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Abstract: Classifying large and real-world datasets is a challenging problem in machine learning algorithms. Among

the machine learning methods, the support vector machine (SVM) is a well-known approach with high generalization

ability. Unfortunately, while the number of training data increases and the data contain noise, the performance of SVM

significantly decreases. In this paper, a fast and de-noise two-stage method for training SVMs to deal with large, real-

world datasets is proposed. In the first stage, data that contain noises or are suspected to be noisy are identified and

eliminated from the genuine training dataset. The process of elimination and identification is based on the movement of

the center of the convex hull data in the training dataset. The convex hull data are computed via the QHull algorithm.

On the other hand, the well-known fuzzy clustering method (FCM) is applied to compress and reduce the size of the

training dataset. Finally, the reduced and purified cluster centers are used for training the SVM. A set of experiments

is conducted on the four benchmarking datasets of the UCI database. Moreover, the amount of training time and the

generalization of the proposed approach are compared with FCM-SVM and normal SVM. The results indicate that the

proposed method reduces the amount of training time and has a considerable success in removing noisy data from the

training dataset. Therefore, the proposed method can achieve a higher generalization performance in comparison with

the other methods in large, real-world datasets.

Key words: Support vector machine, fuzzy clustering method, convex hull, QHull algorithm, reduction set method,

noisy training dataset

1. Introduction

In recent years, the widespread use of computers and the development of technology have led to remarkable

progress in the production and storage of numerical data. Consequently, large datasets in various fields are

produced and can be found in commercial exchange, agricultural trade, the internet, traffic, telecommunications,

astronomy, and medical services, to name a few. For this reason, there is an essential requirement for developing

fast and accurate learning machine algorithms and data mining approaches in the classification of large, real-

world datasets.

The presence of noise is highly likely in real-world large datasets. Noise will confuse a machine learning

algorithm in the training phase. Accordingly, the accurate performance and generalization ability are noticeably

reduced [1–3]. Thus, an important phase associated with the use of machine learning algorithms is removing

the noise from the training dataset [1,4]. A key factor in removing noisy data from the original training dataset

in the classification problem is how to detect and remove noisy data from pure data [1,5].
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Due to the high generalization performance and great mathematical background, the support vector

machine (SVM) is one of the well-known machine learning algorithms in the classification problem [6,7]. The

present mathematical formulation of SVM was obtained through a three-stage evolution. The first phase was

started in 1963 with introducing the idea of Vapnik and Lerner to construct the optimal hyperplane, i.e. a linear

classifier with the largest margin separating the linear separable training data. Then, by a three-member team

effort consisting of Guyon, Boser, and Vapnik, the construction idea of an optimal hyperplane was extended

to the feature space by using a kernel function. Finally, by Cortes and Vapnik, the soft margin formulation of

SVM for noisy data was introduced and the final formulation was obtained. This form of SVM formulation is

suitable and general for all real-world datasets, linear and nonlinear, and separable and nonseparable [6–8].

The SVM is highly sensitive to a number of training data and to the presence of noises in the training

dataset [9-13]. Training SVM is equivalent to solving a convex quadratic problem, with the significant compu-

tational benefit of not getting stuck in local minima. But when the size of the training dataset is increased, the

amount of training time goes up, and much worse, the QP kernel matrix size is enlarged and cannot be stored in

memory. Hence, training a SVM is a slow process and turns into a serious challenging problem for large datasets

on a large scale. The presence of noisy data and outliers is inevitable in large and real-world datasets because

it is impossible to avoid hardware failure of measuring tools such as sensors, transmitters, and transducers, or

calibration errors of measurement devices and programming errors, all of which lead to the creation of noisy and

outlier data. In the construction of an optimal hyperplane in two-class classification problems, the presence of

noisy data in training datasets is one of the main reasons for reducing the accuracy performance [5,9–11,13,14].

