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Abstract:A novel feature extraction called discretization-based entropy is proposed for use in the classification of EEG

signals. To this end, EEG signals are decomposed into frequency subbands using the discrete wavelet transform (DWT),

the coefficients of these subbands are discretized into the desired number of intervals using the discretization method,

the entropy values of the discretized subbands are calculated using the Shannon entropy method, and these are then

used as the inputs of the adaptive neuro-fuzzy inference system (ANFIS). The equal width discretization (EWD) and

equal frequency discretization (EFD) methods are used for the discretization. In order to evaluate their performances

in terms of classification accuracy, three different experiments are implemented using different combinations of healthy

segments, epileptic seizure-free segments, and epileptic seizure segments. The experiments show that the EWD-based

entropy approach achieves higher classification accuracy rates than the EFD-based entropy approach.

Key words: EEG signals, discrete wavelet transform (DWT), discretization-based entropy, adaptive neuro-fuzzy

inference system (ANFIS)

1. Introduction

Epilepsy is a serious neurological disorder that affects 2%–3% of the world’s population. Epileptic seizures caused

by temporary excessive electrical discharges occurring in the brains of epilepsy patients lead to uncontrollable

movements and trembling in the human body. In general, electroencephalography (EEG) signals are used in the

analysis of these electrical discharges that result in disorders of the brain [1]. The visual detection of epileptic

seizures and the visual diagnosis of epilepsy require the scanning of long EEG recordings, which is a very time-

consuming process. Since a whole visual examination is often not possible, the automated systems based on

artificial neural networks (ANNs) are used in the analysis of EEG signals. The adaptive neuro-fuzzy inference

system (ANFIS) can be used as a classification tool for the rule-based analysis of EEG signals, since it is an

adaptive network that is capable of learning and adjusting the fuzzy rules and fuzzy membership functions of

the system from data by processing patterns [1–6].

Although EEG signals are nonstationary signals, most epilepsy diagnosis systems are based on the

assumption that EEG signals have quasistationary characteristics in the time or frequency domain. In order to

analyze such signals, time-frequency-based approaches are the most suitable tools, [2,4]. The discrete wavelet

transform (DWT) is the most appropriate transform method for applications with nonstationary signals like
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HEKİM/Turk J Elec Eng & Comp Sci

EEG signals, since it provides both time and frequency views of the signals simultaneously [6–8]. Several studies

noted that the classification accuracy of EEG signals depends entirely on the selection of optimum statistical

parameters (such as maximum, minimum, standard variation, mean, entropy, and average power) in not only

the time or frequency domain, but also in the time-frequency domain [9–17]. Since the entropy is a nonlinear

measure and quantifies the degree of complexity in a time series, it helps to understand brain dynamics when

it is used in the analysis of EEG signals [17]. Kannathal et al. investigated the performance of several entropy

measures using a classifier in the detection of epileptic seizures, and proved that the entropy values of the

epileptic EEG signals were lower compared to the entropy values of healthy EEG signals [15].

In order to extract basic characteristic features from EEG signals, the entropy values of frequency sub-

bands of the signals are computed with an entropy method after the signals are rearranged using a discretization

method. The equal width discretization (EWD) and equal frequency discretization (EFD) methods are well-

known discretization methods that discretize the data points of a given signal into K ranges according to the

discretization parameter K [18]. This paper proposes a novel approach called discretization-based entropy, and

investigates its impacts in an ANFIS-based classification of EEG signals in terms of classification accuracy.

Since entropy quantifies the degree of complexity in a time series, it helps in the classification of EEG signals

and in understanding brain dynamics. In addition, using any discretization method, the data points of EEG

signals can be divided into clusters or groups, and, in this way, hidden clusters of data points may be discovered,

and therefore the analysis of the signals may become easier. To this end, EEG signals are decomposed into

frequency subbands using the DWT method, the coefficients of frequency subbands are discretized into the

desired number (K) of intervals using the EWD and EFD methods, the entropy values of these discretized

coefficients are computed with the Shannon entropy method, and these are then used as inputs into the ANFIS

in the classification of EEG signals related to different combinations of healthy segments, epileptic seizure-free

segments, and epileptic seizure segments. Figure 1 shows the schematic structure of the proposed method.

DWT
Discretization
       with
EWD or EFD

Computation
       of
entropy values

ANFIS classifierEEG
Signals

Classification
Results

Figure 1. Schematic illustration of the proposed method.

