
Turk J Elec Eng & Comp Sci

(2016) 24: 121 – 140

c⃝ TÜBİTAK

doi:10.3906/elk-1304-248

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

Behavior learning of a memristor-based chaotic circuit by extreme learning

machines

Ayşegül UÇAR∗, Emrehan YAVŞAN
Department of Mechatronics Engineering, Faculty of Engineering, Fırat University, Elazığ, Turkey

Received: 28.04.2013 • Accepted/Published Online: 11.10.2013 • Final Version: 01.01.2016

Abstract: As the behavior of a chaotic Chua’s circuit is nonstationary and inherently noisy, it is regarded as one of

the most challenging applications. One of the fundamental problems in the prediction of the behavior of a chaotic

Chua’s circuit is to model the circuit with high accuracy. The current paper presents a novel method based on multiple

extreme learning machine (ELM) models to learn the chaotic behavior of the four elements canonical Chua’s circuit

containing a memristor instead of a nonlinear resistor only by using the state variables as the input. In the proposed

method four ELM models are used to estimate the state variables of the circuit. ELMs are first trained by using the

data spoilt by noise obtained from MATLAB models of a memristor and Chua’s circuit. A multistep-ahead prediction

is then carried out by the trained ELMs in the autonomous mode. All attractors of the circuit are finally reconstructed

by the outputs of the models. The results of the four ELMs are compared to those of multiple linear regressors (MLRs)

and support vector machines (SVMs) in terms of scatter plots, power spectral density, training time, prediction time,

and some statistical error measures. Extensive numerical simulations results show that the proposed system exhibits a

highly accurate multistep iterated prediction consisting of 1104 steps of the chaotic circuit. Consequently, the proposed

model can be considered a promising and powerful tool for modeling and predicting the behavior of Chua’s circuit with

excellent performance, reducing training time, testing time, and practically realization probability.

Key words: Extreme learning machines, memristor-based chaotic circuit, multistep-ahead prediction

1. Introduction

In 1971 Leon Chua proposed a fourth basic passive element named memristor (the contraction of memory

resistor) in addition to the three fundamental passive elements (resistor, capacitor, and inductor) in electronic

circuit theory [1]. This element has a functional relation between charge and flux. This function may be either a

charge-controlled or a flux-controlled one. The memristor’s useful relation was realized 37 years later by Stanley

Williams and his group at HP Labs [2]. The memristor was produced on a nanometer scale in solid-state with a

two-terminal device form. Following this, MATLAB and SPICE models were presented for simulation [3–5] and

more detailed analyses were presented [6,7]. Many more memristor models were then presented by means of

available data relating to the dynamic behavior of many different devices to obtain models behaving like them

[8,9]. They used a lot of devices, macromodels, and emulators with circuit components or MATLAB and SPICE

tools [8–10]. In order to enhance functionality, obtain a more compact structure, and reduce power consumption,

a lot of studies have been conducted on memristors for many analogue and digital circuits, including cellular

neural networks (CNN) [11], recurrent neural networks (RNN) [12], Schmitt triggers, difference amplifiers [13,14],

∗Correspondence: agulucar@firat.edu.tr

121

UÇAR and YAVŞAN/Turk J Elec Eng & Comp Sci

ultrawide band receivers [15], adaptive filters [16] and oscillators [17], field programmable nanowire interconnect

(FPNI) design [18], field programmable gate array (FPGA) design [19,20], and CMOS design [21,22].

A memristor can lead to chaotic behavior when connected to a power source or when the Chua diode

is replaced with a memristor [3,4,23,24]. In [24] several nonlinear oscillators utilized monotone increasing

piecewise-linear memristors with passive characteristics, and in [2] a memristor was used instead of the Chua

diode in Chua’s circuit. In [3,4] high frequency chaotic circuits were proposed based on Chua’s canonical circuit

with active nonlinearity. In [7] an autonomous circuit that uses only a linear passive inductor, a linear passive

capacitor, and a memristor was proposed. The chaotic circuits like in [3,4,7] are used for applications of secure

combination and image encryption [25]. Although there are many other variations of a memristor-based Chua’s

circuit in the literature used to obtain different chaotic behaviors, the current study aims to learn the behavior

of the chaotic circuits in [3,4] due to the exhibition of chaotic behavior by a smaller number of components than

the others [26]. However, the method can also be extended to the other chaotic circuits.

Chaotic behavior in deterministic dynamical systems is an intrinsically nonlinear phenomenon. Since the

behavior is extremely dependent on system inputs and small noises in the input variables will grow exponentially

quickly, the learning of chaotic behavior is a highly complicated problem to comprehend. If a chaotic behavior

is expressed as a time series, the learning problem of chaotic behavior changes into a multistep-ahead prediction

problem of the time series. In order to analyze a time series prediction problem, statistical methods such

as linear regression and autoregressive integrated moving average models (ARIMA) are used [27]. They are

applied for predicting and modeling the time series of such several soft computing techniques as single-layer

feed-forward neural networks (SLFNNs) [28], radial basis functional neural networks (RBFNNs) [29], support

vector machines (SVMs) [30], Elman recurrent neural networks (ERNNs) [31], and extreme learning machines

(ELMs) [32]. Of all the techniques, the ELM is the most attractive model for the prediction problems in terms

of fast learning properties, excellent performance, ease of implementation, and minimal human intervention.

The ELM is a kind of SLFNN. The SLFNNs are capable of approximating a nonlinear function by

nonlinear mappings by using input samples [33]. The weights and biases parameters of SLFNNs are usually

iteratively adjusted by gradient-based learning algorithms. The SLFNNs are generally very slow due to improper

learning steps or may easily converge to local minima; they need a number of iterative learning steps in order to

obtain a better learning performance [33]. In order to counter these disadvantages of SLFNNs for the prediction

of chaotic time series in the current study, the ELM proposed by Huang et al. [34–36] is considered. In the ELM

the weights of hidden nodes and biases are randomly chosen and output weights are analytically determined

[37]. The ELM reaches a good generalization performance extremely fast. The fast training property of ELM

makes ELM digitally designable by using FPGA.

A neural state space model and a recurrent least square SVM model behaving like the double scroll

attractor in Chua’s circuit were presented in [38,39], respectively. To alleviate high structural complexity

and slow training speed in the SLFNN model of Chua’s circuit in [40] a wavelet decomposition method was

employed together with SLFNNs. In [41] a wavelet decomposition method and SLFNNs were proposed to

classify multiscroll chaotic attractors of Chua’s circuit. A memristor including Chua’s circuit was modeled by

SVMs to generate a framework for secure communication in [42]. All studies need to choose network inputs such

as appropriate embedding dimension, time delay, or wavelet coefficients. In [43] Chua’s circuit was modeled

by the least square SVMs. The state variables were taken as inputs to SVMs without selecting any input

parameter. However, the prediction outputs of these models are not considered as the next input to repeat.

122

UÇAR and YAVŞAN/Turk J Elec Eng & Comp Sci

Hence, the multistep-ahead prediction error increases when the method in [43] is used.