In order to improve the accuracy of SVM and to reduce SVM training time in noisy and large datasets,

many researchers have tried two different isolation categories: eliminating noisy data from the training dataset

and reducing the size of the training dataset.

A. Methods for reducing SVM training time

1) Algebraic methods: A group of researchers tried to split the big SVM QP problem into smaller size

QP problems and then combined the final solutions of these QPs to obtain the optimal hyperplane

solution [15,16]. As an example of this type of methods, [17] proposed a fast and efficient method named

sequential minimal optimization (SMO). The other efforts of researchers in the field of algebraic methods

are available in [18], [19], and [20]; they optimized and modified the SMO with regard to updating two

violation parameters of KKT conditions simultaneously, presented a new stop condition for improving the

convergence speed of the SMO algorithm, and proposed a multiprocessor parallel algorithm to accelerate

the standard SMO algorithm, respectively.

2) Geometrical methods: Some researchers restricted the upper bound of the convex hull in the feature space

and constructed a linear hyperplane separator [2,21]. The other types of geometric approaches are found

in [22] and [23], where the data points lying on the convex hull of the entire dataset in each of the classes

were first computed and then used as a training dataset for training SVMs and FSVMs.

3) Hybrid methods in reducing SVM training time: Another group of researchers employ clustering methods,

i.e. hierarchical clustering [24], minimum enclosing ball clustering [25], and fuzzy k−means clustering [26–

31], to make an effort to extract a training dataset with smaller size than the original training dataset.

They believe these data are the most informative and highly representative in a large dataset for finding

support vectors. Thus, by using the selected training dataset, the training time is decreased while the

performance remains high.
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B. Methods for reducing the effect of noises

1) Statistical methods: Statistics is a traditional tool for noise detection. [32] proposed an iterative algorithm

named C4.5 to eliminate noisy data from the other data. John et al. used an information criterion to

measure the similarity of samples, and then a decision was made by a human expert on whether the data

contained noise and needed to be eliminated or not [33]. The main drawback is that some distribution of

data is needed to assume these methods.

2) Fuzzy SVMs methods: The researchers in [14] and [34] reformulate the SVM and make the fuzzy SVM

(FSVM). The main idea in FSVM for reducing the effect of noise is to apply a fuzzy membership

(importance weight) to each sample in the training dataset such that different samples can make different

contributions in the construction of the SVM hyperplane. A key point in these methods is how to determine

weights for a dataset. Examples of these methods are given in [12–14], where smaller weight or even zero

weight was assigned to noisy and outlier data to reduce noisy data or remove them.

3) Hybrids methods: A group of researchers proposed multiple-stage hybrid methods, which combine a

clustering approach or a filter with SVM. Brodley et al. proposed a filter to clean noisy data and then

used the pure data as a training dataset for training a classifier [35]. In [36], a KFCM-clustering-based

FSVM algorithm (KFCM-FSVM) was proposed to deal with the classification problems with outliers or

noises.

In this paper, a fast and insensitive to noise training method for dealing with large and real-world

datasets is proposed. The method has two stages. The first stage removes noisy and outlier data based on

the displacement of the center of the convex hull data in the training dataset. In the second stage, the FCM

algorithm reduces the size of pure data obtained from the first stage. Finally, the purified cluster centers are

used for training SVM. Therefore, the proposed method simultaneously decreased the training time of SVM

and enhanced the accuracy of the separating hyperplane in SVM.

The paper is organized as follows. Section 2.1 briefly recalls existing SVM mathematical formulation

and Sections 2.2 and 2.3 describe FCM and the convex hull, respectively. Section 3 presents the proposed

hybrid model. In Section 4, the proposed approach faces a serious challenge based on the well-known large and

real-world datasets of the UCI database and discusses the results in details. Finally, Section 5 draws relevant

conclusions.

