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Abstract: Complementary renewable energies like wind and solar power may be more sufficient to satisfy reliability

requirements. This paper proposes a quantitative capacity allocation method of a hybrid wind and solar energy system.

First, discrete probability distributions are established to model the random factors including the volatility of power

outputs and the failure of components. Then a multiobjective optimization model is formulated with objectives of

minimization of the total investment, the nodal voltages violating limits probability, and power supply inadequacy

probability. For the purpose of fast probability computing with a satisfactory precision degree, an innovative probabilistic

load flow algorithm is introduced, which deals with means and increments of random variables separately and uses

cumulants as well as Gram–Charlier series to obtain probabilistic distributions of state variables. A modified parallel

elitist nondominated sorting genetic algorithm II is used to search the Pareto optimal configuration solutions.

Key words: Wind turbine, photovoltaic, capacity allocation, discrete probability distribution, multiobjective optimiza-

tion, probabilistic load flow, NSGA-II

1. Introduction

With the increasing exhaustion of fossil fuel and the rapidly growing energy consumption, renewable energy

(RE) generation technologies show great advantages and significant potential for development, especially in

relatively isolated areas such as remote deserts or offshore islands that are usually abundant in wind and solar

resources but suffer from problems in long-distance electric transmission.

Compared with conventional power such as hydropower and thermal generation, the most significant

characteristic of RE is the randomness and intermittency of the power output, which will greatly affect the

power quality and even cause power inadequacy problems [1]. Many studies have showed that a relatively stable

output performance can be achieved when different REs are employed synergistically. The most typical example

is the hybrid wind and solar energy conversion system. Generally, wind turbine generators (WTGs) have higher

power output rates in the night, because of the better wind regime. Photovoltaic (PV) arrays, on the other

hand, can only generate during daylight hours. Complementary REs like WTGs and PV arrays can be more

efficacious to meet the reliability requirements of power consumers. Thus, the optimal proportion allocation of

different REs is of significant theoretical and practical value in autonomous energy conversion system planning

[2,3].

As reported in most of the current studies [4,5], system simulation is executed and system state parameters
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are compared under different RE connection modes and capacities. Obviously, this deterministic enumeration

method suffers from a cumbersome workload and does not reveal the overall situation and internal rules of the
system. Application of probabilistic analysis to calculate the probabilistic distributions (PDs) of some system

state variables is an approach to solve this problem.

Monte Carlo simulation is a widely used probabilistic method [6]. Generally, to get meaningful results,

thousands of simulations are repeatedly run during a Monte Carlo procedure. Though the Monte Carlo method

may be capable of providing relatively higher accuracy, the time-consuming disadvantage makes it not suitable

to use in realistic systems. It is mainly used by researchers for the purpose of comparison.

Probabilistic load flow (PLF), proposed in 1974 [7], is a promising probabilistic analytical method. In

classic PLF study [8,9], the input variables are modeled as random variables respecting some PDs, and after

linearization, the power flow state vector can be expressed as a linear combination of input variables. Therefore,

a convolution technique can be used to calculate the PDs of objective variables such as voltage profile and branch

flow. Extended PLF proposed in [10,11] replaced convolution calculations with simple arithmetic calculations

based on some significant properties of cumulants. In addition, Laguerre polynomials and Gram–Charlier

expansion [11,12] were introduced to approximate the probabilistic density function (PDF) of objective variables

in one run, which greatly improved the calculation speed while maintaining enough accuracy.

Many uncertain factors in power systems are discontinuous, such as the condition of a WTG, which has

two states, normal and failure, and can only be modeled as a discrete random variable respecting a PD in the

form of a set of ordered pairs, rather than a continuous PDF. On the other hand, computer-aided calculation of

the joint PD or convolution of mixed discrete and continuous variables is rather complex. Thus, taking discrete

factors into consideration, classic PLF is still faced with certain difficulties in practice.

Until recently, extensive existing studies on this hybrid wind and solar system configuration issue were all

limited to single-objective optimization. The most frequently mentioned method is to search the tangent point

of the trade-off curve and the cost line, which specifically models the total cost as an objective function and

reliability indexes such as the loss of power supply probability as constraints [13–15]. It must be noted that, in

many cases, modeling the configuration of hybrid renewable energies system as a multiobjective optimization

problem is more appropriate.

In this paper, a multiobjective configuration method based on discrete probabilistic distribution and an

innovative PLF algorithm is proposed, which offers an objective and quantitative method for capacity allocation

of different REs.

2. A multiobjective optimization model
2.1. Decision variables

First, the core issue of the previous problem is the capacity allocation of various REs. On the other hand, in

order to improve voltage quality, reactive power compensation equipment is also necessary for a hybrid system.

Therefore, the decision variables of the optimization problem are the number and unit capacity of WTGs

or reactive power compensation devices and the number and unit area of PV modules, denoted by Ni and pi

respectively.