In the current study a new multiple ELM model is proposed as an efficient regression method to learn the

behavior of the memristor-based chaotic circuit in [3,4] and then to carry out the multistep-ahead prediction

of the circuit aiming at improving the efficiency and effectiveness of the prediction accuracy. First, the data in

relation to the four variables obtained from the MATLAB model of the memristor-based chaotic circuit in [3,4]

are spoilt by noise to obtain a high modeling accuracy. Without selecting the embedding dimension and the

time delay, an input vector consisting of only the four state variables is used to train the ELMs in a simple and

fast way. Therefore, the one-step-ahead predictions of the chaotic time series in relation to current, voltages, and

flux of the memristor are carried out by the multiple ELMs. The long-term multistep-ahead prediction is then

applied by feeding back the outputs of the ELMs to inputs. Finally, the chaotic time series are regenerated and

all chaotic attractors of the circuit are reconstructed. The obtained results are compared to those of Multiple

Linear Regression (MLR) and SVMs. Comparative extensive results including a scatter plot, power spectral

density, and some error measures are illustrated to present the effectiveness of the ELM.

The rest of this paper is organized as follows: in Section 2 the basic architecture of the ELM is shortly

introduced; the equations of the memristor-based chaotic circuit are presented in Section 3; in Section 4

the learning procedure for prediction is emphasized; the simulation results are illustrated to demonstrate the

performance of the ELMs for learning of the behavior of the chaotic circuit in Section 5; Section 6 concludes

this paper.

2. Extreme learning machine

The ELM proposed by Huang et al. [34–36] is an SLFNN with H hidden neurons and common activation

functions. The architecture of the ELM is shown in Figure 1.

1

n m

1
Decision

Function

Output

1

i

H

n input H hidden m output
neurons layer neurons neurons

Figure 1. The architecture of ELM.

Given a set of N arbitrary distinct samples (xi, yi) where xi = [xi1 , xi2, . . . , xin]
T ∈ Rn is an n-

dimensional input vector and yi = [yi1 , yi2, . . . , yim]
T ∈ Rm is an m-dimensional output vector, the input–

output relation of an ELM with H hidden nodes and activation function s(x) is written in the following form:

H∑
i=1

Fis (xj) =
H∑
i=1

Fis
(
wi.xj + bi

)
= ŷj , j = 1, . . . , N, (1)

where wi = [wi1 , wi2, . . . , win]
T ∈ Rn is the weight vector connecting the inputs nodes to an i − th hidden

node, Fi = [Fi1 , Fi2, . . . , Fim]
T ∈ Rm is the weight vector connecting an i− th hidden node to output nodes,

and bi is a threshold relating to an i− th hidden node.

123

UÇAR and YAVŞAN/Turk J Elec Eng & Comp Sci

The ELM formulation can approximate N samples with zero error by satisfying

∑N

j=1
∥ŷj − yj∥ = 0, (2)

or
H∑
i=1

Fis
(
wi.xj + bi

)
= yj , j ∈ {1, 2, . . . , N} (3)

The output of the ELM can be written as follows:

SF = Y, (4)

S (w1 , . . . , wH , b1 , . . . , bH , x1 , . . . , xN) =

 s (w1.x1 + b1) . . . s (wH .x1 + bH)
... . . .

...
s (w1.xN + b1) . . . s (wH .xN + bH)


NxH

(5)

Fi = [Fi1 , Fi2, . . . , Fim]
T
Hxm and Yi = [y1 , y2, . . . , yN]

T
Nxm ,

where S is the hidden layer output matrix of ELM and s is the infinitely differentiable activation function, the

number of hidden nodes is chosen as H ≪ N.

Here the learning problem of ŵi , b̂i, F̂ (i = 1, . . . , H) parameters of an SLFNN is equal to the below

equation to solve the primal optimization problem:∥∥∥S (ŵ1, ..., ŵj , b̂1, ...b̂j

)
F̂ − Y

∥∥∥ = min
wi,bi,F

∥S (w1, ..., wM , b1, ..., bM)F − Y ∥ . (6)

Generally the objective function for the optimization problem is expressed as

E =

N∑
j=1

(
H∑
i=1

Fis
(
wi.xj + bi

)
− yj

)2

. (7)

The parameters are optimized by calculating the negative gradients of the objective function with respect to

wi, bi, Fi :

wl = wl−1 − τ
∂E

∂w
(8)

The accuracy and learning speed of the gradient based method particularly depend on the learning rate τ .

While a small learning rate provides very slow convergence, a larger learning rate exhibits the bad local minima

effect. The ELMs are rendered free from these limitations by using the minimum on account of the fact that the

minimum norm least-square solution is used. The weight and bias values of ELMs are randomly assigned unlike

the SLFNNs. Hence, the parameters of ELM represented by the linear system in Eq. (4) are learned solving

a least-square formulation in Eq. (6). If S is a nonsquare matrix for H ≪ N , a norm least-square solution is

obtained as F̂ = S∗Y = (STS)−1STY , where S∗ is the Moore–Penrose generalized inverse of matrix S . The

smallest training error is achieved by using the following equation:∥∥∥SF̂ − Y
∥∥∥ = ∥SS∗Y − Y ∥ = minF ∥SF − Y ∥ . (9)

124

UÇAR and YAVŞAN/Turk J Elec Eng & Comp Sci

Therefore, an extremely fast and better generalization performance is obtained than those of traditional SLFNNs

for hidden layers with infinitely differentiable activation functions. The final ELM achieves not only the smallest

training error but also the smallest generalization error thanks to the smallest norm of output weights similar

to SVMs.

3. The memristor-based Chua’s circuit

Muthuswamy and Kokote proposed a four-element Chua’s chaotic circuit with a memristor that replaces the

nonlinear resistor in 2009 [3,4]. Figure 2a shows the four-element chaotic Chua’s circuit including the memristor.

Figure 2b shows a representation by using only the basic circuit elements of the Chua’s circuit. In the equation -

k stands for the effect of op-amp A1 . The equations for the circuit are described by a set of ordinary differential

equations:

Figure 2. The four-element Chua’s circuit: (a) with memristor; (b) with only the basic circuit elements, - k represents

the effect of op - amp A1 in (a) [3]. 

dV1

dt
=

iL −W (∅)V1

C1
,

dV2

dt
=

k

C2
iL,

diL
dt

=
V1 − V2

kL
,

d∅
dt

= V1,

(10)

where iL is the current flowing in the inductor L and V1 and V2 are the voltages across the capacitors C1 and

C2 . The current of the flux-controlled memristor M, im , is determined by


im (t) = W (φ (t))V1 (t) ,

W (φ) =
dqm (φ)

dφ
,

(11)

125

UÇAR and YAVŞAN/Turk J Elec Eng & Comp Sci

where φ (t) is the magnetic flux between the memristor terminals and W (φ (t)) and it is termed the memduc-

tance.

Let x1 = V 1, x2 = V 2, x3 = iL, x4 = φ , then

ẋ1 = α1x3 − α1W (x4)x1,

ẋ2 = α2x3,

ẋ3 = α3x1 − α3x2,

ẋ4 = x1,

(12)

where α1 = 1
C1

, α2 = k
C2

, α3 = 1
kL and W (x4), the incremental memductance, has the piecewise-linear

characteristic in Figure 3.