This paper demonstrates that the EWD and EFD-based entropy approaches can be an effective analysis

tool for not only the detection of epileptic seizures, but also in the diagnosis of epilepsy.

2. Materials and methods

2.1. EEG dataset

In this study, publicly available EEG data are used [19]. These data are recorded by means of a 128-channel

12-bit EEG system with 173.5 samples per second. A total of 500 segments are grouped into five sets (A–E).

Each segment is 23.6 s in duration. All sets are selected from EEG records after purifying artifacts caused by

eye and muscle movements. Sets A (eyes open) and B (eyes closed) are recorded using the placement scheme of

an international 10–20 electrode from five healthy subjects. Sets C and D are intracranial recordings obtained

from five epilepsy patients measured in seizure-free intervals. For these recordings, the electrodes are placed

on epileptic foci for set C and on the hippocampus of the opposite hemisphere for set D. Set E includes only

epileptic seizure recordings of the same five epilepsy patients. Examples of EEG segments from sets A, B, C,

D, and E are shown in Figure 2.
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Figure 2. Sample EEG segments of sets A, B, C, D, and E.

2.2. Discrete wavelet transform (DWT)

DWT is an effective way of analyzing nonstationary EEG signals. This technique provides high-frequency

resolution if the frequency is low, and high-time resolution if the frequency is high because it uses long time

windows at low frequencies and short time windows at high frequencies [8,17]. DWT decomposes a signal into

subbands by filtering of the time domain signal f using sequential high-pass and low-pass filters as shown in

Figure 3.
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Figure 3. Subband decomposition of a signal using DWT.

The high-pass filter g and the low-pass filter h are the discrete mother wavelet function and its mirror

version, respectively. In the DWT method, the signals are filtered using these filters, and then sampled using the

down-sampler. The down-sampled signals in the 1st level are 1st-level approximation coefficients A1 and 1st-

level detail coefficients D1 . Approximation and detail coefficients for each subsequent level are determined using
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the approximation coefficient from the previous level in the same way. Scaling function ϕj,k(x) representing

the low-pass filter and wavelet function ψj,k(x) representing the high-pass filter are described as:

ϕj,k(x) = 2j/2h(2jx− k) (1)

ψj,k(x) = 2j/2g(2jx− k), (2)

where x = 0, 1, 2, . . . ,M − 1, j = 0, 1, 2, . . . , J − 1, and k = 0, 1, 2, . . . , 2j − 1.J is equal to log2(M), and M

is the length of an EEG segment [20]. k is the sampling rate, and j is the resolution, and they indicate the

function positions and function widths on the x axis, respectively. The function heights depend on 2 j/2 value.

For k = 0, 1, 2, . . . , 2j − 1, the approximation coefficients Ai(k) and detail coefficients Di(k) for the ith level
are:

Ai =

{
1√
M

∑
x

f(x)ϕj,k(x)

}
and Di =

{
1√
M

∑
x

f(x)ψj,k(x)

}
(3)

The length of an EEG segment M is equal to 4097, and J can be computed by log 2(M). In this case, J is

equal to 12, and therefore the maximum decomposition in level L is chosen as 11.

In this paper, the DWT method with the wavelet of order 2 of Daubechies was used in the decomposition

of EEG signals into frequency subbands, since it achieves good results in the classification of EEG signals [5,17].

The decomposition level providing the highest success of the ANFIS was investigated between 2 and 11, and

the decomposition level was selected as 6 for all experiments. The approximate and the detail coefficients of a

healthy EEG segment and an epileptic seizure segment are shown in Figures 4 and 5, respectively.
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Figure 4. The approximate and detailed coefficients of a

healthy segment taken from set A.

Figure 5. The approximate and detailed coefficients of

an epileptic seizure segment taken from set E.

2.3. EWD- and EFD-based entropy approaches

The discretization process divides a continuous signal into a few intervals on the amplitude axis, and the patterns

of signals are assigned to the intervals on the amplitude axis. In effect, a discretization method aims to divide
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the data points of the signal into clusters [18]. In this way, hidden clusters related to the data points of the

signal may be discovered using discretization methods, and therefore the examination of the signals may become

easier. The discretization methods are very important signal preprocessing approaches for pattern recognition.