2.2. Objective functions

The purpose of hybrid RE conversion system configuration is to achieve balance between the overall system

performance and the total investment without violating the relevant constraints of safe and stable operation.

Thus, the following three objective functions are adopted:
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1) The total investment of power supply system:

OB1 =
∑
i

Ni (k1i + pik2i), (1)

where k1i and k2i are the fixed and variable cost coefficients of the ith RE generation or reactive power

compensation devices.

2) The nodal voltages violating limits probability:

OB2 = 1−
Φ∏
i

Pr

[
V min
i < Vi < V max

i

]
, (2)

where Vi is the voltage of node i , and V min
i and V max

i are the lower and upper limits of Vi . Φ is the set of

the nodes. Pr [ A ] in Eq. (2) and the following sections of the paper represents the probability of event A.

Eq. (2) quantitates the system volatility.

3) The power inadequacy probability:

OB3 = Pr

[∑
i

Xi ≤ Y

]
, (3)

where Xi is the active power output of theith RE generation device and Y represents the load power. Eq.

(3) quantitates the energy adequacy degree of the system, which respectively represents the electric supply

outage probability for isolated systems and the probability of absorbing electricity from the main power grid

for interconnected systems.

The essential issue of the multiobjective optimization model is the minimization of OB 1 , OB 2 , and OB 3

as simultaneously as possible. In this paper, discrete PDs are used to represent random factors of the system,

and an improved PLF algorithm is proposed to conveniently calculate OB 2 and OB 3 , on this basis of which

the Pareto optimal combination of Ni and pi are searched through the multiobjective stochastic algorithm

PNSGA-II.

3. Probability distribution of power injections

3.1. Probabilistic analysis of WTG

The wind velocity in each time-frame is treated as a random variable, which is usually considered to respect

the following PDF of Weibull distribution [16]:

Fr1(v) =
π

c

(v
c

)π−1

exp
[
−
(v
c

)π]
, (4)

where v is the wind speed in m/s, π is the shape parameter, andc is the scale parameter.

Power output of a WTG farm is a random variable subject to the parameters of the WTG and wind speed.

Piecewise curves have been commonly used to represent the WTG output characteristics [13–16]. Assumptions

are made that all the WTGs of the farm are of identical parameters and wind speed. The power capacity

available from the WTG farm at wind speed v , denoted byx1 , can be expressed using the following function:

x1 = ψ (v) =


0, v ≤ vcorv ≥ vF

N1p1
v−vc
vR−vc

, vc ≤ v ≤ vR

N1p1, vR ≤ v ≤ vF

, (5)
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where N1 is the number of WTGs,p1 is the rated power capacity of a WTG, and vc , vR , and vF are the

cut-in, rated, and cut-out wind speeds, respectively.

Discretization is executed on the continuous power curve to obtain n separate output power values:x∗1(i),(i

= 1,2,. . . ,n). The discretization strategy is shown in Figure 1 [16], where x∗1 (1) = 0 and the corresponding

wind speed range is less than vc or greater than vF , and x∗(n) = N1p1 and the corresponding wind speed

range is from vR to vF . The curve between vc and vR is evenly divided into n− 2 intervals, and the interval

length is a = (vR − vc)/(n−2). For each interval, for example for the ith interval (i = 2,3,. . . ,n − 1), the

corresponding wind speed range is from vc − (i− 2)a to vc − (i− 1)a , and x∗1(i) is assigned to be the middle

value of ψ(vc − (i− 2)a) and ψ(vc − (i− 1)a).

N1p1

x1
*(n-1)

x1
*(3)

x1
*(2)

x1
*(1)

x1
*(n)

Power sampling location Truncation location

Output power of WTG farm

x1
*(4)

vF

vR

Original power curve Power curve after discretization

Wind Speed

vc vc+a vc+2a vc+(n-1)a

aa a a

Figure 1. Sampling on the WTG power output curve.

The PD of x∗1 is a set of ordered pairs, denoted as D(x∗1), which is given by the following equation.

D (x∗1) = {x∗1 (i) ,Pr [x∗1 (i)]} , i = 1, 2, 3, · · · , n

x∗1 (i)=


0, i = 1

ψ (vc+(i− 1.5)a) ,i= 2, 3, · · · ,n− 1

N1p1, i = n

; Pr [x∗1 (i)]=


∫ vc
0
Fr1(v)dv+

∫∞
vF
Fr1(v)dv, i= 1∫ vc+(i−1)a

vc+(i−2)a
Fr1(v)dv, i= 2, 3, · · · ,n− 1∫ vF

vR
Fr1(v)dv, i=n

(6)

Due to possible component failure, actual power output of theWTG farm is generally smaller than the theoretical

capacity at current wind speed. To simplify the analysis, the outage rate of each WTG is denoted as λ . We

introduce a random variable S1 , the availability rate of WTGs, which can be expressed as:

S1(i) =
Pv (i)

Pv
,i= 0, 1, · · · ,N1. (7)

At the given wind speed v ,Pv(i) and Pv indicate the active power output when i WTGs are available and the

power output when all the WTGs are available, respectively . Obviously, S1 respects the binomial distribution

and the PD of S1 is given as follows.

