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Abstract: This paper investigates the design and performance of a 150 W single-phase current-source grid-connected

inverter topology that is based on a PV array and DC link inductor acting as a constant-current source. The inverter

is implemented using a single boost switch, an H-bridge inverter, and a CL output filter. The inverter output current

is simply controlled using the boost switch and open-loop or feedforward control. The dark I-V configuration is used to

simulate two series PV modules. Comprehensive test results are obtained to validate the computer simulation results.

Furthermore, the proposed inverter’s ability to deliver a sinusoidal current to the grid while meeting the appropriate

standards, i.e. total harmonic distortion and power factor requirements, is also examined for various modulation index

values and irradiances.
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1. Introduction

Limited fossil fuel resources, high demands for electrical energy, and concerns about pollution have prompted

research into renewable energy sources. Developments in the production of photovoltaic (PV) cells have made

these more cost-effective. It is convenient to feed the power generated by PV cells back into the power grid

using a grid-connected inverter (GCI). Research into GCIs for PV applications is focused on reducing costs and

improving performance and reliability while meeting the grid standards.

Early GCIs were of the current-source type, which used a DC link inductor to create a constant-current

source and line-frequency commutated switches to produce a square-wave output current. Despite its simplicity,

the output current needed significant filtering to meet the grid THD standards [1]. Some interest has been

reported in the use of PWM controlled current-source inverters (CSIs) [2–6]. A gate turn-off thyristor (GTO)-

based H-bridge grid-connected CSI has been proposed, which used PWM control. Although the switching losses

of GTOs are relatively high [7], they can block reverse voltage and hence eliminate the need for a series diode.

However, due to the limited switching speeds of GTOs, this approach has been used mainly at higher output

powers. As expected, the input DC link inductor losses in this topology were found to result in a substantial

reduction in the inverter efficiency. Another topology in the literature is a line-commutated soft-switched CSI

consisting of IGBTs and diodes as a resonant switch and H-bridge inverter. This concept produced a soft-

switched CSI and improved efficiency. However, the inverter control is more complicated and the number of

components is increased. This increases the inverter cost while reducing reliability. Although some recent single-
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phase current-source PV topologies [8–14] have better efficiency and THD performances, they have additional

circuitry, including passive and switching components in the main current path to reduce the DC link inductor

size. The increased number of components and more complex control could cause extra losses and reliability

issues.

Previously, some work was performed by the authors on a switched-mode rectifier (SMR)-based novel

topology and H-bridge inverter [15–18]. This topology is an extension of an SMR circuit that was proposed for

automotive applications [19], where it is used as a DC-DC converter. Some modifications were done associated

with the SMR concept to use this topology as a GCI for wind turbines and PV arrays. It was implemented

employing open-loop control to create PWM signals with only one high-frequency switch. A large DC link

inductor is used to supply a constant-current source and to smooth the instantaneous power fluctuations from

the inverter side at twice the grid frequency (in this case, 100 Hz). The proposed inverter is an improved design

of the inverter discussed in [16], including improved circuit layout for reliability, optimized DC link inductor to

reduce losses, and an optimized low-pass filter to meet the grid harmonic and power factor (PF) standards.

1.1. Proposed topology of the photovoltaic inverter

The proposed GCI is based on a constant current-source. This is achieved using a PV array with a DC

link inductor. Figure 1 shows a block diagram of the proposed inverter, along with the expected input and

output currents of the four inverter stages, i.e. the constant-current source, waveshaper (WS), unfolding circuit

(UC), and low-pass filter. The inverter operates from an essentially constant input current, delivered by the

PV modules through the DC link inductor. The current waveshaper and unfolding circuit stages are used to

produce a unipolar PWM current, which is filtered and fed to the grid, via the low-pass filter to produce a

sinusoidal output current.
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Figure 1. Proposed grid-connected CSI topology for PV applications showing constant-current input, and the current

waveforms for each stage.

1.2. PV array

The PV modules used in this application are the BP380U model from BP Solar. The PV array output is

simulated with an experimental technique called the “dark I-V test”, which was used to simulate sunlight

operation of the PV cells. The measurement technique is also commonly used to investigate the performance

specifications of solar modules [20]. The dark I-V test circuit is given in Figure 2a and the block diagram when
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connected to the CSI is shown in Figure 2b. The constant-current source of the dark I-V arrangement is set

to the short-circuit current (ISC) value, which corresponds to 1 kW/m2 irradiance value. It involves covering

the PV module (to eliminate the light-induced current) and using a constant-current source to simulate the

light-induced current. This is convenient as the testing can be performed indoors and the irradiance level can

be easily controlled and kept constant during the test. However, the temperature of the PV modules may not

be realistic as PV models often operate at much hotter temperatures than 25 ◦C, except in cold climates.