The simplest discretization methods are EWD and EFD. The EWD method separates the signal into K equal

width intervals, while the other divides the signal into K intervals where the number of patterns belonging to

each interval is equal.

The EWD method equally divides the continuous-valued signal into K intervals between the minimum

and maximum amplitude [18]. These intervals have the width of:

W =
vmax − vmin

K
, (4)

where, vmin is the minimum amplitude, and vmax is the maximum amplitude of the signal. K is a predefined

parameter. The cut-points of the amplitude axis become:

vmin +W, vmin + 2W, ..., vmin + (K − 1)W (5)

The EFD method places the same number of patterns into intervals. Assume that the signal has N patterns

and this signal will be separated into K intervals. In this case, each interval between the cut-points ci will

have N/K patterns [21].

In this study, the frequency subbands obtained from the EEG signals using the DWT method were

discretized using EWD and EFD methods, and then the entropy values of the discretized frequency subbands

were computed by the following Shannon entropy:

H(i) = −
∑
i

pi log pi, (6)

where pi = ni/N in the EWD-based approach, pi = ci in the EFD-based approach, N is the length of an EEG

segment, ni is the number of patterns belonging to the ith interval, and ci is the cut-points. Figure 6 shows

the entropy values computed using the EWD- based approach for sets A and E, where set A is the first 100 and

set E is the second 100.

As seen in Figure 6, the entropy values of D2, D3, and D4 subbands illustrate the difference between

healthy and epileptic segments. The difference makes classification easier.

2.4. Adaptive neuro-fuzzy inference system (ANFIS)

The ANFIS is an adaptive system that combines the advantages of the learning capabilities of ANNs and the

mapping capabilities of the fuzzy inference system (FIS) by associating input and output spaces. In the ANFIS

model, fuzzy rules can be extracted from the training dataset and a rule base can be built consisting of these

rules in an adaptive manner. Two fuzzy if-then rules of the ANFIS with a first-order Sugeno model [22] are

described as:

Rule 1 : If x is A1 and y is B1 , then f1 = p1x+ q1y + r1

Rule 2 : If x is A2 and y is B2 , then f2 = p2x+ q2y + r2

where x and y are the inputs, Ai and Bi are the fuzzy sets, fi is the output within the fuzzy region expressed

by the fuzzy rule, and parameters pi , qi , and ri are the parameters obtained during the training process.

Figure 7 shows the ANFIS model with two rules, where circle and square symbols indicate fixed and adaptive

nodes, respectively [5].
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Figure 6. The entropy values computed using the EWD-based approach for sets A and E.

Figure 7. A sample ANFIS structure.

The 1st layer is referred to as the fuzzification layer. Each adaptive node in this layer generates fuzzy

membership grades. The outputs of this layer are described as:

Oi1 = µAi(x) (7)

Oi1 = µBi−2(y) (8)

The output of each node is computed using the membership functions given in Eqs. (7) and (8). In general,

the ANFIS model uses a generalized Bell activation function as the membership function in order to fuzzify the

input values, where Ai and Bi are the linguistic labels represented by membership functions µAi and µBi ,

respectively.
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In the 2nd layer, each node refers to the rules and their numbers created by the Sugeno FIS. The output

of each rule is the product of membership degrees from the previous layer:

Oi2 = wi = µAi(x)× µBi(y) (9)

In the 3rd layer, each node accepts all outputs of nodes from the rule layer (the previous layer), and calculates

the normalized firing strength of each rule as follows:

Oi3 = w̄i =
wi

w1 + w2
(10)

In the 4th layer, the weighted consequent value of each rule is computed by multiplying the normalized firing

strength and a 1st-order polynomial. The output value of the ith node in this layer is:

Oi4 = w̄ifi = w̄i(pix+ qiy + ri), (11)

where w̄i is the ith node output coming from the preceding nodes. Parameters pi , qi , and ri are the linear

combination coefficients and are the parameter sets in the consequent part of the Sugeno fuzzy model.

The 5th layer has only one single node, and this fixed node computes the total output by summing the

incoming signals:

f =
∑
i

w̄ifi =

∑
i

w̄i(pix+ qiy + ri)∑
i

wi
(12)

In general, a hybrid learning algorithm is used for training the ANFIS model [5,6]. This algorithm adjusts the

parameters {ai , bi , ci} and {pi , qi , ri } to construct the ANFIS output equivalent to the training dataset

in the manner of forward and backward passes. In forward passes, the least squares method is utilized to

improve the consequent parameters with the fixed premise parameters. When obtaining the optimum consequent

parameters, the backward pass starts to set the premise parameters of the fuzzy sets according to the gradient

descent method. The standard back-propagation algorithm is used for adapting the premise parameters [5].

