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Abstract: Unlike the traditional way of efficiency assessment of renewable energy sources integration, the smart grid

concept is introducing new goals and objectives regarding increased use of renewable electricity sources, grid security,

energy conservation, energy efficiency, and deregulated energy market. Possible benefits brought by renewable sources

integration are evaluated by the degree of the approach to the ideal smart grid. In this paper, fuzzy analytical hierarchy

process methodology for the integration efficiency has been proposed, taking into account the presence of multiple criteria

of both qualitative and quantitative nature, different performance indicators, and the uncertain environment of the smart

grid. The methodology has been illustrated on the choice of the size and location of a distributed generator in the radial

distribution feeder.
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1. Introduction

Renewable energy decision-making can be viewed as a multiple criteria decision-making (MCDM) problem with

correlating criteria and alternatives. This task should take into consideration several conflicting aspects due to

the increasing complexity of social, technological, environmental, and economic factors [1,2]. The traditional

single criteria decision-making approaches cannot handle the complexity of current systems and this problem

[3,4]. An overview of the state of the art models and methods applied to the problem, analyzing and classifying

current and future research trends in this field, is given in [5,6].

The application area of MCDM in renewable energy has generally been divided into five categories [5,7,8]:

1) renewable energy planning and policy, referring to the assessment of a feasible energy plan and the diffusion

of different renewable energy option;

2) evaluation and assessment, referring to the assessment of different alternative energies or energy technolo-

gies;

3) technology and project selection, including the site selection, technology selection, and decision support

in renewable energy harnessing projects;
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4) environmental, concerned with alternative technologies from an environmental perspective and climate

issues; and

5) operational, referring to the optimal distributed generation outputs to satisfy all the criteria and con-

straints imposed by the distribution network.

With the development of smart grid architecture, the perspective of renewable sources assessment has

changed, introducing new goals and objectives. “Smart grid” generally refers to an electricity network that can

intelligently integrate the actions of all users connected to it in order to efficiently deliver sustainable, economic,

and secure electricity supplies. These systems are made possible by two-way communication technology and

computer processing that has been used for decades in other industries. According to [9] the main objectives

of smart grids are: increased use of renewable electricity sources, grid security, energy conservation and energy

efficiency, and deregulated energy market. Therefore, the strategy for sustainable, competitive, and safe energy

primarily implies competitiveness, use of different energy sources, sustainability, innovation, and technological

improvement [10], while possible benefits brought by renewable sources integration have to be evaluated by the

degree of the approach to the ideal smart grid.

In the smart grid context, three main assessment frameworks have been introduced. The EC Task

Force for smart grids [11,12] has introduced the characteristics of the ideal smart grids (services) and the

outcomes of the implementation of the ideal smart grid (benefits). A measure of the contribution of projects

to the ideal smart grid is quantified in terms of benefits, via a set of key performance indicators (KPIs). The

European Electricity Grid Initiative [13] has divided the ideal smart grid system into thematic areas (clusters)

and is currently mapping these projects into clusters. In the United States, the ideal characteristics and a set

of metrics to measure progress toward ideal smart grids have been defined [14]: build metrics that describe

attributes that are built in support of a smart grid (e.g., percentage of substations using automation) and value

or impact metrics that describe the value that may derive from achieving a smart grid (e.g., percentage of energy

consumed to generate electricity that is not lost, or quantity of electricity delivered to consumers compared to

electricity generated expressed as a percentage).

Due to this proliferation of both quantitative and qualitative criteria, and many uncertainties related

to the smart grid operation environment, the paper proposes a new algorithm for the assessment of renewable

energy integration in the smart grid, which uses the fuzzy analytical hierarchy process (AHP) method for

multicriteria decision-making.

The original AHP was developed by Saaty in the late 1970s [15]. In this method, human judgments are

represented as crisp values. However, in many practical cases the human preference model is uncertain and

decision makers cannot assign crisp values to comparison judgments. In these cases it is useful to implement the

fuzzy AHP method. The fuzzy AHP method is designed to improve decision support for uncertain valuations

and priorities. The methodology presented in this paper uses data and preferences of experts evaluated under

a fuzzy set environment [16]. The use of fuzzy set theory allows the decision makers to incorporate unquantifi-

able information, incomplete information, nonobtainable information, and partially ignorant information into

decision model [17].