Simulated and tested current versus voltage and power versus voltage loci can be seen in Figures 2c and

2d. The simulations are shown for irradiances of G = 0.25–1 kW/m2 at 10 ◦C, while the measured results

correspond to 1 kW/m2 at a module temperature of 10 ◦C. The good agreement supports the use of the dark

I-V method.
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Figure 2. a) Dark I-V test arrangement block diagram, b) dark I-V implementation block diagram with grid-connected

CSI, and c) current-voltage and d) power-voltage loci for the PV modules at various irradiance values. The solid lines

represent calculations and the symbols represent dark I-V measurement results.

2. CSI implementation

2.1. MPPT algorithm

The PV inverters are controlled to extract maximum power from the PV arrays using a maximum power point

tracking (MPPT) algorithm. The output power of the CSI can be controlled using open-loop or closed-loop

control. Since the PV module current-voltage characteristics will vary according to operating conditions, so
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too will the current corresponding to the MPPT. The inverter must be able to vary the solar array output

current to maximize the output power. This is done by changing the modulation index (mA), which changes

the amplitude of the sinusoidal duty-cycle modulation applied to the waveshaper in Figure 1. The implemented

MPPT algorithm is based on maximizing the inverter output current using the perturb-and-observe method [2],

as seen in Figure 3.

Start

Y (n)=IPV (n) × mA(n)

mA (n) => mA (n-1) mA (n) =>mA (n-1)

Y(n) => Y(n-1)

mA (n+1) = mA (n) + ΔmA mA (n+1) = mA(n) - ΔmA mA (n+1) = mA(n) + ΔmA

Measure IPV (n)

No Yes

No NoYes Yes

Figure 3. MPPT algorithm flow diagram using perturb-and-observe method.

In this study, the grid current is not measured directly but rather is estimated as the product of the

modulation index and the measured solar cell output current as shown in Eq. (1):

Ith =
mAICELL√

2
, (1)

where Ith is the fundamental component of the unfolding circuit (H-bridge) output (grid) current and ICELL

is the PV array output current. The MPPT algorithm thus adjusts the modulation index to maximize the grid

current magnitude.

2.2. Inverter simulation

The power electronic simulation package PSIM was used to simulate proposed current-source inverter, as seen in

Figure 4, which shows the principal components of the inverter as well as the piecewise linear “4-diode” model

that represents the PV array [16]. The 4-diode model allows fast and accurate simulations. The model is based

on ideal zener diodes that have fixed voltage drops and it is fed by a constant-current source that is equal to ISC .

Additionally, the 4-diode model predicts the CSI input current ripple. Modeling of the oscillating input current

is critical as this can cause substantial PV array output power losses as a result of the instantaneous deviations
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from the maximum power point. The semiconductor devices are also accurately modeled. The thyristor and

reverse blocking diode voltage drops are taken into account and the on resistance of the MOSFET is included.

Since the test setup included an autotransformer, the inductance and resistance of the autotransformer are also

considered in the simulation model before the voltage source (grid).
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Figure 4. PSIM simulation of the proposed inverter, showing PV array (4-diode model), DC link inductor, waveshaper,

unfolding circuit, output filter, grid model, MPPT controller, and PWM signal generator.

The feedforward control approach is introduced into the proposed converter by including the sensed PV

array output current iL(t) and the desired WS output current IL0 amplitude to the open-loop control in Eq.

(2). The relationship between the input and output current of the WS is seen in Eq. (3) for FFD control.

Due to the PV array characteristic, the actual PV array current iL(t) is not equal to the nominal PV array

output current IL0 . The algorithm to compensate the variations in iL(t) is shown in Eq. (3), which selects the

appropriate duty cycle d(t).

iOUT = iL[(1− d)mA] (2)

1− d(t) =
i∗IN (t)

iL(t)
where i∗IN (t) = IL0mA| sin(ωt)| (3)

Here, i∗IN (t) represents the desired output current. Figure 4 shows the control circuit simulation model

implementing the algorithm.

3. Experimental results

The CSI components, including the DC link inductor, waveshaper, output filter, and zero-crossing detection

circuit, were optimized, built, and tested. Each stage will be explained below in depth.