D (S1) = {S1 (i) ,Pr [S1 (i)]} , i = 0, 1, 2, · · · , N1

S1 (i) =
i

N1
,Pr [S1 (i)] = Ci

N1
λN1−i (1− λ)

i (8)
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Actual power output of the WTG farm, denoted by X1 , is modeled as a two-state Markov process of the

maximum output capacity at the current wind speed and the possible forced outage. The PD of X1 can be

expressed as the convolution by the PDs of random variables x∗1 and S1 :

D (X1) = {X1 (k) ,Pr [X1 (k)]}=D (x∗1)⊗D (S1) , k = 0, 1, 2, · · · , N1n. (9)

3.2. Probabilistic analysis of PV modules

In each time-frame, the solar irradiance is supposed to follow a β -distribution. Since the power output of PV

modules is proportional to the solar irradiance, it can be modeled as a random variable x2 , which respects a

β -distribution in the same form given by the following PDF [13–16]:

Fr2 (x2)=
Γ (α+ β)

Γ (α) Γ (β)

(
x2
PM

)α−1 (
1− x2

PM

)β−1

, (10)

where α and β are shape parameters, and Γ( ) is the gamma function. Given N2 solar modules, each with

an area p2 and efficiency η , and the maximum solar irradiance is rm in W/m2 , the maximum active power

available from the modules, denoted by PM , is evaluated using the function PM = rmN2p2η .

Letx∗2 be the discrete form of x2 ; then the PD of x∗2 is a set of ordered pairs, denoted as D(x∗2), which

is given by:

D (x∗2) = {x∗2 (i) ,Pr [x∗2 (i)]} , i = 1, 2, 3, · · · , n. (11)

As shown in Figure 2, the power range from 0 to PM is uniformly divided into n separate intervals, and the

power values can be expressed as:

x∗2 (i)=
(i− 0.5)PM

n
, i = 1, 2, 3, · · · , n. (12)

The probabilities of the discrete power values are obtained by integrating:

Pr [x∗2 (i)]=

∫ iPM
n

(i−1)PM
n

Fr2 (x2)dx2. (13)

The forced outage rate of each module is denoted by ρ , and then the availability rate of PV modules S2 respects

the binomial distribution and the PD can be expressed as:

D (S2) =

{
S2 (i) =

i

N2
,Pr [S2 (i)] = Ci

N2
ρN2−i (1− ρ)

i

}
, i = 0, 1, · · · , N2. (14)

The actual power output of PV modules is denoted asX2 , and the PD of X2 is the convolution by D(x∗2) and

D(S2).

Probability density

a

x2
* (1)

a

x2
* (2)

x2
* (3)

x2
* (n)

PM

Powera

Figure 2. Sampling on the PDF curve of PV power.
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3.3. Probabilistic analysis of compensators

In this paper, reactive power compensators are deployed on the generation bus. The controlling strategy of the

compensators is cutting in or out capacitors according to the value of RE active power output automatically to

ensure the ratio of reactive and active power of the system stays as constant as possible. This strategy can be

expressed as:

z

X
= α, (15)

where X is the active power output of WTGs and PV modules, z is the reactive power injection of compensators,

and α is a constant parameter controlling the power factor of the generation side. The commonly used

compensator consists of several capacitors connected in parallel, which cannot realize step-less adjustment,

so z can be written as z∗ . Shown in Eq. (15), z∗ is a discrete random variable subject toX .

The PD of RE active power output is expressed as the following set of ordered pairs:

D (X∗) = {X∗ (i) ,Pr [X∗ (i)]} , i = 1, 2, 3, · · · ,M. (16)

Given N3 capacitors connected in parallel, each capacitor has the same capacity of p3 . Obviously, X∗ (M) is

the maximum active power output of REs, which is divided into N3 intervals evenly, and the interval length

isX∗ (M)/N3 . The PD of z∗ can be expressed as follows.

D (z∗) = {z∗ (k) ,Pr [z∗ (k)]} , k = 1, 2, 3, · · · , N3

z∗ (k) = kp3; Pr [z
∗ (i)] =

∑
Pr [X∗ (i)]

(k−1)X∗(M)
N3

≤ X∗ (i) ≤ kX∗(M)
N3

, i = 1, 2, 3, · · · ,M
(17)

Considering the forced outage rate of the capacitor, the PD of the actual reactive power output can be calculated

by convolution calculation.