Many authors have used the fuzzy AHP method for solving problems in different areas: to solve multicri-

teria problems involving qualitative data [18,19], water management [20–22], evaluation of naval tactical missile

systems [23], hazardous waste management [24], prioritization of human capital measurement indicators [25],

shipping asset management [26], and occupational safety management [27,28]. There are numerous cases for
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employing fuzzy AHP in the sector of renewable energy, focusing on prioritizing energy technologies [4,29,30],

econometric analysis of renewable technology efficiency [31], or allocation of renewable resources [32,33]. In this

paper the fuzzy AHP method is used for ranking and selection of smart grid projects, precisely because of the

many uncertain and nontangible benefits and criteria involved in smart grid projects’ assessment.

Starting from a general set of smart grid performance indicators, we established a new assessment

framework for the evaluation of integration of renewable sources in a smart grid. In the second stage, based on

fuzzy matching of alternatives, the methodology proposed in this paper determines the optimal set of activities

concerning renewable energy. Validating this methodology on a test network, we proved that the method is

highly successful in the evaluation of alternatives in the presence of heterogeneous criteria.

After a brief overview of key performance indicators for smart grid evaluation, the fuzzy AHPmethodology

is presented. The methodology is illustrated on the choice of four different alternatives (of different size, location,

and technology) of distributed generator insertion in the IEEE 33-bus test radial distribution feeder. Finally, the

conclusions about the adequacy of the proposed methodology and directions for further research are presented.

2. Smart grid assessment frameworks

The implementation of a smart grid is useful to achieve strategic policy goals, such as the smooth integration

of renewable energy sources, a more secure and sustainable electricity supply, and full inclusion of consumers in

the electricity market. For utilities, a better understanding of the electrical grid’s status at a second-by-second

level allows the grid to be operated at much tighter tolerances, resulting in greater efficiencies and reliability.

Steering the smart grid transition is a challenging, long-term task, which requires balancing energy policy

goals, environmental constraints, and market profitability. From this perspective, a first approach in smart grid

assessment is to evaluate to what extent renewable energy projects are contributing to progresses toward the

“ideal smart grid” and its expected outcomes (e.g., sustainability, efficiency, consumer inclusion), which are

directly linked with the policy goals that have triggered this transition. This first approach is conducted

via the definition of suitable metrics and key performance. A second complementary approach is to assess the

profitability of renewable energy solutions and investments integrated into the smart grid through an appropriate

multicriteria decision analysis methodology. Both steps will be explained in following sections.

2.1. Smart grid evaluation metrics

The characteristics of the ideal smart grids and defined metrics to measure progress and outcomes resulting

from the implementation of these projects were defined in [12–14,34]. The ideal smart grid has been defined in

terms of “characteristics” in the United States and in terms of “services” in the European Union, including:

• Enabling the network to integrate users with new requirements;

• Enabling and encouraging stronger and more direct involvement of consumers in their energy usage and

management;

• Improving market functioning and customer service;

• Enhancing efficiency in day-to-day grid operation;

• Enabling better planning of future network investment;

• Ensuring network security, system control, and quality of supply.
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For each service, a number of corresponding smart grid functionalities has been defined. To measure

progress toward the ideal grid, Built/Value metrics in the United States and Benefits/KPIs in Europe are used.

The EC Smart Grid Task Force [12] has identified a list of benefits deriving from the implementation of

a smart grid:

• Increased sustainability;

• Adequate capacity of transmission and distribution grids for ‘collecting’ and bringing electricity to the
consumers;

• Adequate grid connection and access for all kinds of grid users;

• Satisfactory levels of security and quality of supply;

• Enhanced efficiency and better service in electricity supply and grid operation;

• Effective support of transnational electricity markets by load flow control to alleviate loop flows and

increased interconnection capacities;

• Coordinated grid development through common European, regional, and local grid planning to optimize

transmission grid infrastructure;

• Enhanced consumer awareness and participation in the market by new players;

• Enabling consumers to make informed decisions related to their energy to meet the EU energy efficiency

targets;

• Creating a market mechanism for new energy services such as energy efficiency or energy consulting for

customers;

• Consumer bills are either reduced or upward pressure on them is mitigated.