W (x4) =



43.25 ∗ 10−4 x4 ≤ −15 ∗ 10−5

9.33x4 − 9.67 ∗ 10−4 −15 ∗ 10−5 < x4 ≤ −5 ∗ 10−5

−5.005 ∗ 10−4 −5 ∗ 10−5 < x4 ≤ 5 ∗ 10−5

−9.33x4 − 9.67 ∗ 10−4 5 ∗ 10−5 < x4 ≤ 15 ∗ 10−5

43.25 ∗ 10−4 the other

(13)

The charge is calculated by the indefinite integration

Q (x4) =

∫
W (x4) dx4 =



43.25 ∗ 10−4x4 x4 ≤ −15 ∗ 10−5

−6.888 ∗ 10−7 − 9.67∗10−4x4 − 4.665x2
4 −15 ∗ 10−5 < x4 ≤ −5 ∗ 10−5

−6.7717 ∗ 10−7 − 5.005 ∗ 10−4x4 −5 ∗ 10−5 < x4 ≤ 5 ∗ 10−5

−6.6551 ∗ 10−7 − 9.67∗10−4x4 + 4.665x2
4 5 ∗ 10−5 < x4 ≤ 15 ∗ 10−5

−1.3543 ∗ 10−6 + 43.25 ∗ 10−4x4 the other

(14)

–1 0 1
x 10–4

–1

–0.5

0

0.5

1

1.5

2
x 10–3

x4

W
(x

4
)

Figure 3. The W(x4) - x4 characteristic of the memristor.

In this study the circuit parameters were chosen as α1 = 1
33x10−9 , α2 = 8.33

100x10−9 , and α3 = 1
83.3x10−3 as

proposed in [3,4] in order to exhibit double scroll chaotic behavior. When the value of α1 is decreased or the

126

UÇAR and YAVŞAN/Turk J Elec Eng & Comp Sci

value of α2 is increased, the equilibrium point, period-doubling sequences, and spiral and double scroll chaotic

attractor behaviors can be observed. Each of them can be employed for modeling some dynamics in nature [26].

The MATLAB model of memristor in Eq. (13) in this paper is firstly employed as an m-function [3]:

function v = W(z)

if z(1) < = – 1.5e – 4

v = 43.25e – 4;

elseif z(1) > – 1.5e – 4 & & z(1) < = – 0.5e – 4

v = – 9.33 * z(1) – 9.67e – 4;

elseif z(1) > – 0.5e – 4 & & z(1) < 0.5e – 4

v = – 5.005e – 4;

elseif z (1) > = 0.5e – 4 & & z(1) < 1.5e – 4

v = 9.33 * z(1) – 9.67e – 4;

else

v = 43.25e – 4;

end

end

The memristor-based Chua’s circuit is then modeled by MATLAB. The m-file of the circuit is constructed

by two m-functions: an m-function defining the state equations and an m-function solving the state equations.

Fourth-order Runge-Kutta algorithm as well as the differential equation solver ode45 of MATLAB are used.

The scalar relative error tolerance value and absolute error tolerance value are chosen as 0.0001. Initial values

are
[
x1 x2 x3 x4

]∣∣
t=0

=
[
0.1 0 0 0

]
. The simulation time is chosen as 0.01 second. Some basic

program lines are given as follows [3]:

state - equation = inline(′ [p(2) ; (p(3) – W(p) * p(2)) / 33e – 9 ; (p(2) – p(4)) /(8.33 * 10e – 3) ; p(3)

* (8.33 / 100e – 9)] ′ , ′ t ′ , ′ p ′);

options = odeset (′ RelTol ′ ,1e – 4, ′ AbsTol ′ ,1e – 4);

[t, pa] = ode45(state - equation, [0 10e – 3], [0,0.1,0,0],options);

4. Multistep-ahead prediction and reconstruction of chaotic attractors

A set of nonlinear ordinary differential equations is defined as follows:

{
xt = f (xt−1) ,
yt = g (xt) ,

(15)

where xt ∈ R4 is the state variables of the circuit and yt ∈ R1 is the time series relating to the state variable

to be predicted. The sampling period is expressed as a suitable one so as to provide easiness for presentation.

In the current paper the four state variables are individually estimated by the four ELMs. The ELMs

are trained by using only four inputs without selecting the embedding dimension and the time delay similar to

[43] and contrary to the conventional time series prediction methods. The output of each ELM is accepted as a

next value of state variables different from [43]. A multistep-ahead prediction is carried out in an autonomous

127

UÇAR and YAVŞAN/Turk J Elec Eng & Comp Sci

mode by feeding back the outputs of ELMs as input:



yi,t+1 = ĝi (xt) ,

yi,t+2 = ĝi (yt+1) , i = 1, 2, 3, 4

yi,t+3 = ĝi (yt+2) ,
...

(16)

where ĝi (.) represents the outputs of evaluated ELMs.

The proposed method, based on multiple ELM models, is iteratively generated in the following steps:

Step 1. Collect the data set in relation to all state variables by using the model of memristor-based

Chua’s circuit in MATLAB for the time interval between 0 and p3 .

Step 2. Generate the training, testing, and validation sets by using the portions of the data set

corresponding to the time intervals of [0; p], [p1 ; p2], and [p2 ; p3], respectively.

Step 3. Train ELM models in relation to each state variable by using the training data spoilt by noise

and determine optimal ELM models on the validation set.

Step 4. Apply the optimal ELM models to the testing set feeding back the outputs of ELMs to the

inputs.

Step 5. Reobtain the chaotic time series of each state variable and reconstruct the response of the circuit

as input and output samples.

The framework of the proposed method is illustrated in Figure 4. The accuracy of the whole system

depends on the performance of each ELM model. A higher modeling error for each ELM model causes a higher

accumulation error in the multistep iterated prediction. The reason for applying multiple ELM models in this

paper is to obtain a more stable and fast prediction performance thanks to the high modeling performances of

ELM models trained independently by using the same training data. The method is simple and easy to apply

since the embedding dimension and time delay parameter of the chaotic time series in relation to each state

variable are not required to be determined.

5. Numerical simulation results and discussion

In this study the four ELM models are used to learn the behavior of a memristor-based chaotic circuit in

Figure 3. The ELMs are first trained for estimating x1 , x2 , x3 , and x4 . The future values of the behavior of

the chaotic circuit are predicted. This is known as a one-step-ahead prediction. Next, the iterated multistep-

ahead prediction is carried out by using the previously trained ELMs with the best network architectures. The

outputs of ELM models are given as next inputs of ELM models in this case. Finally, the chaotic time series

are reobtained and the chaotic attractors are reconstructed.

All experiments were run by using MATLAB on a personal notebook computer with 2.4-GHz Intel(R)

Core(TM) 2 Duo processor, 3GB memory, and Windows 7 operation system. For ELM the implementation

method described in [34–36] was employed. Regarding SVM, the LIBSVM implementation method described in

[44] was employed. In the simulations a time series consisting of 5521 data was obtained for each state variable.

