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Abstract: Support vector data description (SVDD) has become one of the most promising methods for one-class

classification for finding the boundary of the training set. However, SVDD has a time complexity of O (N3) and a space

complexity of O (N2) . When dealing with very large sizes of training sets, e.g., a training set of the aeroengine gas path

parameters with the size of N > 106 sampled from several months of flight data, SVDD fails. To solve this problem, a

method called heuristic sample reduction (HSR) is proposed for obtaining a reduced training set that is manageable for

SVDD. HSR maintains the classification accuracy of SVDD by building the reduced training set heuristically with the

samples selected from the original. For demonstration, several artificial datasets and real-world datasets are used in the

experiments. In addition, a practical example of the training set of the aeroengine gas path parameters is also used to

compare the performance of SVDD based on the proposed HSR with conventional SVDD and other improved methods.

The experimental results are very encouraging.
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1. Introduction

Support vector data description (SVDD), inspired by the support vector machine (SVM) by Vapnik, was

proposed by Tax and Duin in 1999 [1,2]. It is a promising one-class classifier that can distinguish outliers from

targets effectively by shaping a smooth decision boundary around the training set. SVDD shows a promising

performance in the field of outlier detection, also called novelty detection [3–7] and pattern denoising [8].

Additionally, SVDD can also be used as a clustering method [9,10]. Furthermore, SVDD was recently extended

to the two-class classification problem [11], and a competitive generalization performance was reported.

However, SVDD has the same shortcoming as SVM for founding a kernel matrix with N2 elements and

solving a quadratic programming (QP) problem with O (N3) time complexity, where N is the size of training

set. Obviously, when N is large, the SVDD training becomes prohibitive. Thus, it has become an important

research topic to speed up SVDD training, and many researchers have focused on solving the problem.

The least squares one-class SVM (LS-OCSVM) [12] proposed by Choi reduced the time complexity from

O (N3) to O (N2) by replacing the inequality constraints with equality constraints in the QP. Despite the fact

that LS-OCSVM has a fast training speed, its testing speed is slow because it gets a number of support vectors

when solving QP.

In order to allow the QP to apply better to larger datasets, Platt and Schölkopf et al. suggested the

use of the sequential minimal optimization (SMO) algorithm [13,14]. SMO breaks the large QP problem into
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a series of the smallest possible QP problems. These small QP problems are solved analytically and need few

operations. Both time complexity and space complexity are linear to the training set size, but it is hard for

the SMO method to obtain the global optimal solution because its solutions are determined by approximately

optimal Karush–Kuhn–Tucker (KKT) conditions.

Another possible way is to use chunks of samples. A chunk is a predefined small number of samples,

which is much less than the total number of samples in the whole training set [15]. Each chunk of samples is

condensed to support vectors by using SVDDs, and another SVDD is applied to these support vectors again

to obtain the final decision boundary. Although this is a feasible way of avoiding memory capacity and cost

problems, it is still very time-consuming for huge training sets.

A more radical possibility to improve the training speed of SVDD is by reducing the training samples.

The first sample reduction algorithm was proposed by Hart in the condensed nearest neighbor (CNN) rule [16],

which finds a subset Xsub
tr of the training set Xtr such that every member of Xtr is closer to a member of

Xsub
tr of the same class than to a member of Xsub

tr of a different class. Inspired by the CNN rule, a series of

methods was proposed [17–22]. Nearly all of these methods decide to remove or retain samples in a training

set based on the 2 classes’ (or more than 2 classes’) classification results that could not be used in one-class

classification. Recently, Angiulli proposed the CPDD method [23]. CPDD selects a minimum consistent subset

from the original training set for nearest neighbor one-class classification, which can also be used for condensing

a large-sized training set for other classifiers. However, in the context of SVDD, there is no guarantee that

CPDD methods will retain all possible support vectors (as demonstrated experimentally in Section 5), which

would directly affect the construction of a decision boundary.