Each benefit is expressed via a set of KPIs including both quantitative and qualitative indicators. For

illustration, the first benefit, increased sustainability, is valued by the quantified reduction of carbon emissions,

environmental impact of electricity grid infrastructure, and quantified reduction of accidents and risk associated

with generation technologies. The complete list of indicators can be found in [12]. Smart grid services and

benefits are strongly linked to the policy goals that are driving the smart grid deployment (sustainability,

competitiveness, and security of supply), and, consequently, they can be considered as useful indicators to

evaluate the contribution of projects toward the achievement of these policy goals. A clearly defined framework

can concretize where exactly the project contributed to a smart electricity grid.

As far as renewable energy projects are concerned, in order to get a thorough understanding of the status

of smart grid development and starting from the list of main services and corresponding benefits, an adapted

list of main criteria can be defined, including:

• Technology, covering all aspects of advanced services and new requirements imposed to the distribution

and transmission network;

• Cost reduction, including the optimized asset utilization, enhanced efficiency, and better planning of future

investment;
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• Customer satisfaction, encompassing different options of customer choice, new energy services, and market

participation;

• Environmental impact reduction.

After the first level of benefits was defined, the second set of performance indicators on the base level of

renewable integration efficiency assessment was chosen out of the complete indicator list. The indicators that

can be measured are the quantified reduction of carbon emissions, voltage quality performance of electricity grids

(e.g., voltage dips, voltage and frequency deviations, and the level of losses in distribution networks (absolute or

percentage)). If new projects are evaluated, the net present value of the investment can be added. Qualitative

indicators are the evaluated environmental impact and societal benefits of the project.

The mixture of quantitative and qualitative indicators is one of the major reasons for introducing the

MCDM techniques. Another reason is the shortcomings of cost-benefit analysis, which will be explained in the

next section.

2.2. Multicriteria assessment model

The implementation of the smart grid should be market-driven. Another necessary approach in smart grid

assessment is therefore to assess the costs, the benefits, and the beneficiaries of different solutions. A compre-

hensive methodology for cost-benefit analysis of these projects was defined [35], while the European Commission

has adapted and expanded the DOE/EPRI methodology to fit the European context [36,37].

However, the traditional cost-benefit analysis approach does not catch all the effects involved in devel-

opment policies, where intangible aspects are not secondary, but are dominating [38]. The main disadvantage

of cost-benefit analysis is the translation of all the effects into a common numerical and single aggregate mea-

sure. Therefore, multiple criteria analysis seems to be better in measuring intangibles and soft impacts than

cost-benefit; it uses more than one criterion introducing qualitative aspects in the analysis.

As explained in Section 2.1, a multicriteria model is developed based on the list of both quantitative and

qualitative indicators, defined in Sections 2.2.1 and 2.2.2.

2.2.1. Quantitative indicators

A set of four quantitative indicators is used in this methodology:

2.2.2. Quantified reduction of carbon emissions

For every alternative, this indicator is measured by the kilograms of CO2 emission per produced kilowatt-hour

of electrical energy. The impact of renewable sources is taken as the reduction of the emission produced by the

conventional energy source.

• Total voltage deviation is calculated using Eq. (1):

VD =

√√√√NB∑
k=1

(Vk − Vref )
2
, (1)

whereVk is the magnitude of voltage at bus k , Vref is the magnitude of the slack bus voltage, and NB is the

total number of nodes in the network.
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• The active power losses are calculated as:

Ploss =
NL∑
j=1

i2jRj , (2)

where Rj and ij are resistance and actual current of the j th line, respectively, and NL is the total number of

lines.

• Net present value (NPV) is used to determine the present value of an investment by the discounted sum

of all cash flows received from the project. The formula for the discounted sum of all cash flows can be

rewritten as:

NPV =
n∑

i=1

Ci (1 + d)
i − C0, (3)

where C0 is initial investment, Ci is cash flow, d is discount rate, and n is time period.

2.2.3. Qualitative indicators

Both indicators that cannot be exactly measured,

• Environmental impact of electricity grid infrastructure and

• Societal benefit of a proposed infrastructure investment,

are evaluated through ordinal comparison. In this approach, we adopt the five-grade verbal scale for the

assessment of these indicators, which can be composed from opinion polls results, expert judgments, or other

integrated approaches. The description of the scale is given in Table 1.

Table 1. Description of qualitative indicators.