Sixty percent of all data was used for the training set. Half of the remaining 40% was used for testing and

validation. The training set corresponds to 3321 data for 0.0059 s. The validation set corresponds to 1104 data

for the time interval between 0.0059 s and 0.0080 s. The testing set corresponds to 1104 data for the time

128

UÇAR and YAVŞAN/Turk J Elec Eng & Comp Sci

Predict the values of testing set using the optimal ELM models

Obtain the data set from the

MATLAB model of chaotic circuit

Divide the data set into the training, testing and validation sets and then normalize them

Train the four ELM models on the training set, [x1,t x2,t x3,t x4,t]

ELM - 1 ELM - 3 ELM - 4

 y1,t+1 y2,t+1 y3,t+1 y4,t+1

Optimal

ELM - 1

Optimal

ELM - 2

Optimal

ELM - 3
Optimal

ELM - 4

 y1,p2+1 y2,p2+1 y3,p2+1 y4,p2+1

Find the optimal ELM models on the validation set, [xi,p1-p2]

l=1104

l=1

Yes

No

 y1,p2 y2,p2 y3,p2 y4,p2

ELM - 2

Reobtain the chaotic time series and reconstruct chaotic attractors

Figure 4. The architecture of the proposed multiple-ELM prediction method.

interval between 0.0080 s and 0.01 s. The training set was spoilt by Gaussian noise with a standard deviation

of 0.1. The testing set and validation set were not spoilt by noise.

The performance of ELM models depends only on an appropriate setting of the number of hidden neurons,

while the selection of three parameters, the regularization parameter C, the precision parameter ε , and the

kernel parameter γ , is important to the performance of SVMs [33,34,44,45]. There are no general rules for

parameter setting of the SVM. The selection is usually based on trial and error, also called cross validation

method, or user’s expertise. However, the trial-and-error method is very time consuming. In this paper the

radial basis function kernel was used for SVMs and the width parameter of the kernel was set as 0.6, according

to γm ∼ (0.1, 0.5) as in [46] for speeding up the parameter selection stage, where m is the number of input

129

UÇAR and YAVŞAN/Turk J Elec Eng & Comp Sci

variables. The regularization parameter C and the precision parameter ε were optimized for all combinations of

C =
[
210 29 28 . . . 2−2

]
and ε =

[
2−1 2−2 2−3 . . . 2−7

]
[44]. In order to find the best network

architecture of ELMs, it was easily changed through increasing gradually the number of hidden neurons from

1 to 50 in an interval of 1 because of the fast training and testing speed of ELM in this paper. All data were

normalized in [–1 1] range as proposed in [34–36]. ELMs with sigmoid activation function were used. RMSE

values in training, testing, and validation of the four ELMs are given in Figure 4. The optimal number of hidden

neurons of ELMs and the optimal parameters (C , γ, ε) of SVMs were determined by taking their validation

performances into consideration. In order to further evaluate the obtained results the following performance

statistics such as root mean-squared errors (RMSEs), mean absolute errors (MAE), and correlation coefficient

(R) were used:

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)
2

(17)

MAE =

N∑
i=1

|yi − ŷi|i

N
(18)

R =

1
N

N∑
i=1

(yi − ȳ)(ŷi − ŷ)√
1
N

N∑
i=1

(yi − ȳ)
2
.

√
1
N

N∑
i=1

(ŷi − ŷ)
2

, (19)

where yi is the actual value, ȳ is the mean actual value, ŷi is the predicted value, ŷ is the mean predicted

value, and N is the total data number.

MAE is the average of the obsolete difference of the prediction value from the actual values. RMSE is

the square root of the mean square error. MAE and RMSE are highly correlated, but significant considerable

errors have a large effect on RMSE because of the square of error. In this study we considered both RMSE

and MAE in order to gain some insight into the relative distribution of the error. The correlation coefficient

measures how well the predicted values are consistent with the actual values. In order to determine the best

model, the values converging to unity of R and the small values of RMSE and MAE are searched by the special

validation data set.

All simulations were run 10 times. The average results are listed in the tables. Although the ELM usually

gives better results for large numbers of hidden neurons [34–36], this was not observed in the prediction of time

series in this paper. A considerable number of hidden neurons lead to significant errors for prediction. However,

a higher number of neurons provides healthier results on the training and validation sets. The results estimating

x3 and x4 in relation to ELMs are presented in Tables 1 and 2. The results relating to the other variables can

be similarly interpreted and observed from Figure 5. In these tables all of the results that are up to the lowest

validation error for a short and comprehensible presentation are given and the others are dismissed. Table 1 lists

the first 26 results relating to the ELM estimating x3 . The biggest value of R and the lowest values of RMSE

and MAE relating to ELM estimating x3 are 0.9998, 0.0141, and 0.0112 in the validation stage, respectively. In

Table 2, the first 19 results relating to the ELM estimation of x4 are presented. The biggest value R and the

lowest values of RMSE and MAE relating to ELM estimation of x4 are 0.9999, 0.0132, and 0.0095, respectively.

As can be seen from Figure 5, the best number of hidden neurons for the ELM models in relation to x1 , x2 ,

130

UÇAR and YAVŞAN/Turk J Elec Eng & Comp Sci

x3 , and x4 are 28, 27, 26, and 19 in the validation stage, respectively. The reconstructed chaotic time series

by using the best ELM architectures are illustrated in Figures 6 and 7. The time interval between 0.0080 s and

0.01 s presents the 1104-step prediction results iterating ELM outputs to their inputs (Figures 6 and 7). The

others are the results relating to training and validation, respectively. It can be observed from Figures 6 and

7 that the predicted values by the proposed multiple ELM models are very close to the actual values in the

MATLAB model of the memristor-based Chua’s circuit, including the testing time interval.

Table 1. The RMSE, MAE, and R statistics of the ELM model estimating x3 .