3.4. Probabilistic analysis of load

The load referred to in planning is a predictive value; the actual load is a random variable, denoted as y . An

assumption is made that the load has a normal PDF [17]:

Fy (y) =
1√
2πσy

exp

(
− (y − µy)

2

2σ2
y

)
. (18)

As shown in Figure 3, the load range from µ−3σ to µ+ 3σ is evenly divided into n intervals, and the interval

length is a = 6σ / (n−1). Starting from µ−3σ , a discrete load value y∗(i) (i = 1,2,. . . ,n) is sampled every

length a . The integration of Fy(y) in the range of y∗−0.5a to y∗ + 0.5 is considered as the probability of

y∗(i).

D (y∗) = {y∗ (i) ,Pr [y∗ (i)]}

y∗ (i) = (µ− 3δ)+
6δ(i− 1)

n− 1
; Pr [y∗ (i)] =

∫ (µ−3δ)+
6δ(i−0.5)

n−1

(µ−3δ)+
6δ(i−1.5)

n−1

Fy (y)dy, i = 1, 2, 3, · · · , n
(19)
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Load power

Probability density

a

y*(1)

μ
μ+3σμ-3σ

n
a

y*(2) y*(n)

6σ

a

Figure 3. Sampling on the load PDF curve.

4. Theoretical background

4.1. Probabilistic load flow algorithm

For a given system configuration, the nodal power flow equations can be expressed as:

W = f(X), (20)

where f () is the power injection function, X is the system state vector including nodal voltages and angles,

andW is the real and reactive power injections vector. The input vector and state vector can be expressed as

the sum of means and the increments: W = W0 + ∆W , X = X0 + ∆X . Here, ∆W and ∆X are random

variables respecting some specific PDs.

Expanding nodal power flow equations around X0 using Taylor series and omitting the high-order items,

Eq. (20) can be expressed as follows:

W0 +∆W = f(X0 +∆X) = f(X0) + J0∆X +
J ′
0∆X

2

2!
+
J ′′
0∆X

3

3!
· · · ≈ f(X0) + J0∆X, (21)

where J0 is the Jacobian matrix of the last iteration in the Newton–Raphson procedure. As W0 = f(X0), the

state increment vector can be expressed as:

∆X ≈ J−1
0 ∆W=S0∆W, (22)

whereS0 is the sensitivity matrix or the inverse matrix ofJ0 ; J0 has been triangular factorized in the Newton–

Raphson procedure, soS0 is easy to obtain. As ∆X is a polynomial in a set of random variables ∆W , the PD

of ∆X can be expressed as the convolution of ∆W.

4.2. Gram–Charlier series and properties of moments and cumulants

Given a discrete random variable ζ , whose mean value is m and standard deviation is σ , according to the

Gram–Charlier series the cumulative probability function (CDF) of the standardized variable (ζ−m)/σ can be

expressed as [11]:

F (x) = Φ(x) +
c1
1!
Φ′(x) +

c2
2!
Φ′′(x) +

c3
3!
Φ′′′(x) + · · · , (23)
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where (x) is the CDF of the standard normal distribution. Here, we use a Gram–Charlier series from 3 to 9 in

order. We denote the v th order central moment of ζ as βv(ζ). Coefficient cv is a polynomial in βv(ζ) [18].

c0 = 1; c1 = c2 = 0;

c3 = −β3(ζ)
σ3 ; c3 = β4(ζ)

σ4 − 3;

c5 = −β5(ζ)
σ5 + 10β3(ζ)

σ3 ; c5 = β6(ζ)
σ6 − 15β4(ζ)

σ4 + 30;

· · · · · ·

(24)

Here, we denote the v th order origin moment and cumulant of ζ as αv(ζ), ζ
(v) . The relationship between

origin and central moments can be expressed as follows [18].

β0 (ζ) = 1;β1 (ζ) = 0;

β2 (ζ) = α2 (ζ)− α1 (ζ)
2
;

β3 (ζ) = α3 (ζ)− 3α1 (ζ)α2 (ζ) + 2α1 (ζ)
3
;

· · · · · ·

βv (ζ) =
v∑

j=0

Cj
vαv−j (ζ) (−α1 (ζ))

j

(25)

It is seen that ζ(v) is a polynomial in αv(ζ) [18].

ζ(1)=α1 (ζ) ;

ζ(2)=α2 (ζ)− α1 (ζ) ζ
(1);

ζ(3)=α3 (ζ)− 2α1 (ζ) ζ
(2) − α2 (ζ) ζ

(1);

· · · · · ·

ζ(r+1) = αr+1 (ζ)−
r∑

j=1

Cj
rαj (ζ) ζ

(r−j+1)

(26)

Property: If y1 , y2 , y3 ,. . . , yn are independent random variables with the v th order cumulantsy
(v)
1 , y

(v)
2 ,

y
(v)
3 ,. . . , y

(v)
n , respectively, the v th order cumulant of the sum variable x = λ1y1+λ2y2+λ3y3+. . .+λnyn is

thus given by [11]:

x(v)=λv1y
(v)
1 +λv2y

(v)
2 + · · ·+λvny(v)n , (27)

where λi (i = 1,2,3,. . . ,n) are constant coefficients and λvi is the v th power of λi .