Grade Environmental impact Societal benefits

Minor
Negligible land and material requirements for
producing necessary power. No substantial
environmental impact.

Unreasonable to expect any changes in local
economy or enhancement in market services.

Low
No visual or noise problems caused by the
operation of plant. Small land and material
requirements.

New jobs created with great risk to retainment
as a result of new renewable energy source.

Moderate
Limited visual or noise problems, with some
disruption to habitat. No impact to the
wildlife.

New market mechanism for new energy ser-
vices such as energy efficiency or energy con-
sulting for customers.

High
Increased emission pollutants, with impact to
the wildlife and landscape.

Improving market functioning and customer
service, new jobs created and retained as a
result of new renewable energy source.

Very high

Large emission pollutants, land and material
requirements, other life-cycle steps contribut-
ing significantly to the total environmental im-
pact.

More direct involvement of consumers in their
energy usage and management, new jobs cre-
ated and retained as a result of new renewable
energy source.

All indicators (quantitative and qualitative) influence all of four main criteria to different extents deter-

mined by the decision maker. For instance, reduced voltage deviation and stable voltage profile in the network
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will enable the usage of advanced technologies and services; they will reduce the costs of low power quality,

increasing customer satisfaction. The scheme of hierarchical levels and interdependencies of criteria, subcriteria,

and alternatives is represented in Figure 1.
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Figure 1. Hierarchical levels and interdependencies of criteria, subcriteria, and alternatives.

3. Smart grid evaluation method

In this paper the fuzzy AHP method is used for the evaluation of integration of renewable sources in the smart

grid. The mathematical basis for the fuzzy AHP method is based on fuzzy sets, fuzzy numbers, and fuzzy

arithmetic.

3.1. Fuzzy sets, triangular fuzzy numbers, and fuzzy arithmetic

Zadeh defines a fuzzy set A by degree of membership µA(x) over a universe of discourse X as [39]:

µA(x) : X → [0, 1]. (4)

A fuzzy number is a convex and normalized fuzzy set A = {(x, µA(x)) , x ∈ R} . A triangular fuzzy number can

be denoted as M = (a, b, c), and the membership function is:

µA(x) =


x−a
b−a , x ∈ [a, b]
c−x
c−b , x ∈ [b, c]

0, otherwise

, (5)

where a ≤ b ≤ c , a and c stand for the lower and upper value of the support of M respectively, and b is the

modal value. When a = b = c , it is a crisp number.

Fuzzy arithmetic is based on Zadeh’s extension principle. If f : X → Y is a function, and A is a fuzzy

set in X, then f(A) is defined as:

µf(A)(y) = sup
x∈X,f(x)=y

µA(x), (6)

where y ∈ Y .
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Basis laws for triangular fuzzy number M = (a, b, c), a > 0, are:

M−1 = (a, b, c)−1 = (
1

c
,
1

b
,
1

a
); (7)

Mn = (a, b, c)n = (an, bn, cn), n ∈ N ; (8)

M1/n = (a, b, c)1/n = (a1/n, b1/n, c1/n), n ∈ N . (9)

The main laws for operations for two triangular fuzzy numbers M1(a1, b1, c1) and M2(a2, b2, c2) are:

1. Fuzzy number addition:

M1 ⊕M2 = (a1, b1, c1)⊕ (a2, b2, c2) = (a1 + a2, b1 + b2, c1 + c2). (10)

2. Fuzzy number subtraction:

M1 ?M2 = (a1, b1, c1)?

(a2, b2, c2) = (a1 − c2, b1 − b2, c1 − a2). (11)

3. Fuzzy number multiplication:

M1 ⊗M2 = (a1, b1, c1)⊗ (a2, b2, c2) = (a1 · a2, b1 · b2, c1 · c2), a1, a2 > 0. (12)

4. Fuzzy number division:

M1ØM2 = (a1, b1, c1)Ø

(a2, b2, c2) = (
a1
c2

,
b1
b2
,
c1
a2

), a1, a2 > 0. (13)

3.2. Fuzzy AHP method

The fuzzy AHP method involves the following steps:

Step 1. The overall goal (objective) is identified and clearly defined;

Step 2. The criteria, subcriteria, and alternatives are identified;

Step 3. The hierarchical structure is formed;

Step 4. Pairwise comparison is made using Saaty’s fuzzified evaluation scale;

Step 5. The priority weighting vectors are evaluated using the row geometric mean method (RGMM);

Step 6. Consistency of the judgments is checked by the geometric consistency index (GCI);

Step 7. The defuzzification and the final ranking of alternatives are defined.