In this study, a sample reduction method referred to as heuristic sample reduction (HSR), which heuris-

tically reduces the training set in terms of the characteristics of SVDD, is proposed. In SVDD, we notice that

the decision boundary is only decided by a small proportion of training samples called support vectors, which

are always distributed in the boundary area. Therefore, HSR devotes itself to finding a subset of a training

set that includes all of the potential support vectors, and it ensures that the potential support vectors become

support vectors in SVDD training. Afterwards, an accurate SVDD decision boundary can be rapidly obtained

by the subset.

The remainder of the paper is organized as follows: Section 2 introduces the basics of SVDD; Section

3 introduces the proposed HSR method in detail; Section 4 presents the efficiency analysis of HSR; Section 5

evaluates the proposed method through experiments with an artificial dataset, real-world datasets, and flight

data recorded by a flight data recorder (FDR), respectively; and Section 6 provides the conclusions.

2. SVDD

Given a training set Xtr = {x1, x2, · · · , xN} , SVDD identifies a hypersphere with minimum volume that

captures the given training set. The hypersphere volume is characterized with its center c and radius r .

Minimization of the hypersphere volume is achieved by minimizing r2 , which represents structural errors.

min r2, (1)

s.t. ∥xi − c∥2 ≤ r2 ∀i. (2)

The above constraints do not allow any data to fall outside of the hypersphere. In order to tolerate the potential

singular samples within the training set, a penalty cost function is introduced as follows:
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min r2 + C
∑
i

ξi, (3)

s.t. ∥xi − c∥2 ≤ r2 + ξi ξi ≥ 0 ∀i, (4)

where C is the penalty coefficient for each outlier (also referred to as the regularization parameter) and ξi is

the distance between the ith sample and the hypersphere. This minimization problem can be solved efficiently

by introducing Lagrange multipliers for the constraints. The Lagrange function is defined as follows:

L(r, c, ξ, γ) = r2 + C
∑
i

ξi −
∑
i

αi(r
2 + ξi − ∥xi − c∥2) −

∑
i

γiξi, (5)

where γi and αi are the Lagrange multipliers, γi ≥ 0, αi ≥ 0. Note that for each training sample xi , the

corresponding αi and γi are defined. L has to be minimized with respect to r , c , and ξ and maximized with

respect to α and γ .

Taking the derivatives of Eq. (5) with respect to r , c , and ξ , and equating them to zero, the constraints

can be obtained as follows:

c =
∑
i

αixi, (6)

C − αi − γi = 0 ∀i, (7)∑
i

αi = 1. (8)

Given that γi ≥ 0 and αi ≥ 0, the constraint from Eq. (7) can be rewritten as:

0 ≤ αi ≤ C ∀i. (9)

Substituting Eqs. (6), (8), and (9) into Eq. (5), we get:

L(α) =
∑
i

αi(xi · xi) −
∑
i,j

αiαj(xi · xj) (10)

The minimization of L with the constraints of Eqs. (8) and (9) is a well-known QP problem, and standard

algorithms exist to solve this. Samples corresponding to αi > 0 will be defined as support vectors. The center

of the hypersphere can then be calculated using Eq. (6). The radius r is defined as the distance between the

center c and one of the support vectors.

The hypersphere obtained by the above method is a rigid spherical hypersphere. However, in most cases,

the distribution of samples in a feature space is not spherical. A rigid decision boundary cannot fit most sample

distributions well. Therefore, the kernel trick is introduced to arrive at a more flexible decision boundary by

replacing the inner product in Eq. (10) with a kernel function. There are a lot of kernel types, including the

polynomial kernel [24], the sigmoid kernel [25], and the Gaussian kernel. In this paper, only the Gaussian kernel

is involved due to its excellent performance [2,26].

A Gaussian kernel function is defined as:

K(xi, xj) = φ(xi) · φ(xj) = exp

(
−∥xi − xj∥2

σ2

)
∀i, j, (11)
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where σ is a width parameter. Note that:

K(xi, xi) = 1, ∀i. (12)

Thus, the Lagrange function of Eq. (10) can be rewritten as:

L(α) = −
∑
i,j

αiαjK(xi · xj). (13)

A discrimination function that is used to evaluate whether or not a testing sample x is accepted by the decision

boundary is given by:

fSV DD = sgn(B̆ − B), (14)

B̆ =

NSV∑
i

αi exp

(
−∥x − xi∥2

σ2

)
, (15)

B =

NSV∑
i,j=1

αiαjK(xi, xj), (16)

where NSV denotes the number of support vectors. A testing sample x will be accepted if fSV DD = 1 and

rejected iffSV DD = −1.

