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Abstract: Identifying and controlling (ON/OFF) electrical appliance(s) from a remote location is an essential part of

energy management. This motivated us to design a system that can collect the aggregate load signature from a single

point, obtain the features, and finally identify the ON state of electrical appliance(s). The proposed disaggregation

technique can be divided into two modules: the first part proposes an electrical installation system to disaggregate the

appliance at the circuit level, whereas the second part consists of feature selection, dimension reduction, and classification

algorithms. Load signatures of electrical appliances were combined with white Gaussian noise to analyze how noise affects

the classification results. Amplitudes of the major eight harmonics of load signatures were selected as a feature for the

classification. Various classification algorithms were applied to data to check their feasibility. The comparative evaluation

showed that among the considered classifiers, the multilayer perceptron-artificial neural network (MLP-ANN) classifier

leads in classification accuracy with 99.18%. If the system is combined with noise, the accuracy decreases to 93.10%.

This paper also shows that the proposed technique reduces the space complexity and decision time of the smart meter.

Key words: Smart meter, load signature, harmonic amplitude, artificial neural network, support vector machine, Bayes

classifier

1. Introduction

In most developing countries, the limited sources of power generation are not able to fulfill the electricity demand,

which raises the gap between demand and supply. This gap can be reduced mainly with the help of three means:

i) Curtailment of load (outage); this method leads to revenue loses or consumer dissatisfaction. ii) Increase in the

power generation; beneficial, but a long-term process that requires a lot of investment. iii) Load management;

a better solution for the present scenario. A smart meter can be efficiently used for load management, which

includes features like appliance identification, control, and fault analysis of household appliances. Additionally,

smart meters allow for billing transparency and dynamic pricing technology. Generation of more power than is

actually needed from conventional sources is accompanied by CO2 emissions. Thus, it is essential to incorporate

renewable sources into the conventional systems. In this context, the role of the smart grid system has assumed

greater importance. The nonconventional energy sources used at domestic levels can be incorporated in a

distributed network with the help of smart meters. This is where a smart meter is different from the electronic

version of the energy meter. Smart meters help meet the electricity demands of consumers during peak load

periods, or supplement the increase in demand by incorporating the renewable energy and storage system. A

full-length discussion on the merits of the use of smart meters in smart grids and microgrids can be found
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in [1,2]. In a smart meter system, device identification is an important application for recognizing different

household appliances. In the case of various appliances connected together, this feature allows users to monitor

load profile and power consumption separately. Hence, smart meters ought to be installed in every household.

There are two means to carry out device identification: i) the intrusive method and ii) the nonintrusive method.

In the first method, each appliance is connected through a dedicated sensor, known as a plug meter, which

detects the load profile and power consumption of the connected load. This technique is reliable in terms of

accuracy; however, the association of each appliance with a sensor makes it expensive. It also demands changes

in household electric wiring. The second method, nonintrusive load profile monitoring, consists of the following

steps: i) acquisition of load signature, ii) extraction of features and events, and iii) classification of features

and events. Despite its complex signal processing, this method is economical in nature and works with existing

household electrical wiring systems. One of the earliest approaches to nonintrusive load monitoring, developed

in 1980 at MIT by Schweppe and Hart, has its origin in load monitoring for residential buildings [3].

As shown in Table 1, multiple features were chosen and/or low classification accuracies were obtained.

Recently, Wang and Zheng [10] proposed a method for residential appliance identification, where they categorized

the appliances according to working style. Appliances were then classified by choosing multiple features. Even

after applying principal component analysis (PCA), a large number of features increased the time and space

complexity of the system. Spectral components were used as the feature in [6], where authors performed

simulations rather than real-time experiments and obtained results in ideal conditions. Further noise was

added to mimic the original; an average accuracy of 92% was obtained. Table 1 summarizes the recent related

research work, methodologies, and their limitations and remarks. This paper proposes a simple method for

appliance disaggregation where a single-feature, multiple-algorithm approach gives the solution with the best-

known accuracy. The authors worked on a real-time system, which was developed in the laboratory, to acquire

the current signature of various appliances and extract the features from it. Figure 1 demonstrates the framework

of the experiment.