The seven-step algorithm of fuzzy AHP applied to the problem of evaluation of renewable sources

encompasses the following steps:

1. Goal identification. The goal is to evaluate the efficiency of the renewable energy plant integration in the

smart grid context.

2. Identification of criteria, subcriteria, and alternatives. Criteria for smart grid projects selection are:

technology, costs reduction, customer satisfaction, encompassing different options of customer choice,

and environmental impact reduction. Subcriteria are the KPIs, as explained in Sections 2.2.1 and 2.2.2.

Finally, the different renewable integration projects are identified as alternatives.
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3. Hierarchical structure formation. The fuzzy AHP method presents a problem in the form of hierarchy:

the first level represents the goal; the second level considers relevant criteria (four identified criteria);

the third level considers relevant subcriteria (six identified KPIs); and the fourth level defines renewable

alternatives (four alternatives).

4. Pairwise comparison. Pairs of elements at each level are compared according to their relative contribution

to the elements at the hierarchical level above, using Saaty’s fuzzified scale, as shown in Table 2.

Table 2. Crisp and fuzzified Saaty scale for pairwise comparisons [22].

Crisp values (x) Judgment description Fuzzy values
1 Equal importance (1, 1, 1+δ)
3 Weak dominance (3–δ, 3, 3+δ)
5 Strong dominance (5–δ, 5, 5+δ)
7 Demonstrated dominance (7–δ, 7, 7+δ)
9 Absolute dominance (9–δ, 9, 9)
2, 4, 6, 8 Intermediate values (x–1, x, x+1)

In this paper fuzzification is implemented by triangular fuzzy numbers, and the value of fuzzy distance

of 2 is used, as recommended in [22], because the most consistent results can be expected.

Pairwise comparisons at each level, starting from the top of the hierarchy, are presented in the square ma-

trix form A = [aij ]i,j=1,n , where aij is the fuzzy value about the relative importance of criteria/subcriteria/alternative

i over criteria/subcriteria/ alternative j , aij = 1 for i = j and aij · aji = 1 for i ̸= j .

5. Priority weights vectors evaluation. The priority weighting vectors on each level are evaluated using

the RGMM. The ranking procedure starts with the determination of the criteria weighting vector:

Wc = (wc1, wc2, wc3, wc4)
T , (14)

where wci is the fuzzy weight of the ith criterion:

wci =

(
4∏

j=1

aij

) 1
4

4∑
i=1

(
4∏

j=1

aij

) 1
4

, i = 1, 4. (15)

Subcriteria weighting vectors are defined by pairwise comparison of performance indicators according to each

criterion. Appropriate elements of these vectors are calculated as follows:

wp
sci =

(
6∏

j=1

aij

) 1
6

6∑
i=1

(
6∏

j=1

aij

) 1
6

, i = 1, 6, p = 1, 4, (16)

where wp
sci represents the fuzzy weight of the ith performance indicator with respect to the pth criterion. The

final subcriteria weighting vector is obtained by multiplying the matrix of the subcriteria weights according to
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all criteria (W1) and the matrix of the criteria weights (Wc):

Wsc = W1 ⊗Wc. (17)

Finally, the projects are compared according to the each performance indicator. Proper weights of projects, i.e.

alternatives with respect to the individual performance indicator, are determined as follows:

wr
ai =

(
4∏

j=1

aij

) 1
4

4∑
i=1

(
4∏

j=1

aij

) 1
4

, i = 1, 4, r = 1, 6, (18)

where wr
ai represents the fuzzy weight of the ith project with respect to the r th performance indicator. Final

projects weights are obtained by multiplying the matrix of the projects weights according to all alternatives

(W2) and the matrix of subcriteria weights:

Wa = W2 ⊗Wsc = (wa1, wa2, wa3, wa4)
T . (19)

6. Consistency control. Consistency in this case means that the decision procedure is producing coherent

judgments in specifying the pairwise comparison of the criteria, subcriteria, or alternatives. When the RGMM

is employed as the prioritization procedure, the GCI is used for consistency control [16,40,41]. For an n × n

judgement matrix the GCI is computed as follows:

GCI =
2

(n− 1)(n− 2)

∑
i<j

log2 eij , (20)

where eij = aijwj/wi is the error obtained when the ratio ωi/ωj is approximated by aij , i, j = 1, n (aij , wi, wj

are defuzzification values, i.e. crisp values). For this measure, the thresholds associated with the 10% level of

inconsistency suggested by Saaty are: GCI = 0.31 for n = 3, GCI = 0.35 for n = 4, GCI = 0.37 for n > 4

[42,43].