5. A modified probabilistic load flow algorithm

5.1. The procedure of a modified PLF

The basic idea of the improved PLF algorithm is to deal with the means and increments of random variables

separately and transform and calculate the cumulants of increments through their moments. The procedure of

approximating the PDF of Vi and calculating the probability of Vi violating its limits is summarized as follows:

Step 1: Discretize continuous power curves or PDF curves to establish the PDs of the output power of

REs in the form of a set of ordered pairs. Taking availability rate into consideration, calculate the PDs of actual

output power of WTGs, PV modules, compensators, and load by convolution.
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Step 2: Calculate the means and PD of the increments of the output power of WTGs, PV modules,

compensators, and load. For example, if the PD of the output power of some RE generation device is:

D (X∗) = {X∗ (i) ,Pr [X∗ (i)]} , i = 1, 2, 3 · · · , n, (28)

then its power mean, denoted by m , is calculated by:

m =

n∑
i=1

X∗ (i) Pr [X∗ (i)]. (29)

The PD of power increment is expressed as follows.

D (∆X∗) = {∆X∗ (i) = X∗ (i)−m,Pr [∆X∗ (i)] = Pr [X∗ (i)]} , i = 1, 2, 3, · · · , n

Step 3: Calculate the origin moments of the power increments of WTGs, PV modules, compensators,

and load, denoted as αv(∆X∗):

αv (∆X
∗)=

n∑
i=1

Pr [X∗ (i)] (X∗ (i)−m)v. (30)

Calculate the central moments and cumulants of power increments of WTGs, PV modules, compensators, and

load according to Eqs. (25) and (26), denoted by βv(∆X∗) and ∆X∗(v) , respectively.
Step 4: Regulate the output power of WTGs, PV modules, compensators, and load to their correspond-

ing means calculated in Step 2. Execute power flow calculation to obtain the node voltage means and the

sensitivity matrix of the last iteration, denoted by V mean
i (i = 1,2,3,. . . ) and S , respectively.

Step 5: Nodal active and reactive power injections are linear combinations of the output power of

WTGs, PV modules, compensators, and load, as are the nodal power injection increments. Based on Eq. (27),

calculate the cumulants of power injection increments with cumulants of the corresponding RE or load power

increments obtained in Step 3.

Step 6: The power flow equation of the last iteration in Step 4 is as follows. ∆θ

∆V/V

 =

 JθP JθQ

JV P JV Q

[
∆V

∆Q

]
(31)

Node voltage increment vector ∆V is a linear combination of nodal power injection increment vector ∆P and

∆Q. According to Eq. (33), the v -order cumulant of the voltage increment of node i , denoted by ∆V
(v)
i , can

be calculated by:

∆V
(v)
i =

∑
j

(JV P (i, j)V
mean
i )

v
∆P

(v)
j +

∑
j

(JV Q(i, j)V
mean
i )

v
∆Q

(v)
j , (32)

where JV P (i ,j) and JV Q(i ,j) are elements of S , V mean
i is obtained in Step 4, and ∆P

(v)
j and ∆Q

(v)
j are the

v -order cumulants of active and reactive nodal power injection increments of node j obtained in Step 5.

Step 7: Compute the central moments of ∆Vi using Eqs. (25) and 26, denoted by βv(∆Vi). Calculate

the Gram–Charlier expansion coefficients based on Eq. (24). The standardized variable of ∆Vi is denoted as
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w.Here, w = (∆Vi − µ)/σ , and µ and σ are the mean and standard deviation of ∆Vi . CDF ofw is acquired

using Eq. (23). According to Eq. (26), ∆V
(1)
i = α1(∆Vi) = µ ; ∆V

(2)
i = α2(∆Vi) − α2

1(∆Vi) = σ2 . Thus, µ

and σ can be calculated easily based on V
(1)
i andV

(2)
i .

Step 8: The probability of Vi violating its limits is equal to the probability of the voltage increment

violating the corresponding limits:

1− Pr
{
V min
i < Vi < V max

i

}
=1− Pr

{
∆V min

i < ∆Vi < ∆V max
i

}
, (33)

where ∆V min
i and ∆V max

i are the upper and lower limits of ∆Vi , and ∆V min
i =V min

i −µ , ∆V max
i =V max

i −µ ;
µ is the mean of ∆Vi obtained in Step 7. Given the CDF of w in Step 7, denoted as F1(w), the probability of

Vi violating its limits can be calculated as follows.