3. HSR method

This section describes the HSR method in detail. HSR produces a reduced training set X̃tr by reducing a

portion of the samples in training set Xtr . The steps of the HSR method are shown as follows:

Step 1. Normalize Xtr and set X̃tr to empty.

Step 2. The k-means method is applied to Xtr for obtaining the cluster centers cj , (j = 1, · · · , k)

ofXtr .

Step 3. A distance variance di , which denotes the distance from the ith sample to its nearest cj , is

defined by:

di = min (∥xi − cj∥) , ∀j; i = 1, · · · , N. (17)

Step 4. A sorted training set Xsorted
tr is built by sorting all of the Xtr samples in descending order in terms of

di .

Step 5. Set the first sample in Xsorted
tr to highlight sample xH and add the xH intoX̃tr .

Step 6. Remove the samples satisfying ∥xH , xi∥ < δ (∀i) from Xsorted
tr (includingxH), where δ is the

distance threshold set by user.

Step 7. Repeat steps 5 and step 6 until Xsorted
tr is empty. In the meantime, X̃tr is built.

An example of a sample reduction algorithm is shown in Figure 1. Figure 1a shows the k-means clustering

result with k = 5, where k denotes the number of clusters. The gradient gray colors denote the contours of

di . Figure 1b shows the sample reduction result with δ = 0.1.
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Figure 1. An example of the HSR method using the 2D Banana dataset with 200 samples: (a) k-means clustering result

with k = 5; (b) result of HSR with δ = 0.1.

In the HSR method, a most critical parameter is the number of clusters k , which needs to be set in Step

2. A lot of studies provide methods to identify the optimal number of clusters in k-means [27–29]. Another

more direct method is to identify the k value by expertise, which can obtain similar results as the methods

mentioned above.

In the SVDD based on HSR, the time complexity can be expressed as:

Tt = O(N) +
∑Ñ

i=1
O(Ni) + O(Ñ3), (18)

where Ni is the number of samples left in Xsorted
tr in the ith iteration. In practice, the loop times in the ith

iteration can be decreased to a level far less than Ni with the improved algorithm. Because the samples in

Xsorted
tr have been sorted, the ith cycle can be broken ahead of schedule if dH − dj > δ (j = 1, · · · , Ni),

where dH is the distance variance of xH . Therefore, the term
∑Ñ

i=1 O(Ni) becomes much less in practice.

O(N) +
∑Ñ

i=1 O(Ni) is less than O(Ñ3) in orders of magnitude and can be neglected compared to O(Ñ3).

Thus, the time complexity can be approximately defined as Tt = O(Ñ3). The space complexity of the

proposed method is Ts = O(Ñ2).

4. Efficiency analysis of HSR

This section explains why HSR performs successfully. In order to speed up the SVDD training, the HSR method

cuts off a portion of samples in Xtr to form a reduced training set X̃tr . The samples in X̃tr have the following

characteristics:

• The distance between any 2 samples is greater than or equal to δ ;

• The distribution of samples in X̃tr is nearly the same as that of Xtr .

With these 2 characteristics, the decision boundary trained by X̃tr can be similar to the decision boundary

obtained by Xtr , which can be explained by discussing the characteristics of SVDD, as follows.

For the convenience of elaboration, SVDD falls into 3 types in terms of different σ , namely small σ ,

intermediate σ , and large σ . A SVDD training experiment of these 3 types with σ ranging from 0.08 to 8
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using a 2D Banana dataset is shown in Figure 2, where + denotes the training samples, O denotes the support

vectors, and a dotted line denotes the decision boundary.
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Figure 2. An example of Gaussian kernel SVDD training results with different width parameters σ , where white plus

signs denote the training samples, yellow circles denote support vectors, and dotted line denotes the decision boundary.

(a) σ = 0.08; (b) σ = 0.4; (c) σ = 8.