7. Defuzzification and the final ranking of alternatives. In this paper, triangular fuzzy numbers are

ranked by applying the mean value method. For the given triangular fuzzy number M = (a, b, c), the mean

value method for defuzzification is a defined crisp number value as follows:

m =
a+ b+ c

3
. (21)

The highest rank has the alternative with the highest value ofm .

4. Results and discussion

The proposed methodology is illustrated on the choice of the technology, size, and location of one distributed

renewable generator. Four possible alternatives are evaluated on the IEEE radial 33-bus test feeder (Figure

2; see Appendix for data for the test system, on the journal’s website) with parameters including the nominal

active power (Pnom), the node the generator is connected to (Bus N◦), type of renewable source (RS), and

expected annual energy production of generator (W), as represented in Table 3.
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Figure 2. IEEE 33-bus radial distribution test feeder.

Table 3. Scenarios for projects.

Project Pnom Bus N◦ RS W (GWh)
Project 1 1.8 MW 6 Wind 5.2
Project 2 1 MW 10 Biomass 7.0
Project 3 2 MW 17 Hydro 4.0
Project 4 1 MW 17 Biomass 5.00

Values for both qualitative and quantitative indicators, as explained in Sections 2.2.1 and 2.2.2, are

represented in Table 4.

Experts first perform pairwise comparison of the following criteria: technology (C1), costs reduction

(C2), customer satisfaction (C3), and environmental impact reduction (C4). The results of the comparison,

fuzzy weights, crisp weights, and ranks of criteria are shown in Table 5.

Table 4. Quantitative and qualitative values of indicators for projects.

Project NPV (M€) VD (%) Ploss (kW)
Reduction of Environmental

Societal benefits
CO2 (t/year) impact

Project 1 4.2 29.65 156.4 5148 Moderate High
Project 2 5.1 30.5 176.8 6930 Moderate Moderate
Project 3 2.7 22.0 265.3 3960 Low Very high
Project 4 3.8 26.3 190 4950 Very low Moderate
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Table 5. The pair wise comparison, fuzzy weights, crisp weights, and ranks of criteria.

C1 C2 C3 C4 Fuzzy weights

C1 1̃ 3̃ 5̃−1 3̃−1 (0.0496, 0.1178, 0.3249)

C2 3̃−1 1̃ 7̃−1 5̃−1 (0.0286, 0.0550, 0.1453)

C3 5̃ 7̃ 1̃ 3̃ (0.2374, 0.5638, 1.2048)

C4 3̃ 5̃ 3̃−1 1̃ (0.1062, 0.2634, 0.6956)

GCI = 0.1773

Then the experts compare the following key performance indicators in relation to every criterion: net

present value of investment (SC1), voltage deviation (SC2), power losses (SC3), emission reduction (SC4),

environmental impact (SC5), and societal benefits (SC6). The results are presented in Tables 6–9.

Table 6. The pairwise comparison matrix of subcriteria in relation to the technology.

SC1 SC2 SC3 SC4 SC5 SC6 Fuzzy weights

SC1 1̃ 7̃−1 5̃−1 3̃−1 7̃−1 9̃−1 (0.0134, 0.0259, 0.0637)

SC2 7̃ 1̃ 3̃ 5̃ 1̃ 3̃−1 (0.0871, 0.2026, 0.5664)

SC3 5̃ 3̃−1 1̃ 3̃ 3̃−1 7̃−1 (0.0353, 0.0882, 0.2501)

SC4 3̃ 5̃−1 3̃−1 1̃ 3̃−1 7̃−1 (0.0213, 0.0516, 0.1506)

SC5 7̃ 1̃ 3̃ 3̃ 1̃ 3̃−1 (0.0725, 0.1861, 0.5355)

SC6 9̃ 3̃ 7̃ 7̃ 3̃ 1̃ (0.1715, 0.4457, 0.9276)

GCI = 0.1870

Table 7. The pairwise comparison matrix of subcriteria in relation to the costs reduction.