H
Training Stage Validation Stage Testing Stage

RMSE MAE R RMSE MAE R RMSE MAE R

1 0.5649 0.4946 -0.4304 0.5964 0.5321 -0.4345 0.5231 0.4618 -0.4424

2 0.4425 0.3776 0.6315 0.4536 0.3931 0.7048 0.4423 0.3710 0.5696

3 0.1843 0.1469 0.9449 0.2136 0.1755 0.9559 0.2096 0.1715 0.9263

4 0.2743 0.2249 0.8732 0.2901 0.2389 0.8830 0.2706 0.2168 0.8599

5 0.0802 0.0596 0.9898 0.1039 0.0711 0.9851 0.1031 0.0700 0.9816

6 0.0582 0.0456 0.9946 0.0812 0.0561 0.9921 0.0713 0.0460 0.9917

7 0.0535 0.0428 0.9955 0.0468 0.0362 0.9972 0.0427 0.0297 0.9969

8 0.0513 0.0414 0.9958 0.0531 0.0390 0.9974 0.0490 0.0346 0.9962

9 0.0666 0.0525 0.9930 0.0737 0.0595 0.9930 0.0656 0.0506 0.9928

10 0.0478 0.0385 0.9964 0.0251 0.0191 0.9991 0.0242 0.0184 0.9989

11 0.0464 0.0376 0.9966 0.0242 0.0185 0.9992 0.0235 0.0183 0.9990

12 0.0480 0.0387 0.9964 0.0335 0.0248 0.9985 0.0291 0.0229 0.9985

13 0.0439 0.0357 0.9970 0.0211 0.0166 0.9996 0.0183 0.0143 0.9995

14 0.0434 0.0353 0.9970 0.0223 0.0174 0.9993 0.0183 0.0139 0.9994

15 0.0425 0.0346 0.9971 0.0152 0.0116 0.9997 0.0133 0.0112 0.9997

16 0.0429 0.0348 0.9971 0.0170 0.0133 0.9996 0.0138 0.0110 0.9997

17 0.0439 0.0356 0.9970 0.0208 0.0168 0.9994 0.0203 0.0155 0.9993

18 0.0434 0.0353 0.9970 0.0184 0.0151 0.9996 0.0165 0.0138 0.9995

19 0.0429 0.0348 0.9971 0.0178 0.0145 0.9996 0.0172 0.0139 0.9995

20 0.0426 0.0346 0.9971 0.0154 0.0122 0.9997 0.0142 0.0118 0.9996

21 0.0428 0.0348 0.9971 0.0152 0.0120 0.9997 0.0141 0.0118 0.9997

22 0.0429 0.0348 0.9971 0.0158 0.0130 0.9997 0.0153 0.0130 0.9996

23 0.0424 0.0344 0.9972 0.0156 0.0125 0.9997 0.0132 0.0108 0.9997

24 0.0423 0.0344 0.9972 0.0185 0.0143 0.9995 0.0134 0.0107 0.9997

26 0.0422 0.0344 0.9972 0.0141 0.0112 0.9998 0.0129 0.0105 0.9997

The reconstructed attractors by ELMs are perfect since the ELM models are trained and validated by

the data in the training and validation stages, respectively. The success of the proposed method should be

proven especially for the prediction stage. Hence, Figures 8 and 9 illustrate all of the reconstructed attractors

by ELMs by using only the prediction stage and those of the original circuit. It is observed that all reconstructed

attractors by the outputs of ELM regressors are similar to the original ones.

131

UÇAR and YAVŞAN/Turk J Elec Eng & Comp Sci

Table 2. The RMSE, MAE, and R statistics of the ELM model estimating x4 .

H
Training Stage Validation Stage Testing Stage

RMSE MAE R RMSE MAE R RMSE MAE R

1 0.7479 0.6923 -0.9209 0.8518 0.7824 -0.9575 0.4947 0.4431 -0.9464

2 0.4192 0.3520 0.7853 0.5137 0.4209 0.8318 0.4619 0.4027 0.3440

3 0.1188 0.0954 0.9844 0.1709 0.1271 0.9776 0.0496 0.0412 0.9949

4 0.0888 0.0697 0.9913 0.1065 0.0844 0.9905 0.3230 0.2632 0.7601

5 0.0931 0.0764 0.9904 0.0998 0.0859 0.9908 0.0496 0.0376 0.9953

6 0.0849 0.0651 0.9921 0.0849 0.0665 0.9935 0.0693 0.0531 0.9902

7 0.0480 0.0382 0.9975 0.0374 0.0282 0.9989 0.0460 0.0367 0.9958

8 0.0501 0.0401 0.9972 0.0463 0.0354 0.9982 0.0360 0.0281 0.9974

9 0.0414 0.0335 0.9981 0.0178 0.0127 0.9997 0.0660 0.0508 0.9913

10 0.0415 0.0337 0.9981 0.0203 0.0141 0.9997 0.0245 0.0179 0.9987

11 0.0422 0.0342 0.9980 0.0231 0.0162 0.9996 0.0250 0.0193 0.9987

12 0.0429 0.0348 0.9980 0.0246 0.0190 0.9994 0.0223 0.0179 0.9990

13 0.0429 0.0347 0.9980 0.0262 0.0195 0.9995 0.0222 0.0173 0.9990

14 0.0422 0.0343 0.9980 0.0231 0.0169 0.9996 0.0194 0.0147 0.9992

15 0.0405 0.0328 0.9982 0.0229 0.0171 0.9996 0.0230 0.0175 0.9989

16 0.0421 0.0344 0.9981 0.0184 0.0137 0.9997 0.0197 0.0149 0.9992

17 0.0407 0.0332 0.9982 0.0147 0.0109 0.9998 0.0197 0.0145 0.9992

18 0.0403 0.0329 0.9982 0.0170 0.0123 0.9997 0.0219 0.0163 0.9990

19 0.0401 0.0326 0.9982 0.0132 0.0095 0.9999 0.0209 0.0166 0.9991

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

Hidden Neuron Number

R
M

S
E

-x
1

Training

Testing

Validation

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

Hidden Neuron Number

R
M

S
E

-x
2

Training

Testing

Validation

0 10 20 30 40 50
0

0.2

0.4

0.6

Hidden Neuron Number

R
M

S
E

-x
3

Training

Testing

Validation

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

Hidden Neuron Number

R
M

S
E

-x
4

Training

Testing

Validation

Figure 5. The training, validation, and testing errors with respect to the hidden layer nodes of ELMs models.

132

UÇAR and YAVŞAN/Turk J Elec Eng & Comp Sci

0 1 2 3 4 5 6 7 8 9
x 10–3

–4

–2

0

2

4

t–[s]

x
1
(t

)

Predicted

Real

0 1 2 3 4 5 6 7 8 9
x 10–3

–1

0

1

x 10
–4

t–[s]

x
4
(t

)

Predicted

Real

Figure 6. 1104-step iterated-ahead prediction results of ELM models estimating x1 and x4 .

0 1 2 3 4 5 6 7 8 9
x 10

–3

–4

–2

0

2

4
x 10

–3

t–[s]

x
3
(t

)

Predicted

Real

0 1 2 3 4 5 6 7 8 9

x 10
–3

–10

–5

0

5

10

t–[s]

x
2
(t

)

Predicted

Real

Figure 7. 1104-step iterated-ahead prediction results of ELM models estimating x2 and x3.

In addition, the graphs of power spectral density for the reconstructed data and original ones are given

in Figure 10 in order to verify the effectiveness of the proposed method. These figures show that the power

spectral density of ELMs very closely follows the original ones. This means that the proposed system completely

behaves like a memristor-based chaotic Chua’s circuit.

133

UÇAR and YAVŞAN/Turk J Elec Eng & Comp Sci

–2

0

2

x 10
–4

–5

0

5

–5

0

5

x 10
–3

w (t)x1 (t)

x
3

(t
)

–2

0

2

x 10
–4

–5

0

5

–5

0

5

x 10
–3

w (t)x
1

(t)

x 3
(t

)

–5 0 5

x 10 –3

–2

–1

0

1

2
x 10

–4

(a) x 3 (t)

x
4

(t
)

–5 0 5

x 10 –3

–2

–1

0

1

2
x 10

–4

(b) x3 (t)

x 4
(t

)

Figure 8. Attractors of: (a) the reconstructed data by ELM models; (b) the MATLAB model of circuit.