For a sufficiently small σ , we have:

−∥xi − xj∥2

σ2
≪ 0. (19)

Thus, the differences between K(xi, xj) for different i and j are very small; namely:

N∑
j=1

exp

(
−∥xi − xj∥2

σ2

)
≈

N∑
i=1

exp

(
−∥xj − xi∥2

σ2

)
(∀i, j). (20)

Taking the constraint of 0 ≤ αi ≤ C (∀i) and
∑

i αi = 1 into account, Eq. (13) is minimized when all

objects become support vectors with equal αi = 1 / N (∀i), as illustrated in Figure 2a. This type of SVDD

is identical to a one-class Parzen classifier with a Gaussian window. Each individual sample now supports a

small, equally Gaussian window, and the total model is a sum of all of these Gaussian windows. In this case,

the decision boundary trained by X̃tr is nearly identical to that of Xtr because the distribution of X̃tr and

Xtr is nearly the same.

For intermediate σ values,
∑N

j=1 K(xi, xj) is large if xi is located in the central area of distribution

and
∑N

j=1 K(xi, xj) is small if xi is located in the margin area of distribution. In the process of Lagrange

function minimization, the Lagrange multipliers αi tend to become 0 if the values of
∑N

j=1 K(xi, xj) are

large. Only for the smallest
∑N

j=1 K(xi, xj)does the corresponding αi become larger than 0, and the samples

corresponding to these αi become support vectors. Thus, these support vectors are always located in the margin

area of distribution (see Figure 2b). Eqs. (14) to (16) clearly show that the decision boundary is identical to

a weighted one-class Parzen classifier constructed by support vectors. These support vectors are very likely to

be selected into X̃tr because they are distributed in the margin of the training set and they obtain a higher

priority than the samples distributed in the center of the training set in HSR. In the training process using X̃tr ,

these support vectors still become support vectors because X̃tr has nearly the same distribution as Xtr .
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For large σ values, K(xi, xj) can be transformed into Taylor series expansions, which can be expressed
as:

K(xi, xj) = exp
(
−∥xi − xj∥2 / σ2

)
= 1 − xi / σ2 − xj / σ2 + 2(xi · xj) / σ2 + o(1 / σ2),

(21)

where o(1 / σ2) is a higher-order infinitesimal than the infinitesimal 1 / σ2 .

Substituting Eq. (21) into Eq. (13), we obtain:

L = −1 +
2

σ2

(∑
i

αi(xi · xi) −
∑
i

αiαj(xi · xj)

)
+ o(1 / σ2). (22)

Note that Eqs. (22) and (10) have similar forms; the only differences between them are scaling factor 2 / σ2 ,

offset −1, and infinitesimal o(1 / σ2). However, these 3 factors do not affect QP solutions. Therefore, the

decision boundary of SVDD in a very large σ is equal to the rigid hypersphere SVDD, and only a few training

samples distributed in the outermost areas of the training set become support vectors. As in the above case,

these support vectors are most likely the same as the support vectors trained by X̃tr .

For a demonstration of the analysis above, an experiment is conducted. In this experiment, both

conventional SVDD (C-SVDD) and SVDD based on HSR (H-SVDD) are applied to the same 2D Banana

dataset with 200 samples. The training sets (including a reduced training set for H-SVDD), support vectors,

and decision boundaries are shown in Figure 3. Figure 3a shows the training result of C-SVDD with C = 1

and σ = 0.4. The white dots denote training samples and the dotted line denotes the decision boundary

obtained by C-SVDD. The decision boundary encloses all of the training samples with a small volume and

smooth surface, which means that the classifier has strong learning and generalization abilities. Figures 3b and

3c show the training results using H-SVDD with δ = 0.05 and δ = 0.1, respectively. Parameters C and σ

are set to the same values as those of C-SVDD. Samples in X̃tr are signified with + and the support vectors

are signified with small circles. X̃tr in Figures 3b and 3c include 82 and 39 samples, respectively, but only the

support vectors resolved by H-SVDD are exactly the same as the support vectors resolved by C-SVDD, which

indicates that the decision boundary obtained by X̃tr is the same as the decision boundary obtained by Xtr . It

is worth mentioning that when the training samples are reduced sharply with HSR, the performance of H-SVDD

is still adequate. Figure 3d shows the training result of H-SVDD with δ = 0.3. The size of X̃tr is just 7, which

is far less than that of Xtr , and all of these samples in X̃tr become support vectors in the H-SVDD resolving

process. At the same time, the decision boundary generated by these 7 samples is still similar to the decision

boundary in Figure 3a.