Some of the component specifications of the proposed PV system are given in the Table. Figure 5 is also

given to show the hardware implementation.

3.1. Energy storage inductor design

The aim of an energy storage inductor is to maintain a ripple free current in the DC link between the PV array

and the inverter. There is a critical design trade-off for a PV grid-connected CSI regarding its energy storage
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inductor: increasing the amount of energy storage minimizes the PV array output power reduction but increases

its size and cost. In addition, the DC link inductor has resistive losses and core losses that reduce the efficiency

of the entire system. As a result, the optimization of the required value of DC link inductance is essential.

Table. Parameters of the 150 W current-source inverter.

Symbol Parameter Value
P0 Rated maximum input power 164 W
VCELL Input voltage at P0 35 V
I0 Input current for P0 4.55 A
Pout Output power 142 W (avg)
VGRID Grid voltage 53.5 V (rms)
LDC DC link inductance 192 mH
E DC link inductance energy storage ≈ 12 mJ/W
RLDC DC link inductor resistance 0.32 Ω
LF Filter inductance 2.9 mH
CF Filter capacitance 21 µF
RL Filter inductance resistance 0.16 Ω
RD Filter damping resistance 47 Ω
RSW Waveshaper switch resistance 0.033 Ω
VT SCR voltage drop 1.3 V
VD Diode voltage drop 0.7 V
fsw PWM switching frequency 4 kHz

Figure 5. Photo of the CSI prototype showing the power electronics and control hardware.

Figure 6a shows a CAD drawing of the constructed inductor and Figure 6b shows the inductors for the

150 W grid-connected CSI based on the design calculations [21]. In this application, a 192 mH inductor with

0.34 Ω resistance has been used. The efficiency of the system was increased by the optimized inductor as the

losses in the DC link inductor form a significant fraction of the total losses.

3.2. Current source inverter design

The basic aim of a current-source GCI is to feed a sinusoidal current into the power grid at unity power-factor,

as seen in Figure 1. The constant current from the PV array and DC link inductor is chopped by the waveshaper

(WS) switch employing a sinusoidal PWM control signal. A microcontroller (dsPIC30F4011) is used to create

4 kHz PWM signals using a sine function look-up table and the SCR H-bridge inverter is used to change the

output current polarity to produce an AC output current. This is shown in Figure 7a, which shows the WS
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switch control signal and resulting circuit output current. Figure 7b shows both SCR pair pulses that unfold

the WS current. A positive output current is obtained when T1 and T3 conduct and a negative output current

when the T2–T4 pair conducts.
1
4
5
m
m

190m
m

75
m
m

a)

Figure 6. a) CAD drawing of the energy storage inductor, which shows windings and C cores; b) constructed inductors.

a) b)

Figure 7. Measured a) sinusoidal PWM signals from controller (top) unfolded output current (bottom), b) microcon-

troller output for SCR pair’s drive pulses.

3.3. Low-pass filter design

The output low-pass filter reduces the high frequency harmonic content of the line current caused by the PWM

switching. Generally the line filter consists of only a filter inductor (L filter) for VSIs but other configurations

of inductors and capacitors such as CL filters for CSIs and LC and LCL filters for VSIs can be used.

It is well known that a GCI is required to provide high-quality power (low THD) to the grid while meeting

the necessary power factor. The low-pass filter determines the harmonic attenuation and also affects the inverter

power factor. However, the importance of the low-pass filter design is often overlooked. Such filters have copper

and iron losses and hence reduce the overall inverter efficiency. The low-pass filter is designed such that the

CSI is able to meet the following grid requirements [22] while exhibiting a low damping resistance (RD) power

loss (relative to rated power):
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• a power factor between 0.8 lead and 0.95 lag, from 20% to rated output power, and,

• attenuating the high-frequency harmonics such that the output current contains less than 5% THD at

rated output power.

For this application, a second-order CL-type low-pass filter is required as it allows the coupling of the

current-source inverter to the voltage-source grid, according to the impedance mismatch criteria [23]. An

example of this type of filter is shown in Figure 8.

RDC

gridi
L

invi

vinv vgrid

Figure 8. Parallel-damped CL type low-pass filter.

The filter cut-off frequency fc is commonly referred to as the resonant frequency, fR , as the filter has

an infinite gain at that frequency if there is no damping resistance. The output filter must be carefully damped

to limit any large amplifications at the resonant frequency. The resonant frequency can be given by:

fR =
1

2π
√
LC

(4)

The inverse of damping is quality factor Q , which is related to the gain of the filter at the resonant frequency.