2.5. Validity criterion

In order to comment on the performances of the classification experiments, the following statistical measures

were used [23,24]:

True Positive (TP): the number of true positive decisions

True Negative (TN): the number of true negative decisions

False Positive (FP): the number of false positive decisions

False Negative (FN): the number of false negative decisions

Sensitivity is the capacity to find epilepsy patients among real epilepsy patients, and it is the ratio of

TP decisions to actual positive cases (TP+FN). Specificity is the capacity to find healthy subjects among

real healthy subjects, and it is the ratio of TN decisions to actual negative cases (TN+FP). The total correct

classification (TCC) is the ratio of correctly classified decisions (TN+TP) to all cases (TN+FN+TP+FP).

3. Results and discussion

In this study, MATLAB 2011b was used as the computation tool. In order to classify EEG signals, all EEG

segments were decomposed into frequency subbands by using the DWT with Daubechies wavelet of order 2
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for level 6, the obtained coefficients of each frequency subband were discretized into the desired number of

intervals using the EWD and EFD methods, the entropy values of the discretized subbands were calculated

using Shannon entropy, and these were then used as the inputs of the ANFIS classifier. In order to demonstrate

the usefulness of the proposed approach in the classification of EEG signals, three different experiments were

implemented. In order to validate the classifier in each experiment, according to a 2-fold cross validation, the

EEG data were separated into two datasets: the training dataset and the testing dataset. These datasets were

randomly selected from EEG segments in the ratios of 50%. Two-fold cross validation is the simplest type of

k-fold cross validation, which is also called the holdout method. In this method, for each fold, data points are

randomly assigned to two sets d0 and d1 so that both sets are of equal size. After that, the classifier is trained

on d0 and tested on d1 , followed by training on d1 and testing on d0 . This has the advantage that both the

training and testing sets are large, and each data point is used for both training and validation on each fold. In

all experiments, a 1st-order Sugeno FIS model was selected for the ANFIS classifiers. A subtractive clustering

method was used for finding the cluster centers within the training datasets, the base of the fuzzy rules of the

ANFIS classifiers was designed using the generalized bell-shaped membership function, and these classifiers were

trained with a hybrid learning algorithm during 100 epochs. Each experiment was repeated for different values

of the discretization parameter K, and the ones providing the highest TCC ratio were selected as the optimal

discretization parameters for those experiments. In all experiments, the features obtained using the EWD- and

EFD-based entropy approaches were used as the inputs of the ANFIS classifiers, and the outputs of the ANFIS

classifiers were evaluated by the threshold value of 0.5. In addition, in order to illustrate the contribution of

the proposed EWD- and EFD-based entropy approaches to classifiers, all experiments were implemented using

the same classifier without any discretization method. The classification successes of classifiers decreased in all

experiments, significantly. The details and TCC results of the experiments are provided as follows:

A–E classification (the detection of epileptic seizure segments): For both EWD and EFD-based entropy

approaches, the training dataset for the ANFIS classifiers was constructed by randomly selecting 50 segments

from eyes-open healthy segments (set A) and 50 segments from epileptic seizure segments (set E), and these

training datasets were used for training the ANFIS classifiers. The other 50 segments from set A and 50 segments

from set E were used for testing the classifiers. Both of the ANFIS classifiers with EWD and EFD-based entropy

approaches achieved a TCC accuracy of 100% with the MSE ratios of 0.00064 and 0.0069, respectively. In both

approaches, there was not any misclassification, as seen in Table 1. On the other hand, when this experiment

was implemented without any discretization method, the TCC accuracy of the ANFIS classifier was 97% with

the MSE ratios of 0.03, and there was a total of three misclassifications, as seen in Table 2.

Table 1. The confusion matrix of A–E classification with EWD and EFD-based entropy approaches.

Class Set A Set E
Set A 50 0
Set E 0 50

Table 2. The confusion matrix of A–E classification without any discretization method.