Electrical installation 
system

CPWD 
Specification

Current signature 
acquisition system

Spectral analysis

Feature reduction 

Bayes SVM ANN

Linear RBFN

Decision

Figure 1. Framework of the experiment.
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Table 1. Related works in the area of load segregation.

No. Load segregation technique Features Year Limitations/ remarks 

1 

Artificial neural network  

approach for harmonic  

source detection. 

Spectral components (real and  

imaginary). 
2006 

Complex and time-

consuming, claimed 

average accuracy was 92% 

[4]. 

2 

Pattern recognition  

algorithms, committee  

decision mechanism.  

Active power (P), reactive power (Q),  

power factor (PF), admittance  

waveform ratio, power waveform,  

eigenvalues of waveform, and transient  

waveform power over half cycle.  

 

2010 

Huge number of features 

increased the complexity of 

system [5,6]. 

3 

Wavelet analysis used for  

feature extraction. 

 

Wavelet transform instead of FFT for  

feature calculation, wavelet features of  

several consumers’ electronics  

appliances. 

2010 
Accuracy was not claimed 

[7]. 

4 
Event detection and  

classification. 

Steady-state current, switching transient 

current, and working style of appliance. 

2011 Accuracy was not claimed 

[8]. 

5 

Home electrical signal  

disaggregation using ANN  

and wavelet technique. 

P, Q, PF, changes in real power along 

with appliance-specific decision rules 

and pattern recognition approach.  

2012 

Complex decision rules 

and pattern recognition 

approach; accuracy was 

around 95% [9]. 

6 

Residential appliances’  

identification and  

monitoring by a  

nonintrusive method. 

Event detection, STC, P, Q clustering 

technique was applied. 
2012 

Accuracy around 80%, 

claim of e"ectiveness of 

method in presence of 

noise but analysis was not 

done [10]. 

7 

Observations of features  

over several days,  

identification on NIAFE. 

Steady-state and switching transient 

current working styles identification 

and feasibility analysis. 

2013 

Needs several days for 

observations. Controlling 

of appliances was not 

discussed, accuracy was less 

than 70% [11]. 

8 
Simplified procedure for  

appliance identification. 

P, Q, PF, harmonics, harmonic 

amplitude. 
2013 

More features leads to a 

slow system, no accuracy 

was claimed [12]. 

9 

Independent component  

analysis (ICA) for home  

appliance separation. 

 ICA was used to separate the current 

signature of individual appliances for 

the composite load. 

2013 

Useful for two appliances’ 

disaggregation, accuracy 

was around 80% [13]. 

2. Methodology

2.1. System overview

Figure 2 demonstrates the electrical installation overview, which is designed according to the Central Public

Works Department of India (CPWD). The CPWD’s specifications for internal electrical installation are:

(i) Low-power circuits shall feed appliances like lights, fans, call bells, mobile chargers, etc. Each circuit in

the home will be connected with either 800-W load capacity or not more than 10 utility points. However,
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in case of fewer power appliance points, where load per point may be less, the number of points may

suitably increase.

(ii) Each high-power circuit in residential buildings can feed the following outlets:

a) Not more than two 16-A outlets.

b) Not more than three 6-A outlets.

c) Not more than one 16-A and two 6-A outlets.

(iii) Loads greater than 1 KW shall be controlled by suitably rated miniature circuit breakers and cable size

shall be decided as per the calculations.

To Arduino and PC 

1-ø  

To Arduino and PC 

P  

16A Power Circuit outlets 

N  
P  N  

P  

N 

MAINS 

DISTRIBUTION 

BOARD  

CB1      CB2       CB3    CB4 

6A Low power circuit outlets 

CB1 - Low power circuit 
CB2 - Low power circuit 
CB3 - High power circuit 
CB4=High power circuit 
 
P - Phase wire 
N - Neutral Wire 
 

Current sensor 

Current sensor 

Figure 2. Diagram of the electrical installation according to CPWD specifications for domestic utility.

