG parameters taken in the calculation of the control law of Eq. (26) are:

(Rs0, Rr0, Ls0, Lr0, Lm0) = (RsN , RrN , 2LsN , 2LrN , 2LmN ) . (50)
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A. Appendix

Recall that ξ2=
(1−σ)
σLm

vqs , and it takes the value of ξ20=
(1−σ0)
σ0Lm0

vqs under Eq. (50),

Where σ0 stand for σ under Eq. (50).

The DFIG mutual stator and rotor inductances vary practically, both with same percentage. This implies

that σ = σ0, ξ20 = (1−σ)
σLm0

vqs , and ∆ξ2 = (1−σ)
σ

(
1

Lm
− 1

Lm0

)
.

The deviation ratio is εξ2 = ∆ξ2
ξ20

= Lm0

Lm
− 1.

If we impose a value of Lm0 in such way that Lm < Lm0 , we obtain εξ2>0.

B. Appendix

In this appendix, we expose the demarche used to find the state model of Eq. (4) as its matrix form.

From Eq. (42), we obtain:



dφds

dt = vds −Rsids + ωsφqs

dφqs

dt = vqs −Rsiqs − ωsφds

dφdr

dt = vdr −Rridr + (ωs − ω)φqr

dφqr

dt = vqr −Rriqr − (ωs − ω)φdr

. (B.1)

We rewrite the equation system of Eq. (43) as:



ids =
1

Lm
φdr − Lr

Lm
idr

iqs =
1

Lm
φqr − Lr

Lm
iqr

φds =
Ls

Lm
φdr − σ

1−σLmidr

φqs =
Ls

Lm
φqr − σ

1−σLmiqr; σ= 1− L2
m

LsLr

. (B.2)

Substituting Eq. (B.2) into Eq. (B.1), we get:



Ls

Lm

dφdr

dt − σ
1−σLm

didr
dt = vds −Rs

(
1

Lm
φdr − Lr

Lm
idr

)
+ ωs

(
Ls

Lm
φqr − σ

1−σLmiqr

)
Ls

Lm

dφqr

dt − σ
1−σLm

diqr
dt = vqs −Rs

(
1

Lm
φqr − Lr

Lm
iqr

)
− ωs

(
Ls

Lm
φdr − σ

1−σLmidr

)
dφdr

dt = vdr −Rridr + (ωs − ω)φqr

dφqr

dt = vqr −Rriqr − (ωs − ω)φdr

. (B.3)

In the last system, if we substitute the two last equations in the two first equations, we obtain the DFIG state
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model of Eq. (B.4), based on idr, iqr, φdrφqr, ω , as:

didr
dt =−a1idr+ωsiqr+a2φdr−a3ωφqr−a4vds+a3vdr

diqr
dt = −ωsidr−a1iqr+a2φqr+a3ωφdr−a4vqs+a3vqr

dφdr

dt = −bidr+ωsφqr−ωφqr+vdr
dφqr

dt = −biqr−ωsφdr+ωφdr+vqr

dω
dt =c1 (φqridr−φdriqr)+c2 (τvis+τG)

. (B.4)

The coefficients of Eq. (B.4) are given by:

a1=

(
1

σTs
+

1

σTr

)
a2=

1

σLrTs
,a3=

1

σLr
,a4=

(1−σ)

σLm
,b=Rr,c1=

P 2

J
,c2=

P

J
.

The state model of Eq. (B.4) can be rewritten another way, in the form of a matrix, as:



d
dt


idr

iqr

φdr

φqr

 =


−a1 ωs a2 −a3ω

−ωs −a1 a3ω a2

−b 0 0 (ωs − ω)

0 −b −(ωs − ω) 0




idr

iqr

φdr

φqr

+


−a4vds+a3vdr

−a4vqs+a3vqr

vdr

vqr


dω
dt =c1 (φqridr−φdriqr)+c2 (τvis+τG)

. (B.5)
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