Class Set A Set E
Set A 50 3
Set E 0 47

AB–CD classification (the diagnosis of epilepsy without using epileptic seizure segments): For both

EWD and EFD-based entropy approaches, the training dataset for the ANFIS classifiers was constructed by
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randomly selecting 100 segments from healthy segments (set AB) and 100 segments from epilepsy segments

without seizures (set CD), and these training datasets were used for training the ANFIS classifiers. After that,

the other 100 segments from set AB and 100 segments from set CD were used for testing the classifiers. The

ANFIS classifier with the EWD-based entropy approach achieved a TCC accuracy of 96.50% with the MSE

ratio of 0.0407, while the TCC accuracy of the ANFIS classifier with the EFD-based entropy approach was

91.50% with the MSE ratio of 0.0816. In EWD and EFD-based approaches, the classifiers misclassified a total

of 8 and 17 segments, as shown in Tables 3 and 4, respectively. On the other hand, when this experiment was

implemented without any discretization method, the TCC accuracy of the ANFIS classifier was 92% with the

MSE ratios of 0.08, and there were a total of 16 misclassifications, as seen in Table 5.

Table 3. The confusion matrix of AB–CD classification with the EWD-based entropy approach.

Class Set AB Set CD
Set AB 95 2
Set CD 5 98

Table 4. The confusion matrix of AB–CD classification with the EFD-based entropy approach.

Class Set AB Set CD
Set AB 91 8
Set CD 9 92

Table 5. The confusion matrix of AB–CD classification without any discretization method.

Class Set AB Set CD
Set AB 91 7
Set CD 9 93

AB–CDE classification (the diagnosis of epilepsy): For both EWD and EFD-based entropy approaches,

the training dataset for the ANFIS classifiers was constructed by randomly selecting 100 segments from healthy

segments (set AB) and 150 segments from epilepsy segments both with and without seizures (set CDE), and

these training datasets were used for training the ANFIS classifiers. After that, the other 100 segments from

set AB and 150 segments from set CDE were used for testing the classifiers. The ANFIS classifier with the

EWD-based entropy approach achieved a TCC accuracy of 96.80% with the MSE ratio of 0.0335, while the

TCC accuracy of the ANFIS classifier with the EFD-based entropy approach was 94.80% with the MSE ratio

of 0.0533. In EWD and EFD-based approaches, the classifiers misclassified a total of 8 and 13 segments as

shown in Tables 6 and 7, respectively. On the other hand, when this experiment was implemented without any

discretization method, the TCC accuracy of the ANFIS classifier was 79.20% with the MSE ratios of 0.208, and

there were a total of 52 misclassifications, as seen in Table 8.

Table 6. The confusion matrix of AB–CDE classification with the EWD-based entropy approach.

Class Set AB Set CDE
Set AB 96 4
Set CDE 4 146
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Table 7. The confusion matrix of AB–CDE classification with the EFD-based entropy approach.

Class Set AB Set CDE
Set AB 92 5
Set CDE 8 145

Table 8. The confusion matrix of AB–CDE classification without any discretization method.

Class Set AB Set CDE
Set AB 97 49
Set CDE 3 101

For all experiments, the classification accuracy, specificity, sensitivity, number of rules, number of inputs,

and the discretization parameter are illustrated in Tables 9–11.

As seen in Tables 9–11, the ANFIS classifiers with both EWD and EFD-based approaches classified

healthy segments with open eyes (set A) and epileptic seizure segments (set E) with a TCC accuracy of 100%

while the success of the same classification implemented without any discretization was 97%. In the same A–E

classification experiment, Subasi [6], Umut et al. [21,23], Altunay et al. [25], and Kocyigit et al. [26] achieved

TCC accuracies of 94%, 99.23%, 100%, 90%, and 94.25% with ANFIS classifier-based basic statistics, an ANN

classifier using probability distribution based on equal frequency discretization, K-means clustering based on an

ANN classifier, a linear prediction filter, and an ANN classifier model with the independent component analysis,

respectively.

Table 9. The results of the experiments implemented using the EWD-based entropy approach.

Experiments
TCC Specificity Sensitivity Number Number

K
accuracy (%) (%) (%) of rules of inputs

1. A–E 100 100 100 4 7 2
2. AB–CD 96.50 95 98 8 7 18
3. AB–CDE 96.80 96 97.33 8 7 18

Table 10. The results of the experiments implemented using the EFD-based entropy approach.