–5 0 5
–15

–10

–5

0

5

10

15

x
1

(t)

x
2

(t
)

–5 0 5

–15

–10

–5

0

5

10

15

x
1

(t)

x
2

(t
)

–5 0 5
–2

–1

0

1

2
x 10–4

(a) x 1 (t)

x
4

(t
)

–5 0 5
–2

–1

0

1

2
x 10 –4

(b) x1 (t)

x
4

(t
)

Figure 9. Attractors of: (a) the reconstructed data by ELM models; (b) the MATLAB model of circuit.

134

UÇAR and YAVŞAN/Turk J Elec Eng & Comp Sci

0 5 10 15

–200

–150

–100

Frequency (kHz)

d
B

/H
z–

x
1

0 5 10 15

–200

–150

–100

Frequency (kHz)

d
B

/H
z–

x
1

0 5 10 15

–100

–50

0

Frequency (kHz)

d
B

/H
z–

x
2

0 5 10 15

–100

–50

0

Frequency (kHz)

d
B

/H
z–

x
2

0 5 10 15

–150

–100

–50

Frequency (kHz)

d
B

/H
z–

x
3

0 5 10 15

–150

–100

–50

Frequency (kHz)

d
B

/H
z–

x
3

0 5 10 15

–100

–50

0

(a) Frequency (kHz)

d
B

/H
z–

x
4

0 5 10 15

–100

–50

0

(b) Frequency (kHz)

d
B

/H
z–

x
4

Figure 10. Power spectral density of: (a) the ELM models; (b) the MATLAB model of circuit.

Furthermore, a version using SVMs instead of ELMs in the proposed method and MLRs were used in

order to compare the method. Since MLRs are high speed regressors and SVMs have high modeling performance

and very low training and testing time [33,45], they were used in comparisons. Since SVMs are superior to the

other networks such as SLFNNs and RBFNs in the literature, only the SVMs are evaluated in this study.

Figures 11–13 show scatter plots of ELMs, SVMs, and MLRs for the results of only 1104-step. The R values of

ELMs are 0.9374, 0.9726, 0.9041, and 0.9917, respectively. The R values of SVMs are 0.8278, 0.9264, 0.9961,

and 0.9717, respectively. Figures 11 and 12 show that the ELMs and SVMs can be used to learn the behavior

of Chua’s circuit. However ELMs have a better ability to learn dynamic behavior than SVMs. In Figure 13 it

was observed that the R values of MLRs relating to each variable corresponded to 0.5582, 0.8728, 0.1637, and

0.9333, respectively. The results for x4 and x2 are relatively acceptable, but the others are far from reasonable

characteristics. It can be said that MLRs cannot be preferred to learn the behavior of Chua’s circuit on account

of their bad prediction performance.

The multistep-ahead prediction results obtained by using MLRs and the best ELM models and SVM

models are given in Table 3 in terms of RMSE, MAE, R, and their best parameter values by taking all time

intervals into consideration. It can be observed from Table 3 that the SVM shows a good prediction performance

with RMSE values in the range of 1.62e – 04–1.2422. For ELM models, a high prediction performance with

RMSE values in the range of 1.22e – 05–1.2087 is obtained.

The training, parameter selection, testing, and prediction times of ELMs, SVMs, and MLRs are presented

comparatively in Table 4. It can be observed from Table 4 that MLRs have only an advantage in the training

and testing times. On the other hand, the parameter selection time of SVM is much too long. This period is

not appropriate for online applications.

135

UÇAR and YAVŞAN/Turk J Elec Eng & Comp Sci

–5 –4 –3 –2 –1 0 1 2 3 4 5

x 10
–3

–0.01

–0.005

0

0.005

0.01

Actual Values–x
3

E
L

M
 R

e
s
u

lt
s
–

x
3

R=0.9041

0.9516x+0.0005

Data Points

Best Linear Fit

–15 –10 –5 0 5 10 15
–20

–10

0

10

20

Actual Values–x
2

E
L

M
 R

e
s
u

lt
s
–

x
2

R=0.9726

0.9548x–1.2007

Data Points

Best Linear Fit

–2 –1.5 –1 –0.5 0 0.5 1 1.5 2

x 10
–4

–2

0

2

4
x 10

–4

Actual Values–x4

E
L

M
 R

e
s
u

lt
s
–

x
4

R=0.9917

0.9906x+0.0000

Data Points

Best Linear Fit

–5 –4 –3 –2 –1 0 1 2 3 4 5
–10

–5

0

5

Actual Values–x1

E
L

M
 R

e
s
u

lt
s
–

x
1 R=0.9374

0.9551x+0.0242

Data Points

Best Linear Fit

Figure 11. Scatter plots of the ELM models for the testing stage.

–5 –4 –3 –2 –1 0 1 2 3 4 5

x 10
–3

–5

0

5
x 10

–3

Actual Values–x3

S
V

M
 R

e
s
u

lt
s
–

x
3

R=0.9961

0.9305x+0.0000

Data Points

Best Linear Fit

–5 –4 –3 –2 –1 0 1 2 3 4 5
–4

–2

0

2

4

Actual Values–x2

S
V

M
 R

e
s
u

lt
s
–

x
2

R=0.9264

 0.6294x+0.2129

Data Points

Best Linear Fit

–15 –10 –5 0 5 10 15
–20

–10

0

10

20

Actual Values–x 4

S
V

M
 R

e
s
u

lt
s
–

x
4

R=0.9717

0.9497x–1.2570

Data Points

Best Linear Fit

–2 –1.5 –1 –0.5 0 0.5 1 1.5 2

x 10
–4

–2

–1

0

1

2
x 10

–4

Actual Values–x 1

S
V

M
 R

e
s
u

lt
s
–

x
1

R=0.8278

 0.8104x–0.0000

Data Points

Best Linear Fit

Figure 12. Scatter plots of the SVM models for the testing stage.

–5 –4 –3 –2 –1 0 1 2 3 4 5

x 10
–3

–3

–2

–1

0

1
x 1022

Actual Values–x3

M
L

R
 R

e
s
u

lt
s
–

x
3

R=0.1637

1.7638e+23x–6.6982e+20

Data Points

Best Linear Fit

–15 –10 –5 0 5 10 15
–20

–10

0

10

20

Actual Values–x2

M
L

R
 R

e
s
u

lt
s
–

x
2

R=0.8728

0.9462x–0.5455

DataPoints

Best Linear Fit

–2 –1.5 –1 –0.5 0 0.5 1 1.5 2

x 10
–4

–2

0

2

4
x 10

–4

Actual Values–x4

M
L

R
 R

e
s
u

lt
s
–

x
4

R=0.9333

0.7914x+0.0000

Data Points

Best Linear Fit

–5 –4 –3 –2 –1 0 1 2 3 4 5
–5

0

5

10

Actual Values–x1

M
L

R
 R

e
s
u

lt
s
–

x
1

R=0.5582

0.7018x+2.3826

Data Points

Best Linear Fit

Figure 13. Scatter plots of MLRs for the testing stage.

136

UÇAR and YAVŞAN/Turk J Elec Eng & Comp Sci

Table 3. Performance comparison of ELM, SVM, and MLR as to the RMSE, MAE, and R statistics.