These specifications provide a primary desegregation between low- and high-power consumption appli-

ances and limit the number of appliances on one circuit board. Figure 2 shows a schematic of an electric

installation system where the main distribution board receives a single-phase power supply that is evenly dis-

tributed among various circuit boards. One circuit board consists of four circuit breakers (CBs) to control the

four different switch boards. CB1 and CB2 control low-power outlets (switch board) and CB3 and CB4 control

power circuit outlets. Current sensors are coupled with the phase wire departing toward the switch boards

(lighting and power outlets) and the output of the current sensors connected to the analog port of an Arduino

Mega 2560 development board, as seen in Figure 3.

3. Implementation

Figure 3 shows an overall schematic of the home appliance identification system designed and developed in the

laboratory. A current sensor (SCT-013-030) was installed on the phase line, which acquires the load signature

of an individual or composite load. This current sensor is a current transformer based on the Hall effect

and converts the heavy mains line current into low voltage. This voltage worked as the input signal for the
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Arduino Mega 2560 board. This board is basically a data acquisition card that provides an interface between

a personal computer and a current sensor. A PC with MATLAB Version is 7.14.0.739 (R2012a), updated with

the MATLAB-Arduino interface package, received signals from the Arduino Mega 2560 board. All signals are

acquired on the Arduino card and further processed on the MATLAB platform. The signal was acquired with a

sampling rate of 20,000 samples/s. Features (i.e. harmonic amplitude) were obtained online by applying a fast

Fourier transformation (FFT) algorithm on the acquired load signature; these features were used for further

classification processes. In addition to the disaggregation of home appliances, developing logic to control the

appliance using relays was our further research motivation. The experiment was performed for eight household

appliances. The total possible combinations of load signature of eight appliances was 256.
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P 

E 
MCB  

N 

Load 1  Load 2  Load 3  

Arduino Mega 

2560 board  
Feature extraction 
and classification 

MATLAB Arduino 
Interface (MAI) 

P:  Phase Line 

E:   Earth Line 

N:  Neutral Line 

CS: Current Sensor 

MCB: Magnetic 

Circuit Breaker 

Figure 3. Overview of the system.

If 256 combinations were used, the representation of the result would be difficult to understand well; the

data samples would be too huge to train the network. To analyze only feasibility at the experimental level we

randomly chose 60 classes out of a total of 256 and equally divided them into 5 different sets. The random

sampling method avoided set fixed patterns that might otherwise be a possibility. The classification accuracies

obtained for each combination of the five sets are presented.

3.1. Feature extraction

Figure 4 shows the current signature and respective spectral plots for some of the selected appliances. The

analysis of the waveform is nearly impossible, whereas analysis of the spectrum is easy and its property can be

used as the features because the current signature of each appliance or any combination of appliances has its

unique Fourier transform. Harmonics amplitudes of load signatures are the potential feature for disaggregation

of home appliances [14]. First, 8 odd harmonics were selected as the features. Low amplitudes of higher

harmonics contain insignificant information at the cost of a large data set. Table 2 shows the list of appliances

and their specifications that were used in the experimentation.

The dimensions of the feature matrix were further reduced using PCA. PCA is a dimension reduction

method that uses orthogonal transformation to convert a set of features of possibly correlated variables into

a set of values of linearly uncorrelated variables. These linearly uncorrelated variables are known as principal

components (PCs). Maximum variation in the input information mapped by the first principal component

(PC1) and other principal components (PC2, PC3, and so on) are in descending order of variation without

losing too much input information. We restricted our input data to only two principal components, PC1 and

PC2. The reduced input vectors were fed to the various classifiers.
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Figure 4. Current signature and spectral components of a) CFL, b) AC, c) TV, and d) combination of incandescent

lamp, tube light, CFL, and laptop.

Table 2. Appliance names and their specifications.