SC1 SC2 SC3 SC4 SC5 SC6 Fuzzy weights

SC1 1̃ 7̃ 5̃ 3̃ 9̃ 3̃ (0.1653, 0.4446, 0.9011)

SC2 7̃−1 1̃ 5̃−1 3̃−1 3̃ 5̃−1 (0.0211, 0.0500, 0.1270)

SC3 5̃−1 5̃ 1̃ 1̃ 5̃ 1̃ (0.0794, 0.1546, 0.4208)

SC4 3̃−1 3̃ 1̃ 1̃ 5̃ 3̃−1 (0.0505, 0.1182, 0.3313)

SC5 9̃−1 3̃−1 5̃−1 5̃−1 1̃ 5̃−1 (0.0153, 0.0305, 0.0765)

SC6 3̃−1 5̃ 1̃ 3̃ 5̃ 1̃ (0.0839, 0.2021, 0.5503)

GCI = 0.2189

Table 8. The pairwise comparison matrix of subcriteria in relation to the customer satisfaction.

SC1 SC2 SC3 SC4 SC5 SC6 Fuzzy weights

SC1 1̃ 3̃ 7̃ 5̃ 3̃ 3̃−1 (0.0902, 0.2475, 0.6291)

SC2 3̃−1 1̃ 5̃ 3̃ 1̃ 5̃−1 (0.0499, 0.1139, 0.3335)

SC3 7̃−1 5̃−1 1̃ 3̃−1 5̃−1 9̃−1 (0.0144, 0.0278, 0.0707)

SC4 5̃−1 3̃−1 3̃ 1̃ 3̃−1 5̃−1 (0.0230, 0.0555, 0.1672)

SC5 3̃−1 1̃ 5̃ 3̃ 1̃ 5̃ (0.0499, 0.1139, 0.3335)

SC6 3̃ 5̃ 9̃ 5̃ 5̃−1 1̃ (0.1800, 0.4413, 0.9202)

GCI = 0.2002
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Table 9. The pairwise comparison matrix of subcriteria in relation to the environmental impact reduction.

SC1 SC2 SC3 SC4 SC5 SC6 Fuzzy weights

SC1 1̃ 3̃−1 5̃−1 9̃−1 9̃−1 5̃−1 (0.0140,0.0251, 0.0522)

SC2 3̃ 1̃ 3̃−1 7̃−1 7̃−1 3̃−1 (0.0205,0.0467, 0.1101)

SC3 5̃ 3̃ 1̃ 5̃−1 5̃−1 1̃ (0.0458,0.0985, 0.2168)

SC4 9̃ 7̃ 5̃ 1̃ 1̃ 5̃ (0.1904,0.3657, 0.6880)

SC5 9̃ 7̃ 5̃ 1̃ 1̃ 5̃ (0.1904,0.3657, 0.6880)

SC6 5̃ 3̃ 1̃ 5̃−1 5̃−1 1̃ (0.0458,0.0985, 0.2168)
GCI = 0.2002

The final fuzzy weights of the KPIs, according to Eq. (18) and Tables 5–9, are:

Wsc =



(0.0283, 0.1737, 0.9459)

(0.0189, 0.1031, 0.6809)

(0.0123, 0.0605, 0.3784)

(0.0282, 0.1402, 0.7771)

(0.0361, 0.1841, 1.0655)

(0.0585, 0.3384, 1.6408)


. (22)

At the end, four smart grid projects (Project 1 [A1 ], Project 2 [A2 ], Project 3 [A3 ], and Project 4 [A4 ]) are

compared in relation to the KPIs presented in Tables 3 and 4 as presented in Table 10.

Table 10. The pairwise comparison of alternatives in relation to KPIs (BS - basis of comparison; EI - equal importance;

WD - weak dominance; SD - strong dominance).