Note that the filter gain represents the ratio of output to input current, i.e. Igrid / Iinv in Figure 8. The

expression for Q is dependent on the filter topology and the type of damping used.

Q =

√(
RD

Z0

)2

+ 1 where Z0 =

√
L

C
(5)

Above, Z0 is the characteristic impedance of the filter. If the Q of the filter is too high an increase in THD can

occur at the resonant frequency of the filter. If it is too low it will produce a large filter loss. The recommended

values of Q for grid filters varies at 2–4 [23].

3.4. Grid synchronization

Grid synchronization is achieved using a simple mains voltage zero-crossing detector based on a comparator

that compares the grid voltage to ground and generates a signal that is used to interrupt the microcontroller.

The microcontroller uses this information to reset the SCR and WS look-up table duty cycle, hence outputting

a current whose fundamental is synchronized to the grid (see Figure 9).
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Figure 9. Synchronization of the output voltage of the inverter and the grid voltage. The vertical and horizontal scales

are 50 V and 10 ms per division respectively.

The CSI output was connected to the mains through an isolated autotransformer to match the output

voltage of the available PV array, and also for safety. The grid voltage via the autotransformer was set to 54

V rms. The autotransformer was modeled by an equivalent series inductor of 174 µH and series resistance of

0.67 Ω based on measurements.

3.5. Test procedure

The current-source GCI and the PV modules were tested in the laboratory. The PV modules were covered and

the dark I-V method was used to simulate a solar irradiance of 1 kW/m2 . Preliminary experiments were done

using a resistive load (21 Ω) after the low-pass filter. The inverter output current and voltage can be seen in

Figure 10a.

Figure 10. a) Inverter output current and voltage for resistive load case and b) for grid-connected case. The vertical

and horizontal scales are 2 A, 20 V and 5 ms per division.
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After the inverter output current and the grid voltage were synchronized the autotransformer output

was connected in parallel with the resistive load and finally the resistive load was removed to achieve the grid-

connected test case. This procedure for the grid synchronization is required to prevent large inrush currents.

Figure 10b shows the inverter’s voltage and current waveforms at the maximum operating power for the grid-

connected case.

Figure 11 exhibits the simulated PV array output current and the grid-connected inverter output current

at 85% mA . The CSI output voltage is set to 54 V rms to be the same as the autotransformer voltage for

synchronization. The control circuit phase advance was set to 13◦ in the simulation model to have good

agreement. There is a substantial difference between the phase advance values used in the simulation model

and the prototype (2.7◦). This needs to be improved by fine-tuning the control algorithm as the CSI prototype

requires the correct phase advance value for proper unfolding operation with the existing algorithm.
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Figure 11. a) Simulated and b) measured CSI input and output currents for grid-connected case at 85% mA . The

vertical and horizontal scales are 2 A and 5 ms per division.

4. Performance analysis

The grid-connected CSI was tested to investigate its performance in the following areas:

• use of modulation index control to maximize the output power for a given irradiance condition,

• ability to meet the grid THD requirement of 5% at rated output power [22],

• ability to meet the grid power-factor requirements of 0.8 leading to 0.95 lagging from 20% to 100% of

rated output power [22], and

• efficiency over the output power range.

During the tests, the dark I-V current source was set to standard irradiance conditions.
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4.1. Modulation index and irradiance adjustments

Simulation and test results are shown in Figure 12a, where the output power is varied using the modulation

index. P0 corresponds to the maximum power point (MPP) where mA is 0.85 and the power is maximum. The

mA of 85% is the optimum value for the CSI and this is shown in Figure 12a. The nominal mA is chosen based

on the trade-off between the ability for tracking the MPP under cold conditions versus the inverter efficiency.

The measured results show good agreement with the simulations.
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Figure 12. Simulated and measured CSI input (PCELL) and output (PGRID) powers for various a) modulation index

and b) irradiance values (operating at MPP).

The input and output power versus irradiance curves are shown in Figure 12b. As mentioned in [21], the

irradiance reduction causes an average power reduction as the PV array output current is directly proportional to

irradiance, whereas the PV array output voltage is proportional to the modulation index while the current stays

relatively constant due to the PV array I-V characteristics. Conduction losses are the major loss mechanism

in the inverter and hence its losses increase with the PV array current. Due to the relatively constant current

in the constant irradiation case in Figure 12a, the difference between the PV array output and the CSI output

power remains almost constant.