No. 1 2 3 4 5 6 7 8

Appliance name
Incandescent

Tube light CFL Laptop TV Fan Induction stove Monitorlamp

Specifications
60 W, 230

40 W, 230 V
15 W, 240 19.3 V 168–240 V,

50 W
Variable wattage

19 W, 47 cmV lamp V, 50 Hz, 3.1 A 0.4 A, 85 W level 600–1400 W
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4. Data classification

The aim of this study was to identify the most appropriate classifier to predict the state of appliances, i.e.

ON/OFF. The data sets were analyzed using classifiers based on supervised learning, namely Bayes, support

vector machines (SVMs), and the multilayer perceptron-artificial neural network (MLP-ANN). Initially, the

data were randomly divided into two sets: training and testing sets. Training sets are used as input data to

train the classifier network. After training is completed, classifiers are able to discriminate the test data in to

various target classes.

4.1. Noise analysis of current signatures

Noise levels were checked to evaluate the classifier performance; the acquired electric signals generally contained

white Gaussian noise [15]. The classifier was tested with added white noise signal (50 dB S/N ratio) to simulate

a real-time environment. Figure 5 shows the effect of noise on the spectral amplitude of current signature. It

was observed that if noise was present in the signal, then some additional harmonics were present in spectral

analysis. It was also seen that as the noise level increased (that is, as the S/N ratio decreased), there was

fluctuation in the amplitude of harmonics. In the feature space, the feature vector was inseparable due to added

noise as shown in Figure 6, which led to poor classification accuracy.
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Figure 5. Effect of noise on the harmonic component of the signal.

4.2. Bayes classifier

A Bayes classifier is optimal in minimizing the probability of misclassification. For a given “zero–one” loss

function, it minimizes the risk of misclassification. However, it requires full knowledge of the underlying class

conditional density for classification. In practice, the class conditional density is never known; however, a

good estimate can be extracted from training data using maximum likelihood, expectation maximization, and

other standard nonparametric methods. For the general case with risks, the discriminate function is gi (x) =

−R (αi |x), since the maximum discriminate function will then correspond to the minimum conditional risk.

For the minimum error rate case, we can simplify things further by taking gi (x) = P (ωi |x), so that the

maximum discriminate function corresponds to the maximum posterior probability. Clearly, the choice of

discriminate functions is not unique. More generally, if we replace every gi (x) with f(gi (x)), where f (•)
is a monotonically increasing function, the resulting classification is unchanged. This observation can lead to

significant analytical and computational simplifications.
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Figure 6. Feature space comparison of noisy and filtered signals in the näıve Bayes classifier.

4.3. Support vector machine

Recently, a new tool from the artificial intelligence field called SVM [16] has gained popularity in the machine

learning community. The SVM classifies data by finding a hyperplane that can easily separate one class of data

points from another. Thus, it aims at finding the best hyperplane with maximum marginal distance between

two classes. The simplest way to divide two groups is with a straight line, flat plane, or an N-dimensional

hyperplane. If the points are separated by a nonlinear region, a nonlinear dividing line is necessary. Rather

than fitting nonlinear curves to the data, the SVM handles this by using a kernel function to map the data into

a different space where a hyperplane can be used to do the separation.

4.4. MLP-ANN

The classifier network consisted of multiple layers of computational units. The working principle of the MLP-

ANN is based on minimizing the error function by using a gradient backpropagation algorithm. This error

function can be computed by comparing the output value and actual value. This error is feedback through the

network. The weights of the network adjust in order to reduce the value of the error function. The considered

network has an input layer, an output layer, and 30 hidden layers.

5. Results and discussion

Table 3 lists the performance of the different classifiers for five sets of current signatures and current signatures

with added noise. The overall result in terms of accuracy was obtained by averaging the accuracy of all 5

sets. The experimental results suggested that the näıve Bayes and MLP-ANN classifiers are more favorable for

load segregation than the SVM. If noise is present in the signal, it leads to inaccuracy in classification. The

MLP-ANN was more adaptive to noise signal in this study. The presence of noise degraded the performance of

classifiers but the results are still acceptable.
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Table 3. Classification accuracy of classifier for noisy and clean signal.