SC1 SC2 SC3 SC4 SC5 SC6

A1 WD EI SD WD BC WD
A2 BC BC WD SD EI BC
A3 SD SD BC BC WD SD
A4 WD WD WD WD SD EI

The final fuzzy weights for smart grid projects, according to Eq. (19) and the results of pairwise

comparison of alternatives in relation to all KPIs calculated from values given in Table 10, are:

Wa =


(0.0140, 0.2067, 3.3081)

(0.0121, 0.1589, 2.5160)

(0.0251, 0.3982, 5.0638)

(0.0176, 0.2363, 3.7016)

 . (23)

Based on the previous results, we can conclude the following:

1. The most important criterion for the selection of a project according to the efficiency of the renewable

energy plant integration in the smart grid context is customer satisfaction, followed by the environmental

impact reduction, selection technology, and cost reduction (Table 5).

2. In relation to technology, the best-ranked performance indicator is societal benefits; in relation to costs

reduction, net present value of investment; in relation to customer satisfaction, societal benefits; and in
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relation to environmental impact reduction, carbon emission reduction and environmental impact level

(Tables 6–9).

3. The final ranking of the KPIs according to all criteria is: 1) societal benefits; 2) environmental impact; 3)

net present value of investment; 4) carbon emission reduction; 5) voltage deviation; 6) power losses (Eq.

(22)).

4. Project 1 is dominant in relation to power losses; Project 2 in relation to carbon emission reduction; Project

3 in relation to net present value of investment, voltage deviation, and the societal benefits (however, it

is the worst in relation to power losses and carbon emission reduction); and Project 4 in relation to

environmental impact.

5. The final rank of the projects indicates that the highest rank is that of Project 3, followed by Project 4

and Project 1; the lowest priority is that of Project 2 (Eq. (23)). This means that for implementation of

the smart grid Project 3 should be selected.

5. Conclusion

The new approach in the assessment of renewable energy projects efficiency is to evaluate to what extent

these projects are contributing to progress toward the “ideal smart grid” and its expected outcomes (e.g.,

sustainability, efficiency, consumer inclusion). In this paper, the fuzzy AHP method is used to improve decision

support for uncertain valuations and priorities. Starting from a general set of smart grid performance indicators,

a new assessment framework for the evaluation of integration of renewable sources in the smart grid has been

established. Based on fuzzy matching of alternatives, the methodology proposed in this paper determines the

optimal allocation of renewable energy resources.

The proposed methodology is illustrated on the choice of the optimal size, location, and technology of

renewable resources planned for integration in the existing distribution network. Using four main criteria and six

subcriteria derived from the adopted set of smart grid benefits, we proved that the method is highly successful

in the evaluation of alternatives in the presence of heterogeneous criteria. This method allows decision makers

to incorporate unquantifiable information, incomplete information, nonobtainable information, and partially

ignorant information into the decision model.
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Appendix. Data for 33 bus test system (substation voltage = 12.66 kV, MVA base = 10 MVA).

Line Sending Receiving Resistance Resistance Load at receiving end bus
number bus bus (Ω) (Ω) Real Reactive

power (kVAr) power (kVAr)
1 1 2 0.0922 0.0477 100 6
2 2 3 0.4930 0.2511 90 40
3 3 4 0.3660 0.1864 120 80
4 4 5 0.3811 0.1941 60 30
5 5 6 0.8190 0.7070 60 20
6 6 7 0.1872 0.6188 200 100
7 7 8 1.7114 1.2351 200 100
8 8 9 1.0300 0.7400 60 20
9 9 10 1.0400 0.7400 60 20
10 10 11 0.1966 0.0650 45 30
11 11 12 0.3744 0.1238 60 35
12 12 13 1.4680 1.1550 60 35
13 13 14 0.5416 0.7129 120 80
14 14 15 0.5910 0.5260 60 20
15 15 16 0.7463 0.5450 60 20
16 16 17 1.2890 1.720 60 20
17 17 18 0.7320 0.5740 90 40
18 2 19 0.1640 0.1565 90 40
19 19 20 1.5042 1.3554 90 40
20 20 21 0.4095 0.4784 90 40
21 21 22 0.7089 0.9373 90 40
22 3 23 0.4512 0.3083 90 50
23 23 24 0.8980 0.7091 420 200
24 24 25 0.8960 0.7011 420 200
25 6 26 0.2030 0.1034 60 25
26 26 27 0.2842 0.1447 60 25
27 27 28 1.0590 0.9337 60 20
28 28 29 0.8042 0.7006 120 70
29 29 30 0.5075 0.2585 200 600
30 30 31 0.9744 0.9630 150 70
31 31 32 0.3105 0.3619 210 100
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