However, in the changing irradiance case in Figure 12b, the power loss reduces proportional to the PV

array output current, which results in higher efficiency at low output power levels.

4.2. Total harmonic distortion

The simulation and test results of the CSI output current THD by changing both the mA and G values are

shown in Figures 13a and 13b. Even though there is good correspondence in the THD at rated output conditions,

there is significant error in the simulated results under light loads. This could be due to the switching losses

in the power electronics devices and may be due to the phase advance angle modified to match with the rated

output power test results. The phase angle value that is added to the simulation model is larger than the value

used in the microcontroller. The required phase advance angle is directly proportional to the output power.

Therefore, for light loads, a smaller phase advance is required. In addition, the large phase angle (13◦) provides

good correspondence with the rated output power but produces significantly larger THD than the test results

for light loads.
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Figure 13. Simulated and measured CSI THD as a function of output power for various a) modulation index and b)

irradiance values (operating at MPP).

Likewise, in the changing irradiance case, the test results show good agreement with the simulations for

the rated output power. In the test results, the output current THD for the G variations is lower than in the

constant irradiance case in Figure 13b.

The measured grid-connected inverter current waveforms and their FFT spectra at nominal mA are

provided in Figure 14. Although they have high harmonic content there are slight differences between the

current waveforms. Utilizing feedforward control reduces the THD by around 1%. The 3rd harmonic has a

slight reduction and the 9th harmonic has a larger reduction than the open-loop case while the others remain

relatively similar. These results imply that the output current distortion is not due to the 100-Hz PV array

output current ripple. Possible causes include delays in the control algorithm implementation or phase shift in

the grid filter causing issues with the unfolding circuit. Further investigation of means to improve this THD is

required and this could include modifying the sinewave function look-up table.
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Figure 14. Measured output current waveforms of the CSI and their FFT spectra for open-loop (top) and feedforward

(bottom) control cases.
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4.3. Power factor

Figure 15a shows the simulated and measured results for the grid power factor as a function of modulation

index. Note that during these studies the current was always leading, and the power factor is defined from the

grid’s point of view with regards to a passive load. The figure shows that the grid power factor requirement of

at least 0.8 leading over the output power range of 20% to 100% of rated output has been met.

Figure 15b illustrates power factor curves for the varying irradiance conditions and, similar to the

modulation index variations, the grid specification of the power factor is achieved. As the inverter operates at

the MPP for each irradiance case, the PF for light loads is slightly better for the varying irradiance case in

Figure 15b.
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Figure 15. Simulated and measured CSI power factor as a function of output power for various a) modulation index

and b) irradiance values (operating at MPP).

4.4. Efficiency

The inverter efficiency can be measured using the input power PCELL and the output power PGRID . The

efficiency measurement was performed using a power analyzer (Voltech-PM3000A). Even though there is good

correspondence in the efficiency at rated output conditions, there is significant error in the simulated results

under light loads for the initial test results (see Figure 16a). The error may be due to the wiring between the

inverter and the external measuring devices, such as the power analyzer. Although the cables used are capable

of carrying the maximum current (4.8 A), they have significant copper losses. In a second test, the thickness of

the cables was increased, which resulted in higher efficiency and simulation results now show good agreement

with the measured results.

Figure 16b illustrates the efficiency as a function of output power at the MPP for each irradiance value.

The resultant efficiency curve is different than that obtained by changing mA with constant irradiance as the

PV array output current is proportional to irradiance. This results in lower resistive losses and hence higher

efficiency.

5. Conclusions

This paper examined the implementation and performance evaluation of a low-cost 150 W single-phase current-

source grid-connected PV inverter.
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Figure 16. Simulated and measured CSI efficiency as a function of output power for various a) modulation index b)

irradiance values.

It was shown that the CSI could meet the grid power factor requirement over the required 20% to 100%

of output power but that the inverter THD of 8.1% at rated output power did not meet the 5% requirement

due to low frequency current harmonics. The feedforward control implementation improved the inverter output

current waveform only slightly. These current harmonics are likely due to unwanted delays in the system [24] or

phase shift in the grid filter causing issues with the unfolding circuit. Further investigation of means to improve

this THD is required and this could include modifying the sinewave function look-up table.

The efficiency of the inverter was examined over a range of output powers for modulation index and

irradiance variations. The calculated results showed good agreement with the measurements at rated output

power. However, the measured efficiency at light load was lower than the predictions, likely caused by the

unmodeled semiconductor switching and external cabling losses.
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