1− Pr
{
∆V min

i < ∆Vi < ∆V max
i

}
= 1−

F1(
∆V max

i −∆V
(1)
i√

∆V
(2)
i

)− F1(
∆V min

i −∆V
(1)
i√

∆V
(2)
i

)

 (34)

Similarly, the power supply inadequacy probability OB 3 can be calculated as follows:

Step 1: The difference between generation power and load is a random variable, denoted by δ , which is

a polynomial in the active power outputs of WTGs, PV modules, and load:

δ =
∑

Xi − Y (35)

Step 2: Compute the cumulants of δusing the cumulants ofXi and Y , and then obtain the CDF of

the standardized variable of δ using Gram–Charlier expansion, denoted asF2(w). OB 3 can be calculated as

follows:

OB3=Pr(δ ≤ 0)=F2(−
δ(1)√
δ(2)

). (36)

5.2. A master-slave parallel NSGA-II on MPI

The NSGA-II and its detailed procedure can be found in [19]. Due to the heavy task of power flow calculation

as well as convolution and derivation of high order, the hybrid wind and solar energy conversion system

configuration is inevitably data-intensive. To solve this problem, parallel modification of the NSGA-II program

structure on the Message Passing Interface (MPI) platform is a method worth trying. Figure 4 shows the

parallel strategy used [20].

1.initialization
2.selection
3.crossover
4.mutation

5.start & stop

MPI_RecvMPI_Send

Calculating virtual fitness of
chromosome MPI_SendMPI_Recv

Processor 0: the master

l l l f f
Processor 1: the 1st slave

Sending
Buffer

Receiving
Buffer

Calculating virtual fitness of
chromosome MPI_SendMPI_Recv

Figure 4. Master-slave topology of PNSGA-II.
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5.3. Optimal solution selection

Due to the vagueness of human thoughts, the optimal solution selection method based on subjective preference

is of significant limitation. This paper proposes a selection method based on fuzzy membership and variance

weight.

Membership indicates the optimization degree of objective functions. Here, fuzzy theory is applied to

each function value of optimal solutions for the fuzzy membership. The fuzzy membership of the j th objective

function of the ith optimal solutionΦij is calculated as:

Φij=
OBmax

j −OBij

OBmax
j −OBmin

j

, i=1,2, · · · ,n1;j=1,2, · · · ,n2, (37)

where n1 is the number of optimal solutions, n2 is the number of objective functions, OBij is the j th objective

function value of the ith optimal solution, and OB max
j and OB min

j are the minimum and maximum values

of the j th objective function in the optimization process. Objective function values are normalized to a real

between 0 and 1 by Eq. (37).

In this paper, we quantitate the quality of a Pareto optimal solution through its weighted sum of fuzzy

memberships. A weight assignment method based on the variance is introduced to reduce subjectivity:

wj=

n1∑
i=1

n1∑
k=1

(Φij − Φkj)
2

n2∑
j=1

[
n1∑
i=1

n1∑
k=1

(Φij − Φkj)
2

] , (38)

where wj is the weight of the j th objective function.
n1∑
i=1

n1∑
k=1

(Φij − Φkj)
2
is the fuzzy membership variance

of the j th objective function. The proposed weighting method naturally respects the constraint,
n2∑
j=1

ωj= 1,

and gives the objective function of a larger fluctuation of optimization results a bigger weight. Specifically, the

larger the fuzzy membership variance of OB j , the larger the weight assigned to OB j , and vice versa.

The weighted sum of fuzzy memberships of each solution is calculated and used as an unbiased optimal

solution indicator:

Θi=

n2∑
j=1

Φijωj ,i=1,2, · · · ,n1. (39)

Θi is used as the selection priority value of the ith solution. The solution with the maximum Θ value is

regarded as the best unbiased optimal solution.

6. Simulation on an eastern China costal island grid

6.1. Basic parameters

An eastern China costal island grid, which can be simplified to a 7-bus network as shown in Figure 5, is used

for simulation.
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inverter

BUS1: load1 BUS2 : load2

compensator2

BUS3:distribution bus1

BUS5:generation bus1 BUS6: generation bus2

BUS4: distribution bus2

WTGs farm
PV modules

compensator1

BUS7:

the mainland grid

inverterinverter

Figure 5. Diagram of the costal island microgrid.

The cut-in, rated, and cut-out wind speed of the WTG is 4, 13, and 23 in m/s, respectively. The

photoelectric conversion efficiency is 22.9%. The mean and standard deviation of load 1 and load 2 are µ1 =

2.6, σ1 = 0.5 and µ2 = 2.3, σ2 = 0.4 in MW, respectively. The two loads are considered as a PQ bus with

the power factor of 0.8. The upper and lower limits of nodal voltage are 1.3 pu and 0.7 pu, respectively. Based

on the data of monthly average wind speed and solar radiation of the island, we get distribution parameters as

k = 10.46, c = 6.67, α = 2.96, β = 1.57, and rm = 0.83 kW/m2 [17]. The number of sampling points on

the continuous power curves or PDF curves is set to 200. Due to the deficiency of actual operation data, the

MTTF and MTTR of the WTG and PV module are based on some typical project statistics in Europe [21,22].