No. Sets

SVM
Bayes (%) MLP-ANN (%)

Linear (%) RBFN (%)
Without Added Without Added Without Added Without Added
noise noise noise noise noise noise noise noise

1 Set 1 77.3 66.0 82.2 74.1 98.1 84.0 98.7 90.7
2 Set 2 79.0 66.6 84.5 76.2 98.8 85.8 100.0 94.0
3 Set 3 76.1 63.0 81.3 73.3 98.1 86.1 99.2 93.2
4 Set 4 78.0 64.6 86.6 75.6 99.0 89.0 98.6 93.6
5 Set 5 75.3 67.3 80.2 71.2 96.4 87.2 99.4 94.0
Overall
accuracy

77.14 65.5 82.96 74.1 98.08 86.42 99.18 93.1

Figure 7 shows the PCA plot and confusion bar plot for set 4, which has 12 classes. In the PCA plot, a

plus sign shows the training sample data and a box symbol shows the tested data. The tested and training data

of the same classes have overlapping clusters. The confusion bar plot facilitates better understanding of the

same. In the confusion bar plot, the classes from 1 to 11 are successfully classified by the näıve Bayes classifier,

whereas class 12 could not be classified accurately. The data of this class were mixed with classes 2, 3, 5, and

8. After analyzing all four classifiers, a total of 20 results were obtained for all 5 sets.
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Figure 7. PCA plot and confusion bar plot for set 4 using the näıve Bayes classifier.

Figure 8 shows the PCA plot and confusion bar plot for set 4 using a SVM (radial basis function network

(RBFN)) classifier. Figure 9 shows the PCA plot and confusion bar plot for set 2 using a linear SVM classifier.

Figure 10 shows the confusion matrix and performance evaluation for the data in set 3. The confusion matrix

shows that the optimized ANN-MLP classifier clearly classified all the classes of set 3 data except class 10,

in which one element out of 10 was misclassified with class 2. The performance evaluation of the ANN-MLP

classifier shows how the minimum mean square error (MSE) is decreasing for training, testing, and validation.

After 13 iterations, the classifier obtained the minimum MSE.
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Figure 8. PCA plot and confusion matrix for set 4 using a multiclass SVM classifier in RBFN.
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Figure 9. PCA plot and confusion matrix for set 2 using a multiclass linear SVM classifier.

The algorithm execution time was calculated for each of the five sets by acquiring the CPU timing

for MATLAB Version is 7.14.0.739 (R2012a) software simulation in Windows 7 Home Premium on a PC

configuration with an Intel Core i5 with 2.53 GHz processing power and 4 GB DDR3 RAM. The results

shown in Table 4 prove that the single feature technique reduces execution time compared with the execution

time of multifeature techniques. The difference between the execution time of a multifeature technique and a

single-feature technique will increase as the number of appliances increases.

6. Conclusion

The experiment setup was designed according to CPWD specifications. Selected appliances for the experiment

were installed in this circuit. Odd harmonic amplitudes of the load signature were chosen as a single feature,

which was reported as a necessary and sufficient feature. This technique reduced execution time by 16.14%
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Figure 10. Confusion matrix and performance chart for set 3 using MLP-ANN.

Table 4. Algorithm execution time for multifeature and single feature techniques.

No. Set number Multifeature (s) Single feature (s) % Difference
1 Set 1 1.2792 1.2012 6.07%
2 Set 2 1.2948 1.0608 18.07%
3 Set 3 1.2798 1.0764 15.89%
4 Set 4 1.4508 1.1544 20.43%
5 Set 5 1.3884 1.1076 20.22%
Average reduction time 16.14%

compared to the multifeature techniques. SVM, Bayes, and MLP-ANN classifiers were investigated and MLP-

ANN was found to be the most effective classifier for home appliance identification. Even in the presence of

extra white Gaussian noise, this system performed well with acceptable accuracy. There is a provision in the

circuit to control the appliance(s) using a relay from a remote location.
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