5. Experiments

In this section, a series of experiments are conducted aiming to assess the performance of the proposed HSR

method. First, the measures that are employed during the experiments are described as follows. The false

positive rate (FPR) identifies the probability that outliers are accepted wrongly. The true positive rate (TPR)

identifies the probability that targets are recognized correctly. The receiver operating characteristic (ROC)

curve is the plot of the FPR versus the TPR and can serve to compare the classification accuracy of the one-

class classification methods. The more the ROC curves are located in the upper left corner, the better the

targets and outliers are separated. To determine the ROC curve of SVDD, the B value in Eq. (14) varies from
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Figure 3. The training results comparison between C-SVDD and H-SVDD using the Banana dataset. (a) The training

result of C-SVDD with C = 1 and σ = 0.4, where the white dots denote the training samples, support vectors are

indicated by yellow circles, and the dashed line denotes the decision boundary; (b) the training result of H-SVDD with

C = 1 σ = 0.4 and δ = 0.05, where the white plus signs denote the reduced training set; (c) the training result of

H-SVDD with C = 1 σ = 0.4 and δ = 0.1; (d) the training result of H-SVDD with C = 1σ = 0.4 and δ = 0.3.

1 to 0, so the hypersphere volume varies from minimum to maximum. Meanwhile, the FPR also varies from 0

to 1. Thus, the TPR can be obtained correspondingly. The area under the ROC curve (AUC) value [30] is also

introduced to compare the classification accuracy of classification methods. Generally, the one that has a larger

AUC value in a given problem is considered better than the others. All of these experiments were performed

on a computer with a Pentium Dual E2140 1.6 GHz CPU, 2 GB RAM, and MATLAB V 7.6.0.

5.1. Sensitivity analysis

A sensitivity analysis of the HSR is performed in order to understand the behavior of the parameters and the

analysis results are shown in Figure 4. Figure 4a shows how the ROC curves of H-SVDD vary with δ on the

2D Banana dataset. Predictably, when δ increases, the ROC curve moves toward the lower right corner of the

graphic. We also see that the ROC curve with δ = 0.1 nearly coincides with the C-SVDD ROC curve, which

implies that the classification ability of H-SVDD with δ = 0.1 and C-SVDD is nearly the same. In Figure

4b, the parameter δ is varied from 0 to 0.5, and then a series of combinations of values for different σ and

δ is considered. For each σ , the AUC variation curve is determined. Note that when δ = 0, the H-SVDD

coincides with the C-SVDD. All of these AUC value curves keep flatness within the range of [0, 0.125]. The
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AUC curve of σ = 0.1 begins to fall at δ = 0.125 and the AUC curve of σ = 0.2 begins to fall at δ = 0.2.

For σ = 0.3 and 0.4, the AUC curves begin to fall at δ = 0.275. For σ = 0.45, the AUC curve does not fall

sharply. A series of extended experiments are conducted on datasets of different dimensionalities, and a rule

for determining the appropriate value of δ is deduced as follows:

0 ≤ δ ≤ 0.1 ·
√
D, (23)

where D is the dimensionality of the training set.
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Figure 4. Experimental results of H-SVDD on different parameters. (a) ROC curves of H-SVDD with different δ values

and C-SVDD; (b) AUC value curves of H-SVDD with different σ values.

5.2. Experiments using artificial and real-world datasets

In this subsection, a series of experiments on artificial datasets and real-world datasets are conducted to

compare the performances among H-SVDD, C-SVDD, and other improved one-class support vector classification

methods, including LS-OCSVM [12], SMO-SVDD [13,31] and Kim-SVDD [15]. In addition, a method of

combining the sample condensing method with SVDD, which is referred to as CPDD-SVDD [23], is also

introduced into the experiments. In each experiment, the parameters have been varied and the best result has

been recorded. The artificial datasets including Banana (2D), Lithuanian (2D) and Difficult (4D) are generated

by the Prtools toolbox (http://prtools.org/), and the real-world datasets including Letter (16D), Pendigits (16D)

and Optdigits (64D) are downloaded from the UCI machine-learning database (http://archive.ics.uci.edu/ml/).