2. Basic background

With the development of software and hardware, large volumes of large datasets are generated. Classification

is a process for analyzing data and extracting a model from data in order to describe the concept of data and

estimate the future behavior of them (their corresponding class labels). The discrete models are obtained from

the classification methods where the output is either 1 or –1. Predicting the future behavior of a test dataset

by a classifier is equivalent to assigning a class label to each of the data points with an unknown class label in

the test dataset.

In recent years, SVM has gained a lot of attention in comparison with other machine learning algorithms,

and has been used in many real-world applications. Unfortunately, due to the large QP optimization of SVM,

the training phase is slow and the memory requirement of storing the kernel matrix is large. This is a serious

challenge in the real-world application of SVMs.
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In addition, it is noteworthy that large datasets obtained from real-world applications contain noisy

data. Noisy data will complicate the training phase of SVM, and hence a substantial reduction in the modeling

performance and the generalization ability of SVM are observed. Generally, it can be concluded that a fast

and robust method for analyzing and building an accurate model from large and noisy datasets is absolutely

essential.

In Section 2.1 SVM, as one of the well-known machine learning methods, is briefly reviewed. Section 2.2

describes FCM as a kind of soft clustering and also a nice reduction method. Finally, in Section 2.3 convex hull

and its algorithm is defined.

2.1. Support vector machine

The necessary formulation of SVM for classification problems is reviewed in this section. Assume a set of two

classes of labeled training points (xiyi) is given. For i = 1, . . . , n , each training point xi ∈ Rn belongs to

one of the two classes in accordance with label yi ∈ {−1, 1} . The optimal hyperplane is obtained by solving

a quadratic optimization problem in Eq. (1) (known as primal form), whose number of variables is as large as

the training data size n .

min φ (w, ξ) =
1

2
wTw + C

n∑
i=1

ξi (1)

s.t.

yi
(
wT . xi + b

)
≥ 1− ξi, i = 1, 2, . . . , n

ξi ≥ 0, i = 1, 2, . . . , n
(2)

where ξi s are slack variables that represent a violation of the pattern separation condition. The user defined

parameter C is regarded as a regularization parameter controlling the model complexity. For nonlinear separable

data, the kernel trick is utilized to map the input space into a high dimensional space named feature space. The

optimal hyperplane is obtained in the feature space. The primal optimal problem of Eq. (1) can be transformed

into a dual form as:

max Q (α) =
1

2

n∑
i=1

n∑
j=1

αiαjyiyjk (xi, xj)−
n∑

j=1

αj

s.t.
l∑

j=1

αiyi = 0 (3)

0 ≤ αi ≤ C, i = 1, . . . , n

where k(., .) is a kernel function. In the practical applications of SVMs, there are several frequently used

substitutions for selecting the kernel function k(., .). Some of the conventional kernel functions are listed in

Table 1. In this table, σ and d are constants and those parameters must be set by a user. For MLP kernel a

suitable choice for β0 and β1 is needed to enable the kernel function satisfying the Mercer condition [6,8].

Those kernel parameters highly affect the generalization performance and also the model complexity of

the resulting SV machine. Kernel parameters are implicitly characterizing the geometric structure of data in the

feature space. In the feature space the data become linearly separable, where the maximal margin of separation

between the two classes is reached. The selection of kernel parameters will change the shape of the separating
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Table 1. The conventional kernel functions.

Name Kernel function expression
Linear kernel k (xi, xj) = xT

i xj

Polynomial Kernel k (xi, xj) = (t+ xT
i xj)

d

RBF kernel k (xi, xj) = exp(−∥xi − xj∥2 /σ2)
MLP kernel k (xi, xj) = tanh(β0x

T
i xj + β1)

surface in the input space. The optimal choice of a regularization parameter and kernel parameters is called the

SVM model selection problem [1,7,37]. In [38] and [39], many approaches were suggested for the optimal model

selection problem. Furthermore, in Eq. (2) α = (α1, . . . , αn) is the vector of nonnegative Lagrange multipliers.