Model ELM SVM MLR

RMSE for 1104 steps

x1 0.4624 0.4256 2.9066
x2 1.2087 0.5982 3.4654
x3 0.0007 1.6259e –04 1.65e + 21
x4 1.22e – 05 1.2422 5.19e – 05

MAE for 1104 steps

x1 0.2267 0.5672 2.1235
x2 0.5861 0.3048 2.4949
x3 0.0003 7.8547e – 05 2.71e + 20
x4 5.58e – 06 0.5955 3.79e – 05

R for 1104 steps

x1 0.9750 0.9269 0.4665
x2 0.9846 0.9607 0.8663
x3 0.9556 0.9979 0.0966
x4 0.9960 0.9838 0.9326
x1 28 (210,0.6, 2 − 5) -

Hidden Neuron Number x2 27 (210,0.6, 2 − 1) -
and (C, γ, ε) x3 26 (210,0.6, 2 − 6) -

x4 19 (210,0.6, 2 − 6) -

Table 4. Performance comparison of ELM, SVM, and MLR as to the parameter selection, training, testing, and

prediction times.

Model ELM SVM MLR

Training time [s]

x1 0.0624 0.5221 0.4709
x2 0.0312 0.0562 0.4539
x3 0.0624 1.0862 0.4755
x4 0.0312 1.0731 1.0657

Parameter selection time [s]

x1 3.7905 709.0343 -
x2 3.7905 723.5186 -
x3 3.7905 670.7590 -
x4 3.7905 709.6261 -

Testing time [s]

x1 0.0312 0.1018 0.0004
x2 0.0312 0.0060 4.14e – 05
x3 0.0156 0.4263 3.16e – 05
x4 0.0312 0.1402 0.0003

Predicting time [s]

x1 12.0375 208.8224 1.0449
x2 11.6915 35.7368 1.0151
x3 11.2808 875.8024 0.8729
x4 6.1210 871.8570 2.3756

It is evident from the results presented in Table 4 that the training times of the four ELM models

are 0.0624, 0.0312, 0.0624, and 0.0312 in seconds while the training times of the four SVM regressors are

0.5221, 0.0562, 1.0862, and 1.0731 in seconds. The ELM models run faster than the SVM models. Through

these analyses it is obvious that a multiple ELM method is an efficient prediction method in comparison with

a multiple SVM method. Consequently, ELM models are more appropriate than SVM models in real-time

implementations. Furthermore, since ELM models can be designed by using such processors as FPGA, the

memristor-based Chua’s circuit can be practically realized too. All the analyses show that the proposed model

is an accurate and fast method for the prediction of chaotic behavior of a memristor-based Chua’ circuit.

137

UÇAR and YAVŞAN/Turk J Elec Eng & Comp Sci

To sum up, it can readily be concluded that the ELM model generally outperforms the excellent SVM

model with higher approximation power and lower training and testing times for predicting the behavior of a

chaotic circuit.

6. Conclusions

In the current paper an efficient and fast method for predicting the multistep-ahead behavior of a memristor-

based chaotic Chua’s circuit by using multiple ELM models was developed. The main aim of the proposed

method was to take on the unparalleled features of ELM models (better generalization performance, fast

learning speed, simpler and without employing tedious and time-consuming parameter tuning) to model the

chaotic circuits and to predict its multistep-ahead behavior.

In this paper the chaotic time series in relation to the circuit variables spoilt by noise are first used for

training the four ELM models. A one-step-ahead prediction of the chaotic behavior of the circuit is estimated

by the trained ELMs. Next, a 1104-step-ahead prediction is perfectly carried out by feeding back the outputs of

ELMs to their inputs for a time interval not known in advance. The chaotic time series are finally reconstructed

by the prediction results and all chaotic attractors are reobtained.

The effectiveness of the proposed prediction method is shown by means of scatter plots, power spectral

density, RMSE, MAE, R, and the training, testing, and prediction times. Experimental results demonstrated

that the proposed method performed significantly well in a multistep-ahead prediction of the chaotic behavior.

It was observed that the method with the four ELM models achieved the highest values of R (0.9750, 0.9846,

0.9556, and 0.9960) and the smaller values of RMSE (0.4624, 1.2087, 0.0007, and 1.22e – 05) and MAE (0.2267,

0.5861, 0.0003, and 5.58e – 06) for 1104 steps.

A comparative study was also conducted on the methods of multiple ELM models, multiple SVM

models, and MLRs. The experimental results showed that the multiple ELM method significantly surpassed in

performance the multiple SVM method in terms of higher prediction performance, shorter training, parameter

learning, and prediction times; it also surpassed MLRs in terms of higher prediction performance.

In addition, it is notable to state that the framework of the multiple ELM method can also be applied

to other nonlinear chaotic circuits and the different chaotic time series without determining such parameters as

the embedding dimension and the time delay.

FPGAs can be used to obtain the memristor-based chaotic circuit model on account of the fact that an
ELM is trained and tested in a short time. Hence, the multiple ELM method is an important step towards

modeling real world memristor-based circuits. On the other hand, the other parallel computing systems can be

used to speed up the generating process of the circuit model due to the fact that ELM models are trained and

tested independently of each other. The next study will be designed in that manner.

Acknowledgment

The authors would like to thank Professor Guang-Bin Huang for his personal help with ELM and his codes.

References

[1] Chua LO. Memristor - the missing circuit element. IEEE T Circuit Theor 1971; 18: 507–519.

[2] Strukov DB, Snider GS, Stewart DR, Williams RS. The missing memristor found. Nature 2008; 453: 80–83.

[3] Muthuswamy B, Kokate PP. Memristor-based chaotic circuits. IETE Tech Rev 2009; 26: 417–429.

[4] Muthuswamy B. Memristor based chaotic circuits. Technical Report. University of California, No: UCB / EECS –

2009 - 6, Berkeley, November 2009.

138

UÇAR and YAVŞAN/Turk J Elec Eng & Comp Sci

[5] Biolek Z, Biolek D, Biolkova V. SPICE model of memristor with nonlinear dopant drift. Radioengineering 2009; 18:

210–214.

[6] Joglekar YN, Wolf SJ. The elusive memristor: properties of basic electrical circuits. Eur J of Phys 2009; 30: 661–675.

[7] Muthuswamy B, Chua LO. Simplest chaotic circuits. Int J Bifurcat Chaos 2010; 20: 1567–1580.

[8] Prodromakis T, Peh BP, Papavassiliou C, Toumazou C. A versatile memristor model with nonlinear dopant kinetics.

IEEE T Electron Dev 2011; 58: 3099–3105.

[9] Yakopcic C, Taha T, Subramanyam G, Pino R, Rogers S. A memristor device model. IEEE T Electron Dev L 2011;

32: 1436–1438.

[10] Rak A, Cserey G. Macro modeling of the memristor in SPICE. IEEE T Comput Aid D 2010; 29: 632–636.

[11] Itoh, M, Chua LO. Memristor cellular automata and memristor discrete-time cellular neural networks. Int J Bifurcat

Chaos 2009; 19: 3605–3656.