The artificial datasets all contain two classes, one of which serves as targets, while the other serves as

outliers. N targets form the training set, and extra N targets and N outliers form the testing set. Table 1

reports the experimental results using artificial datasets when N = 200. The column labeled NSV contains

the number of support vectors of the training results. From Table 1, we can see that in terms of the AUC, the

classification accuracy of C-SVDD is superior to the others; it is slightly higher than that of Kim-SVDD and

H-SVDD, and much higher than that of LS-OCSVM, SMO-SVDD, and CPDD-SVDD. Based on the training

time results, we can see that LS-OCSVM has the fastest training speed, followed by H-SVDD, Kim-SVDD,

CPDD-SVDD, and SMO-SVDD, while C-SVDD is the most time-consuming method. The testing time of

support vector classification methods depends on the number of support vectors, which can also be confirmed

by the experimental results in Table 1. The greater the support vector number is, the longer the testing time
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of classification method becomes. C-SVDD, Kim-SVDD, CPDD-SVDD, and H-SVDD all have fewer support

vectors, so they have shorter testing times. The fact that LS-OCSVM and SMO-SVDD have plenty of support

vectors also demonstrates that they do not have the global optimal solution for the QP. Table 2 reports the

experimental results in the condition of N = 500. We can see that the classification accuracy of C-SVDD

becomes very low. This is because, in MATLAB, in order to avoid too many computations or impossible tasks,

the QP solving function quadprog.m loses the stopping condition when the size of the training set is excessively

large. On this occasion, the C-SVDD cannot obtain the global optimal solution, while the Kim-SVDD and

H-SVDD show the best classification accuracy. Table 3 shows the experimental results when N = 1000. This

time, the training speed of H-SVDD surpasses that of LS-OCSVM and ranks first, which means that with the

increase of the training set size, the training time growth rate of H-SVDD is much less than that of LS-OCSVM.

The classification accuracy of H-SVDD is also the best.

Table 1. Experimental results using artificial datasets with N = 200.

Dataset Training time (s) AUC NSV Testing time (s)

C-SVDD

Banana 7.673 0.9912 10 0.048
Lithuanian 7.562 0.9934 14 0.034
Difficult 3.147 0.8139 29 0.105

LS-OCSVM

Banana 0.140 0.9851 200 0.581
Lithuanian 0.159 0.9902 200 0.584
Difficult 0.143 0.7031 198 0.606

SMO-SVDD

Banana 4.882 0.9845 198 0.565
Lithuanian 4.532 0.9887 196 0.547
Difficult 3.949 0.7981 184 0.656

Kim-SVDD

Banana 1.405 0.9912 10 0.049
Lithuanian 1.978 0.9895 16 0.043
Difficult 1.827 0.8114 30 0.106

CPDD-SVDD

Banana 1.726 0.9884 11 0.049
Lithuanian 2.659 0.9885 13 0.046
Difficult 2.792 0.7978 24 0.091

H-SVDD

Banana 1.581 0.9912 10 0.046
Lithuanian 1.549 0.9909 15 0.037
Difficult 1.518 0.8122 28 0.098

As for the real-world datasets, we compare the H-SVDD with the other 5 methods mentioned above

using the intermediate and high dimensionality datasets. For the 16D Letter dataset, 780 samples of the letter

A serve as targets, and the other 19,211 samples serve as outliers; for the 16D Pendigits dataset, 780 samples

of the number 2 serve as targets, and the remaining 6714 samples serve as outliers; for the 64D Optdigits

dataset, 570 samples of the number 1 serve as targets, and the other 5049 samples serve as outliers. The 10-fold

cross validation training method [32] is applied to these experiments, so 10 iterations are needed during the

implementation. Within each of the iterations, 9 folds of targets are used to train and the remaining fold targets,

and all of the outliers are used to test.