The solution vector α = (α1, . . . , αn) is sparse, i.e. αi = 0 for most indices of the training dataset. This is

the so-called SVM sparseness property. The points xi corresponding to nonzero αi are called support vectors.

Therefore, the points xi corresponding to ai = 0 have no participation in the construction of the optimal

hyperplane and only a part of the training dataset, i.e. the support vectors, constructs the optimal hyperplane.

Let v be the index set of support vectors, then the optimal hyperplane is:

f (x) =

#sv∑
i∈ ν

αiyik (xi, xj) + b = 0 (4)

and the resulting classifier is:

y (x) = sgn

[
#sv∑
i∈ν

αiyik (xi, xj) + b

]
(5)

where b is easily determined by KKT conditions. In regards to Eq. (3), in the SVM training phase, a big kernel

matrix is required, whose rows are equivalent to the number of training data. Thus, in real application, the

storage of this kernel matrix has a large computational cost. Time complexity and space storage for the SVM

training are o(l3) and o(l2), respectively [9,10].

2.2. Fuzzy clustering method

Bezdek introduced fuzzy clustering by using an objective function in 1981 [29]. The FCM is clustering data such

that data within each cluster are the most similar to each other and data in different clusters are as dissimilar
as possible [29,40]. The FCM is a soft clustering method; thus, each item/piece of data has a specific degree of

freedom that allows it to belong to all the clusters rather than only one cluster. The fuzzy clustering algorithm

is defined as the minimization of the following objective function:

Min (J, U) =

l∑
k=1

C∑
i=1

um
ikd(xi, vk)

s.t.
c∑

i=1

uij = 1 , 0 ≤ uij ≤ 1 (6)

where l and c are the number of training datasets and clusters, respectively. The proposed method is assumed

to create scattered clusters, so data being close to a distinctive hyperplane have a higher chance of being selected
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as a cluster center. In Eq. (6), m determines the data dispersion degree in all the clusters. With an equal

number of clusters and an increasing fuzziness parameter m , the value of the objective function is reduced and

the centers of clusters scatter less, and vice versa. Therefore, to increase the chance of misclassified data being

the centers of clusters, all the clusters should be as scattered as possible. This is only possible with a proper

choice of parameter m . In this study, m is equal to 1.2. In Eq. (6), d(xjvi) is the measure of similarity between

j th data and the ith cluster, which is defined in the Euclidian norm as follows:

d (xi, vk) = ∥xi − vk∥ =

 d∑
j=1

(xkj − vij)
2

1/2

(7)

where vk and uij are the cluster center and the membership degrees of data to each cluster, updated based on

Eq. (8) and Eq. (9), respectively.

vij =

l∑
k=1

um
ikxki

l∑
k=1

um
ik

(8)

where = 1, . . . , and M is the number of features of data.

uik =

 c∑
j=1

(
dik
djk

)2/(M−1)
−1

(9)

The flowchart of the FCM is shown in Figure 1.

Calculate cluster center

Initialize K and 

membership matrix 

Evaluate obj. func.

Update membership 

degree matrix

Optimal clusters

Stop condition

Figure 1. The FCM flowchart.
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2.3. Convex hull

The convex hull of a training dataset X in Rn is the smallest convex set that contains the entire training dataset

[2,41]. The convex hull of training points in each class shows that finding the nearest points of two convex hulls

is equivalent to finding the separating hyperplane with the maximum margin in the SVM problem [42]. An

algebraic view of the convex hull for X is the set of all the combinations of samples in X. It is formulated as

follows:

Conv (X) =

{
l∑

i=1

αixi |xi ∈ X,αi ≥ 0,

l∑
i=1

αi = 1 , i = 1, . . . , l

}
(10)

where l is the total number of finite training samples xi in X and αi are nonnegative parameters that must

satisfy
l∑

i=1

αi = 1 condition. Many algorithms have been suggested for computing the convex hull [42,43].