[12] Wu A, Zeng Z, Zhu X, Zhang J. Exponential synchronization of memristor-based recurrent neural networks with

time delays. Neurocomputing 2011; 74: 3043–3050.

[13] Pershin Y, Ventra MD. Practical approach to programmable analog circuits with memristors. IEEE T Circuits-I

2010; 57:1857–1864.

[14] Wey TA, Jemison WD. An automatic gain control circuit with TiO2 memristor variable gain amplifier. Analog

Integr Circ S 2012; 73: 663–672.

[15] Witrisal K. Memristor-based stored-reference receiver—the UWB solution? Electr L 2009; 45: 713–714.

[16] Merrikh-Bayat F, Bagheri-Shouraki S. Mixed analog-digital crossbar-based hardware implementation of sign-sign

LMS adaptive filter. Analog Integr Circ S 2011; 66: 41–48.

[17] Talukdar A, Radwan A, Salama K. Generalized model for memristor-based wien family oscillators. Microelectr J

2011; 42: 1032–1038.

[18] Snider GS, Williams RS. Nano/cmos architectures using a field-programmable nanowire interconnect. Nanotech-

nology 2007; 18: 1–11.

[19] Wang W, Jing T, Butcher B. Fpga based on integration of memristors and cmos devices. In: 2010 IEEE International

Symposium on Circuits and Systems; 30 May–2 June 2010; Paris, France. pp. 1963–1966.

[20] Cong J, Xiao B. Mrfpga: a novel fpga architecture with memristor-based reconfiguration. In: 2011 IEEE/ACM

International Symposium on Nanoscale Architectures; 8–9 June 2011; San Diego, CA, USA. pp. 1–8.

[21] Xia Q, Robinett W, Cumbie MW, Banerjee N, Cardinali TJ, Yang JJ, Wu W, Li X, Tong WM, Strukov DB.

Memristor-cmos hybrid integrated circuits for reconfigurable logic. Nano L 2009; 9: 3640–3645.

[22] Ebong IE. Training memristors for reliable computing. PhD, University of Michigan, USA, 2013.

[23] Driscoll T, Pershin Y, Basov D, Ventra MD. Chaotic memristor. Appl Phys A -Mater 2011; 102: 885–889.

[24] Itoh M, Chua LO. Memristor oscillators. Int J Bifurcat Chaos 2008; 18: 3183–3226.

[25] Lin ZH, Wang HX. Efficient image encryption using a chaos-based PWL memristor. IETE Tech Rev 2010; 27:

318–325.

[26] Koksal M, Hamamci SE. Analysis of four element Chua circuit containing new passive component memristor. In:

3rd Conference on Nonlinear Science and Complexity, Ankara, Turkey, 28–31 July 2010; pp.1–6.

[27] Brillinger DR. Time Series, Data Analysis, and Theory. New York, NY, USA: McGraw-Hill, 2001.

[28] Manabe Y, Chakraborty B. A novel approach for estimation of optimal embedding parameters of nonlinear time

series by structural learning of neural network. Neurocomputing, 2007; 70: 1360–1371.

[29] Leung H, Lo T, Wang S. Prediction of noisy chaotic time series using an optimal radial basis function neural

network. IEEE T Neural Netw 2001; 12: 1163–1172.

139

http://dx.doi.org/10.1109/ISCAS.2010.5537010
http://dx.doi.org/10.1109/ISCAS.2010.5537010
http://dx.doi.org/10.1109/NANOARCH.2011.5941476
http://dx.doi.org/10.1109/NANOARCH.2011.5941476
http://dx.doi.org/10.1137/1.9780898719246

UÇAR and YAVŞAN/Turk J Elec Eng & Comp Sci

[30] Sapankevych NL, Sankar N. Time series prediction using support vector machines: a survey. IEEE Comput Intell

Mag 2009; 4: 24–38.

[31] Farsa MA, Zolfaghari S. Chaotic time series prediction with residual analysis method using hybrid Elman–NARX

neural networks. Neurocomputing 2010; 73: 2540–2553.

[32] Pan F, Zhang H, Xia M. A hybrid time-series forecasting model using extreme learning machines. In: Second

International Conference on Intelligent Computation Technology and Automation; 10–11 Oct 2009; China. pp.

933–936.

[33] Haykin S. Neural Networks and Learning Machines. 3rd ed. Upper Saddle River, NJ, USA: Prentice Hall, 2008.

[34] Huang GB, Zhu QY, Siew CK. Real-time learning capability of neural networks. IEEE T Neural Networ 2006; 17:

863–878.

[35] Huang GB, Zhu QY, Siew CK. Extreme learning machine: theory and applications. Neurocomputing 2006; 70:

489–501.

[36] Huang GB, Zhou H, Ding X, Zhang R. Extreme learning machine for regression and multiclass classification. IEEE

T Syst Man Cy B 2012; 42: 513–529.

[37] Decherchi S, Gastaldo P, Leoncini A, Zunino R. Efficient digital implementation of extreme learning machines for

classification. IEEE T Circuits-II 2012; 59: 496–500.

[38] Suykens JAK, Vandewalle J. Learning a simple recurrent neural state space model to behave like Chua’s double

scroll. IEEE T Circuits-I 1995; 42: 499–502.

[39] Suykens JAK, Vandewalle J. Recurrent least squares support vector machines. IEEE T Circuits-I 2000; 47: 1109–

1114.

[40] Hanbay H, Türkoğlu I, Demir Y. An expert system based on wavelet decomposition and neural network for modeling

Chua’s circuit. Expert Syst Appl 2008; 34: 2278–2283.

[41] Türk M, Oğraş H. Recognition of multi-scroll chaotic attractors using wavelet-based neural network and performance

comparison of wavelet families. Expert Systems with Applications 2010; 37: 8667–8672.

[42] Wang XD, Ye MY. Identification of memristor-based chaotic systems using support vector machine regression. In:

Luo Q. Editor. Information and Automation. Springer, 2011; 86: 365–371.

[43] Sun JC. Chaotic behavior learning of Chua’s circuit. Chin Phys B 2012; 21: 100502-1–100502-7.

[44] Chang CC, Lin CJ. LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2011; 2: 1–27.

[45] Uçar A, Demir Y, Güzeliş C. A penalty function method for designing efficient robust classifiers with input–space

optimal separating surfaces. Turk J Elec Eng & Comp Sci 2014; 22: 1664–1685.

[46] Cherkassky C, Ma Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural

Networks 2004; 17: 113–126.

140

http://dx.doi.org/10.1109/ICICTA.2009.232
http://dx.doi.org/10.1109/ICICTA.2009.232
http://dx.doi.org/10.1109/ICICTA.2009.232
http://journals.tubitak.gov.tr/elektrik/issues/elk-14-22-6/elk-22-6-20-1301-190.pdf
http://journals.tubitak.gov.tr/elektrik/issues/elk-14-22-6/elk-22-6-20-1301-190.pdf

	Introduction
	Extreme learning machine
	The memristor-based Chua's circuit
	Multistep-ahead prediction and reconstruction of chaotic attractors
	Numerical simulation results and discussion
	Conclusions