The fixed and variable cost coefficients and the upper and lower limits of the decision variables are shown in

Table 1.

Table 1. Summary of decision variables and the corresponding limits (Y– = Chinese yuan = US $0.16).

Items
Fixed cost Variable cost

Decision variables
The lower The upper

coefficient coefficient limit limit

WTG 1 × 105 Y– 0.3 × 104 Y–/kW
Number N1 5 50
Rated power of a WTG/kW p1 5 500

PV module 5 × 105 Y– 0.2 × 104 Y–/m2 Number N2 5 100
Area of a module/m2 p2 5 150

Compensator 1 6 × 104 Y– 0.5 × 104 Y–/kvar
Number N3 5 30
Capacity of a capacitor/kvar p3 5 150

Compensator 2 6 × 104 Y– 0.5 × 104 Y–/kvar
Number N4 3 25
Capacity of a capacitor/kvar p4 5 130

6.2. Pareto optimal solutions

Figure 6 shows the location of population before and after 50 generations of evolution. As can be seen, the

population assembling effect is quite obvious with two nondominated fronts appearing.
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Figure 6. The location of the population.

With the increasing of evolution generation, the proportion of nondominated solutions that are not

dominated by others in the population is gradually increasing. After 50 generations of evolution, the inferior

solutions that are dominated by others have been eliminated completely.

As can be seen from the location of the population, the three objective functions of the problem are

conflicting. This is determined by the characteristics of the multiobjective model. Consider the following two

situations:

1) In order to reduce the investment, less capacity of RE generation devices is deployed, which inevitably

increases the power supply inadequacy probability.

2) In order to reduce the probability of the node voltage violating its limits, RE generation devices that

generate electricity of high volatility should be configured to account for a smaller share of the total generating

capacity. Thus, the probability of absorbing electricity from a major power grid increases.

In a word, it is better to meet one objective of the model, inevitably at the expense of the others.

Table 2 shows the Pareto solutions after 50 generations of evolution. Decision-makers can select the final

solution from Table 2 according to their preference. For example:

Table 2. A set of Pareto optimal solutions.

Serial
Decision variables Objective functions

number
WTGs PV modules Compensator 1 Compensator 2

OB1(10
4 Y=) OB2 OB3N1 p1/kW N2 p2/m

2 N3 p3/kvar N4 p4/kvar
1 62 17 119 500 28 29 20 119 6389.6 17.53% 1.62%
2 31 11 41 38 16 10 3 76 952.6 100.00% 99.31%
3 67 17 134 242 5 44 8 71 4006.8 77.94% 56.96%
4 31 25 128 250 18 21 8 76 3722.6 57.79% 67.66%
5 24 23 125 192 19 10 7 86 2826.8 94.48% 92.85%
6 62 14 102 467 25 10 19 104 5053.2 41.57% 16.03%
7 80 24 27 460 26 110 18 77 6771 14.04% 19.70%
8 43 28 105 499 5 100 12 38 6169.6 5.74% 100.00%
9 29 23 122 218 18 10 6 84 3072.8 84.80% 86.94%
10 65 17 138 285 6 33 9 72 4255.5 61.91% 44.13%

Case 1: If the total investment is required to be less than 1000 × 104 yuan, then solution 2 is selected.

Case 2: If the nodal voltage violating its limits and the power supply inadequacy probability are required

to be less than 20% both, and a lower investment is accepted, then solution 1 is selected.

Case 3: With no specific preference, the unbiased solution with the best balance between objectives

should be adopted. The weights of objective functions based on membership variance are given in Table 3.
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Apparently, solution 1 with the maximum Θ value is selected. This method succeeds in avoiding the blindness

of the traditional weighting method.

Table 3. The fuzzy membership of the Pareto solutions and the membership variance and weight of each function.