Among them, the QHull algorithm has a lesser computational complexity encounter in large datasets in Rn

[44,45]. It has the expected time complexity o(nlogn) [45].

3. Fast and de-noise SVM training method

The separation hyperplane of the SVM is constructed by only a part of the training dataset, the support

vectors, which are obtained from the training phase. One effective method to speed up the SVM training phase

is to reduce the input data size of the training phase. Another one is to select a part of the training data

as a representative of the entire training dataset. The proposed method uses the FCM for selecting a part of

the training dataset (data reduction stage), while holding meaningful data in the training dataset. Then, the

obtained cluster centers are used as a reduced dataset for training the SVM. The new training dataset boosts

up the SVM training phase, but decreases the accuracy of the SVM because the cluster centers are calculated

by averaging over the whole data of each cluster in Eq. (8). Thus, it is obvious that FCM is highly sensitive

to noisy and outlier data points. The noisy data samples contribute extremely effectively to the construction

of cluster centers, so using cluster centers without employing a de-noise process of these data is useless and

makes the reduction method ineffective. The reduced dataset is not an accurate representation of the entire

training dataset in large and real-world applications. Therefore, it is necessary to eliminate the noisy data

and the suspected noisy data from the other data in the training phase. Generally, noisy data in classification

problems could be organized in three groups [4,35,46,47]: 1) data whose corresponding labels include noise

(labeling error); 2) data whose attributes are noisy; and 3) data that have both the first and the second group

of noises, i.e. noise in class labels and their attributes.

Noisy data belong to either of the mentioned noise groups and have a lesser similarity to their own data

with a corresponding class label of +1 or –1. These data commonly lie on the boundary between the convex

hulls of two classes. This is a key point, and based on it, the proposed method is able to remove the suspected

noisy data from the training dataset.

The proposed method has two stages. In the first stage, an iterative algorithm is used for removing noisy

data from the training dataset. In the second stage, the FCM is employed as a reduction method to reduce the

number of training data.

The iteration algorithm for the positive class is as follows: in each iteration, the convex hull data is

computed by the QHull algorithm. Then, in regards to the key point, the boundary data suspected to contain

noise are eliminated. Then, for the remaining training dataset, the class center is calculated and the termination
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condition in Eq. (11) is examined. If it is not satisfied, the iteration is repeated. The iteration algorithm for

the negative class is the same as the one for the positive class.

The stop criterion is based on the displacement of the class center position of each class. The stop

condition of the iterative algorithm, by selecting an appropriate parameter named δ , is defined as follows:

∥ClassCenter (i)− ClassCenter(i− 1)∥ ≤ δx (11)

where i is the index of each iteration and δx is equal to one of the values δP and δN . The parameters δP

and δN are used for restricting the displacement of the positive class label, i.e. y = +1, and the negative class

label, i.e. y = −1, respectively.

In order to control the removal rate of boundary data containing noise or suspected noise, two ranges

are defined for the class centers, i.e. δx = [δp δN ] . By tuning these ranges, the movements of the class center

positions are restricted. To illustrate the concept of the class center of the convex hull data, a synthetic dataset

containing noise is generated in Figure 2. It will be used for further explanation of the first stage of the proposed

method and its significance to determine a proper value for δx and to clarify how the termination condition is

worked out.

0 50 100 150 200 250 300 350 400 450 500
150

200

250

300

350

400

Figure 2. The effectiveness of eliminating noisy data in the class center of the red synthetic dataset.

The red dataset is marked with hollow circles (O) and the blue class is specified with crosses (×) in

Figure 2. Some noisy data from the three noise groups exist in the red dataset. The red circles, which are

bolded with purple color, are made of the primal convex hull data of the red dataset. The position of the class

center corresponding to the primal convex hull data, that is the red circle filled with purple color, is shown with

a purple square. After running the first stage of the proposed method, data that make up the convex hull are

removed. It is obvious that the convex hull data are more likely to be noisy data or have data that probably

contain much noise.