Experiments
TCC Specificity Sensitivity Number Number

K
accuracy (%) (%) (%) of rules of inputs

1. A–E 100 100 100 2 7 3
2. AB–CD 91.50 91 92 2 7 2
3. AB–CDE 94.80 92 96.67 3 7 2

Table 11. The results of the experiments implemented using only entropy values without any discretization method.

Experiments
TCC Specificity Sensitivity Number Number
accuracy (%) (%) (%) of rules of inputs

1. A–E 97 94 100 2 7
2. AB–CD 92 91 93 2 7
3. AB–CDE 79.20 67.33 97 2 7

ANFIS classifiers using EWD and EFD-based entropy approaches achieved 96.50% and 91.50% accuracy

in the classifications of healthy segments with open eyes or not (set AB) and epileptic seizure-free segments
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(set CD), and 96.80% and 94.40% in the classification of healthy segments with open eyes or not (set AB) and

epileptic seizure-free and epileptic seizure segments (set CDE), respectively. On the other hand, the success

of the same classification implemented without any discretization was 92% and 79.20% for these experiments,

respectively. Moreover, as seen in Tables 9–11, the experiment of A–E classification is much easier than the

others, but the experiments of AB–CD and AB–CDE classifications are very difficult. Therefore, K values are

much bigger, and the numbers of rules are much higher than the others for these experiments. The classification

accuracy of experiment of AB–CDE is a little better than the experiment of AB–CD classification, although the

classification of AB–CDE is intuitively more difficult than the classification of AB–CD. Figures 8 and 9 show

the ROC curves of the implemented experiments.
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Figure 8. The ROC analysis of the experiments with

EWD-based entropy.

Figure 9. The ROC analysis of the experiments with

EFD-based entropy.

As seen in Figures 8 and 9, according to the ROC analysis, both EWD- and EFD-based approaches showed

100% success in the detection of epileptic seizures. As a result, these approaches can be considered a capable

tool in order to detect epileptic seizures from EEG signals. The large areas under the ROC curves demonstrate

that the classifiers have high specificity and sensitivity. These results confirm the experimental results given

in Tables 9 and 10. In conclusion, these results show that the EWD- and EFD-based approaches provide the

highest TCC accuracy in the detection of healthy EEG segments and epileptic seizure EEG segments. However,

as a result of this study, the EWD-based approach achieves slightly higher classification accuracy rates than

the EFD-based approach.

In order to see the ANFIS classifier, all experiments were re-implemented using a multilayer perceptron

neural network (MLPNN) classifier, which is well known as an ANN model instead of an ANFIS classifier.

The used MLPNN classifiers had one hidden layer of 20 hidden neurons, its activation function was selected as

hyperbolic tangent function, and it was trained by the most widely used Levenberg–Marquardt back-propagation

algorithm in all experiments. The successes of the ANFIS classifiers with EWD-based entropy approaches

were 100%, 96.50%, and 96.80% for A–E, AB–CD, and AB–CDE experiments, while the successes of MLPNN

classifiers were 98%, 96%, and 92.80% for the same experiments, respectively. The ANFIS classifiers with EFD-

based entropy approaches achieved successes of 100%, 91.50%, and 94.80% in those experiments. In conclusion,

these results show that our approaches achieved high TCC accuracies for both classifiers of ANFIS and MLPNN.
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4. Conclusions

This paper proposes an ANFIS classifier with the discretization-based entropy approach in order to classify

EEG signals, which plays a significant role in dealing with the detection of epileptic seizures and the diagnosis

of epilepsy from EEG signals. To this end, EEG signals were decomposed into frequency subbands using the

DWT, each subband was discretized into the desired number of intervals using the EWD and EFD methods, the

entropy value of each discretized subband was calculated using the Shannon entropy method, and the obtained

entropy values were used as the input of the ANFIS classifiers. Three different classification experiments

were implemented by using the ANFIS classifiers to evaluate the efficiency of EWD and EFD approaches in

the classifications of sets A and E, sets AB and CD, and finally sets AB and CDE. The obtained results were

satisfactory in terms of classification accuracies for all experiments. However, the proposed approaches provided

the highest TCC accuracy in the detection of healthy EEG segments and epileptic seizure EEG segments. As

another result of the study, the EWD-based approach achieved higher classification accuracies rates than the

EFD-based approach.
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