Serial Membership Membership Membership The selection priority
number of OB1 of OB2 of OB3 (Θ value)

Pareto Solutions

1 0.0656 0.8749 1.0000 0.71
2 1.0000 0.0000 0.0070 0.27
3 0.4751 0.2340 0.4375 0.37
4 0.5239 0.4478 0.3287 0.42
5 0.6779 0.0586 0.0727 0.23
6 0.2952 0.6199 0.8535 0.62
7 0.0000 0.9119 0.8162 0.64
8 0.1034 1.0000 0.0000 0.39
9 0.6356 0.1613 0.1328 0.28
10 0.4323 0.4041 0.5679 0.47

Variance 0.0979 0.1343 0.1402 null
Weight 0.2629 0.3606 0.3765 null

6.3. Result comparison

The classic PLF algorithm uses a continuous PD to describe the probabilistic characteristic of RE output power;

the formula of the k -order origin moment of PV power output respecting the β -distribution is given in [17] as:

αk =
α (α+ 1) (α+ 2) · · · (α+ k − 1)

(α+ β) (α+ β + 1) (α+ β + 2) · · · (α+ β + k − 1)
. (40)

Without considering the failure of PV modules, an error, denoted as ∆(i ,j), is introduced as follows:

∆ (i, j) =
R (i, j)− r (j)

r (j)
× 100%, (41)

where R(i ,j) is the j -order cumulant of the active power output of the PV modules in the previous case

calculated using the discrete method, and i is the number of sampling points. r(j) is the j -order cumulant of

the active power output of PV modules in the previous case calculated with Eq. (40).

The error values according to different numbers of sampling points and orders are given in Table 4.

Visibly, there is inevitably an error in the cumulant calculated using the discrete methods. The calculation

results of the discrete method may be larger or sometimes smaller than the real value. The error increases with

the increasing of cumulant order and decreases with the increasing number of sampling points. If 200 points

are sampled on the PV PDF curve, the error of the fifth-order cumulant is controlled within 0.5%.

Table 4. Error value of the discrete method proposed in this paper.

i = points number
j = order
j = 1 j = 2 j = 3 j = 4 j = 5

i = 200 0.0072% 0.0273% –0.1213% –0.1260% 0.5706%
i = 100 0.0233% 0.0274% –0.1294% –0.1324% 0.9202%
i = 75 0.0406% 0.0298% –0.1470% –0.1454% 1.4118%
i = 50 0.0924% 0.0505% –0.2458% –0.2152% 1.8360%
i = 25 0.4228% 0.5165% –1.8860% –1.2860% 5.3230%
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To further demonstrate the accuracy and advantages of the proposed discrete method, the Monte Carlo

simulation method is introduced for the purpose of comparison. Here, Monte Carlo(x) represents a Monte Carlo

simulation setting the number of trials to x . PLF(x) represents a discrete PLF method setting the number of

sampling points to x.

The cumulative distribution curves (CDCs) of V1 in the previous case under the first Pareto solution in

Table 2 obtained by different methods are shown in Figure 7. As can be seen, the CDC of PLF(200) is much

closer to Monte Carlo(5000) than the CDC of PLF(50).

Figure 7. CDC of V1 obtained by different methods.

In each simulation of the Monte Carlo method, a set of deterministic values is assigned to random variables

generated in accordance with the PDs of state vector. In this way, with the increasing number of trials, the

Monte Carlo method gives a more precise result. In this paper, the simulation result of Monte Carlo(5000) is

considered as the real PD of the V1 . ARMS is adopted [11]:

ARMS =

√∑N
i=1

(
f iPLF − f iMC (5000)

)2
N

, (42)

where f iPLF and f iMC are the cumulative probability of V1 at point i calculated with PLF and Monte

Carlo(5000), respectively. The voltage points are located uniformly from 0.5 pu to 1.8 pu, and the number

of voltage points is N = 130.

In this paper, the objective function algorithm is used to calculate virtual fitness of chromosomes in the

procedure of NSGA-II. To ensure practicality, the objective function algorithm must be able to execute fast

probability calculations, while ensuring a relatively high accuracy.

As can be seen from Table 5, with the increasing of the number of sampling points, the accuracy and

execution time of PLF increase significantly. If the number of sampling points is 200, the corresponding ARMS is

less than 0.01, and the execution time is only the equivalent of 12% of the simulation time of Monte Carlo(5000).

Obviously, PLF(200) used in the previous NSGA-II optimization process is very appropriate.

Table 5. Simulation time and ARMS of the discrete PLF proposed in this paper.

Method PLF(20) PLF(50) PLF(100) PLF(200) Monte Carlo(5000)
time/s 79 97 120 147 1230
ARMS 0.485 0.0792 0.0152 0.0081 0

1927



YE et al./Turk J Elec Eng & Comp Sci

7. Conclusions and outlook

In this paper, a quantitative configuration model of a hybrid wind and solar system is proposed. The premise

of the model is that all random variables of the system must be independent of each other, but in terms of the

actual system, this is sometimes too idealistic. In future research, the quantitative capacity configuration of a

hybrid system involving correlated random variables will be discussed.

The simulation platform in this paper is a PC equipped with a pair of Intel Xeon 2.33 GHz quad-core CPU

and 8 GB DDR3 memory. The speedup factor [20] of the NSGA-II with the population size of 50 and maximum

evolution generation of 50 run parallelly on 8 processors reached 12.32. To further enhance optimization speed,

we plan to use computer clusters to replace the current single machine with multicore mode.
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