After eliminating the convex hull data of the primal convex hull, another convex hull is computed for

existing data and their convex hull data is determined. Then, similar to the previous iteration, the class center

is calculated for the obtained convex hull data. In Figure 2 the second convex hull data are shown with red

circles filled by a green color and their corresponding class center colored with a green square.

By comparing the purple and the green center positions with each other, the effectiveness of removing

noisy data in the shift of the center position is demonstrated. Eliminating noisy data caused the movement of
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the class center position from the purple to the green. In fact, the key parameter δx represents the differences

arising from the elimination of noisy data in the obtained class centers. Thus, the selection of δx = [δp δN ] has

a major effect on the position of each class center. If it is too high, the first stage of the proposed algorithm,

in addition to removing noisy data, will eliminate meaningful data (without noise) too; and if it is too low for

parameter δx = [δp δN ] , the efficacy of the first stage of the proposed method will be discarded.

The proposed algorithm has two separate parameters, δp and δN , in δx to adjust the elimination rate of

noisy data for each class of datasets.

The two separate parameters of δx produced a considerable ability for the expert user to use the proposed

method in analyzing imbalance datasets that need different values of δx = [δp δN ] , or datasets with different

amounts of noise in their classes.

In the second stage of the proposed method, the FCM is used to reduce the number of purified data

in each class of datasets. In other words, the FCM chooses informative representative data for each class of

datasets. After applying the FCM, the purified cluster centers are calculated based on Eq. (8) and are used as a

reduced training dataset for training the SVM. The flowchart of the proposed method is presented in Figure 3.

4. Experiments

4.1. Experimental conditions

To evaluate the validity of the proposed method, large real-world datasets of the UCI database were used. The

specifications of the datasets are shown in Table 2.

Table 2. Dataset descriptions.

Classes
Attributes Records Datasets name Datasets indices

Pos. Neg.
3

4 625 Balance 1
1 2,3
2

2 862 Four class 2
1 –1
2

4 4000 SVMguide1 3
1 –1
2

2 10,000 Banana 4
1 –1

A comparative study was carried out between the normal SVM [6], which does not use a noisy data

removal process and a reduction method for the training data size, and the FCM-SVM based on [26,27], which

only uses a reduction method for reducing the number of training data. The cluster centers are used as a

training dataset for training the SVM in the proposed method. As mentioned in Section 2.2, there is not a

specific method to select the appropriate number of clusters. In this study, similar to other studies, the FCM

algorithm used the method of trial and error to conjecture the optimal number of clusters [5,26–29].

For implementing the comparative study, a PC and MATLAB (R2008b) software was employed. Table

3 shows the hardware configuration of the PC. The Gaussian kernel with the same value for its parameter is

used in all experiments. The regularization parameter of SVM according to different datasets is set equal in all

the approaches. All the parameters used in the proposed method are presented in Table 4.
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FCMFCM

Calculating
clusters center 

for class +1
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clusters center 

for class -1

"e reduced training set

Training SVM

"e optimal hyperplane

Pure data of 
class -1

Pure data of 
class +1
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noisy data in 

class -1
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Calculating 
class center -1

Calculating 
class center +1

Computing 
convex hull 
data set for 

class +1

Computing 
convex hull 
data set for 

class -1

Stop conditionStop condition

Data in class -1

Training dataset

Data in class+1 

Figure 3. Flowchart of the proposed method.
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Table 3. Hardware configuration.

64 AMDTurion CPU
2 GB RAM
32 bit Vista OS

Table 4. The parameters of the proposed method.