Tables 4, 5, and 6 show the experimental results using the Letter , Pendigits, and Optdigits datasets,

respectively. As we can see from these tables, the classification accuracy of H-SVDD is the highest in the

experiment with the Letter dataset and is a little lower than that of Kim-SVDD in the experiment with the

Pendigits and Optdigits datasets. In addition, compared to the other methods, H-SVDD has both a fast training

speed and a fast testing speed.
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Table 2. Experimental results using artificial datasets with N = 500.

Dataset Training time (s) AUC NSV Testing time (s)

C-SVDD

Banana 204.846 0.9147 292 1.185
Lithuanian 199.886 0.9880 295 1.130
Difficult 30.870 0.7357 300 1.301

LS-OCSVM

Banana 0.843 0.9881 352 1.746
Lithuanian 0.847 0.9863 500 1.749
Difficult 0.872 0.7122 445 1.841

SMO-SVDD

Banana 46.705 0.9868 354 1.872
Lithuanian 43.893 0.9828 325 1.728
Difficult 29.798 0.7864 298 1.934

Kim-SVDD

Banana 4.335 0.9909 10 0.056
Lithuanian 5.205 0.9873 16 0.077
Difficult 3.246 0.8301 44 0.183

CPDD-SVDD

Banana 8.029 0.9836 10 0.058
Lithuanian 10.890 0.9861 14 0.091
Difficult 9.419 0.8141 35 0.185

H-SVDD

Banana 1.641 0.9897 11 0.058
Lithuanian 2.045 0.9864 14 0.093
Difficult 1.661 0.8358 34 0.144

Table 3. Experimental results using artificial datasets with N = 1000.

Dataset Training time (s) AUC NSV Testing time (s)

C-SVDD

Banana 1217.163 0.9729 755 3.283
Lithuanian 1199.092 0.9895 763 3.201
Difficult 283.688 0.7749 794 3.527

LS-OCSVM

Banana 4.360 0.9886 545 4.607
Lithuanian 4.369 0.9800 753 4.662
Difficult 4.479 0.7525 709 4.823

SMO-SVDD

Banana 340.621 0.9612 693 3.098
Lithuanian 337.728 0.9816 673 3.915
Difficult 256.554 0.7823 772 3.898

Kim-SVDD

Banana 58.303 0.9835 10 0.075
Lithuanian 55.267 0.9848 15 0.098
Difficult 29.134 0.8324 48 0.263

CPDD-SVDD

Banana 26.943 0.9879 9 0.072
Lithuanian 28.993 0.9819 14 0.098
Difficult 30.521 0.8227 39 0.213

H-SVDD

Banana 2.773 0.9878 11 0.076
Lithuanian 3.331 0.9839 13 0.104
Difficult 2.907 0.8252 41 0.226

5.3. Experiments of novelty detection on flight data

Flight data recorded by a FDR are well-known tools for investigating the cause of air crashes. However, flight

data are also widely used for monitoring the condition of airborne equipment. A qualified flight data interpreter

can detect hidden faults by reading the flight data. In China, flight data interpretation is an essential step in the

military airplane maintenance system. Only the aircrafts without abnormalities in their former sortie flight data

interpretation can participate in subsequent flight missions. Up until now, all of the flight data interpretation
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work has been done manually. It is a very difficult and boring job, and it has a hidden danger of misdetection.

With the rapid development of computer hardware and algorithms, an automatic novelty detection method is an

effective way to replace manual interpretation work. Given the outstanding performance of H-SVDD described

in the above sections, the novelty detection work will be done using H-SVDD.

Table 4. Experimental results using Letter datasets (16D).

Training time (s) AUC NSV Testing time (s)
C-SVDD 96.936 0.9976 486.7 8.389
LS-OCSVM 1.968 0.9618 701.3 32.505
SMO-SVDD 87.241 0.9767 698.2 19.931
Kim-SVDD 22.805 0.9987 151.8 7.734
CPDD-SVDD 73.067 0.9943 141.5 6.628
H-SVDD 2.874 0.9989 128.4 6.420

Table 5. Experimental results using the Pendigits dataset (16D).

Training time (s) AUC NSV Testing time (s)
C-SVDD 92.113 0.9858 491.4 7.296
LS-OCSVM 1.975 0.9610 702.0 12.009
SMO-SVDD 84.519 0.9635 692.7 10.129
Kim-SVDD 29.787 0.9939 190.6 3.973
CPDD-SVDD 62.264 0.9814 232.7 4.707
H-SVDD 2.873 0.9922 179.1 3.921

Table 6. Experimental results using the Optdigits dataset (64D).

Training time (s) AUC NSV Testing time (s)
C-SVDD 36.404 0.9673 308.6 4.612
LS-OCSVM 1.027 0.9828 505.0 7.857
SMO-SVDD 32.876 0.9762 484.3 7.541
Kim-SVDD 23.506 0.9875 54.4 0.798
CPDD-SVDD 135.085 0.9687 53.5 0.792
H-SVDD 2.274 0.9870 52.9 0.781

In the flight data interpretation of a certain type of airplane, the aeroengine gas path parameters are one

of the primary focuses. Interpreters analyze 2 important parameters: high-pressure rotor speed (HPRS) and

exhaust gas temperature (EGT). In the normal state, HPRS and EGT have a correspondence in that the EGT

increases with an increase in HPRS. If this correspondence breaks up, this indicates a possible abnormality, and

the interpreter reports the error. Figure 5 shows a sortie of flight data containing a section of abnormalities.

The left subplot in Figure 5 shows the correspondence of HPRS and EGT in the normal state, and the right

subplot shows the parameters in an abnormal state. From 2490 s, HPRS decreases sharply, but EGT does not

decrease correspondingly. On the contrary, EGT increases sharply in the latter case. This phenomenon lasts

for about 15 s and then the parameters gradually retreat from the abnormal state. By post hoc analysis, it is

a typical surge. It happens because the aircraft inhales the gas from the exhaust from the plane in front of it.
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Figure 5. Flight data curves of HPRS and EGT in one sortie, where the red line denotes EGT and the blue line denotes

HPRS.

When detecting novelty in gas parameters using H-SVDD, HPRS and EGT can be used as the features.

The sample rate of HPRS and EGT in this type of FDR are both 2 Hz, so it generates 2 samples per second.

In this experiment, samples generated by 86 flight sorties including 531,793 s of normal state flight data form

the training set. The size of the training set is 1,063,586. The testing set is formed by the sortie of flight data

shown in Figure 5. The parameters δ , C , and σ are set to 0.05, 1, and 0.3, respectively. Figure 6 shows

the testing results. The classification label of 0 denotes that the state of the aeroengine gas path is normal

and a classification label of 1 denotes that it is abnormal. From Figure 6, abnormality appears from 2503 to

2521 s, and no false alarm happens, which means that H-SVDD has detected the abnormality of the aeroengine

condition accurately.
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Figure 6. Novelty detection results of aeroengine gas path parameters using H-SVDD.

6. Conclusions

In this paper, we addressed the issue of speeding up the training of SVDD. A sample reduction method, which

is referred to as HSR, is proposed. The method first finds the cluster centers of the training set by k-means. All

of the training samples are then sorted in descending order according to the distance from the corresponding

cluster center. After that, the farthest sample is moved from the sorted training set into the reduced training

set. The samples that have a shorter distance to the farthest sample from δ are then deleted from the training

set. The above process is repeated until the sorted training set is empty, and the reduced training set is built.

In this way, HSR reduces the time complexity of SVDD from O (N3) to O (Ñ3), where Ñ is the size of the

reduced training set, by cutting out a large portion of samples in the training set. The efficiency of HSR was

theoretically proven by an efficiency analysis of SVDD with a different σ , including small σ , intermediate σ ,

and large σ . The experiment was carried out on artificial datasets generated by the Prtools toolbox, real-world

datasets downloaded from the UCI database, and flight data recorded by a FDR. Computational comparisons

with conventional SVDD, LS-OCSVM, SMO-SVDD, Kim-SVDD, and CPDD-SVDD have shown that SVDD

based on the proposed HSR method not only has a fast training and testing speed, but also provides high

classification accuracy. For flight data novelty detection, H-SVDD detects the abnormalities in the aeroengine
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gas path parameters effectively, which shows that H-SVDD is a promising method for realizing flight data

automatic interpolation.
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