4 3 2 1 Datasets indices
80 220 59 50 # Clusters for each class
0.01 1 0.3 0.01 δPositive

0.01 1.5 0.5 0.001 δNegative

1 1 1 1 Kernel parameter
1000 10,000 10,000 10,000 Regulation parameter

The appropriate choice of δ = [δp δN ] is done by the user to perform multiple tests (trial and error testing)

and a rudimentary knowledge about the amount of noise in each class of dataset is obtained. The suitable set

of parameter δ is crucial in forming the separating hyperplane. For this reason, choosing a large value for the

parameter δ = [δp δN ] causes the incorrect elimination of meaningful and informative data of each class. By

contrast, selecting a small value for the parameter δ = [δp δN ] affects the first stage of the proposed method for

removing noisy and suspected noisy data from the training dataset.

4.2. Experimental results and discussion

The generalization performance and the amount of training time in all the experiments are given in Tables 5

and 6, respectively.

Table 5. A comparison of accuracies.

Accuracy (%)
Datasets indices 1 2 3 4
Normal SVM [6] 95.19 99.48 95.35 94.58
FCM-SVM [26,27] 96.15 98.78 94.69 95.11
The proposed method 99.22 99.76 95.80 95.28

Table 6. A comparison of time.

Time training (s)
Datasets indices 1 2 3 4
Normal SVM [6] 1.79 2.97 113.02 76.40
FCM-SVM [26,27] 3.34 5.48 79.30 40.73
The proposed method 4.08 5.70 62.47 27.13

Balance dataset: According to Table 5, the proposed technique eliminates noisy and suspected noisy data

effectively. So, the generalization performance of the proposed method is higher than that of the normal SVM

and FCM-SVM methods. But Table 6 shows that the proposed method has more training time in comparison

with the two other methods.

Fourclass dataset: The proposed algorithm is successful in correctly removing the noisy and suspected

noisy data; however, the amount of training time is a little more in comparison with that of the other two

mentioned approaches.
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SVMguide1 dataset: This dataset has a size of 6.4 and 4.64 times the size of the two other datasets, i.e.

Balance and Fourclass, respectively. Tables 5 and 6 show that the proposed method not only improved the

generalization performance, but also reduced the amount of training time in comparison with normal SVM and

FCM-SVM.

Banana dataset: This is the largest dataset of the experiment. The size of the Banana dataset is 16,

13.12, and 2.5 times the size of Balance, Fourclass, and SVMguide1, respectively. Tables 5 and 6 disclose

some interesting facts that the proposed method is able to simultaneously obtain a robust classifier with higher

generalization performance and less training time in the training phase of SVM.

Generally, it can be concluded from the results of this research that the proposed method has more

accurate generalization performance in all experiments.

It consumes more time in its training phase on the small size datasets; however, when the size of the

training dataset is increased, the proposed method needs a lesser amount of training time with large and real-

world datasets when compared with the two other methods. Figures 4 and 5 show the results of the comparative

study for the proposed method and the two other methods based on the literature [6,26,27].
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Figure 4. A comparison of accuracies. Normal

SVM (blue), FCM-SVM (red), and the proposed method

(green).

Figure 5. A comparison of time. Normal SVM (blue),

FCM-SVM (red), and the proposed method (green).

5. Conclusion

The SVM is a machine learning method with a powerful mathematical foundation. Although SVM demonstrates

good generalization performance, when the number of training datasets is increased or the datasets contain noise,

some potential difficulties arise. Accordingly, the SVM accuracy drops and the training time increases, making

SVM a slow machine learner.

In this paper, a fast and de-noise SVM training method for training SVM in large and real-world datasets

is proposed. This method is based on the convex hull data, the displacement of each class center, and FCM.

To illustrate the effectiveness of the proposed approach, some experiments were performed on large

datasets of the UCI database. Moreover, a comparative study was carried out to show the superior performance

of proposed method to normal SVM and FCM-SVM.

The results indicate that the proposed method, by extracting informative and meaningful data, can
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enhance the training time of SVM in large and real-world datasets. Furthermore, the proposed method has

an effective performance in removing noisy and suspected noisy data. Therefore, the SVM achieves higher

generalization performance and makes an accurate and robust separating hyperplane in large and noisy datasets.
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