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Abstract: Feature extraction is a very challenging task, since choosing discriminative features directly affects the

recognition rate of the brain–computer interface (BCI) system. The objective of this paper is to investigate the effect of

mother wavelets (MWs) on classification results. To this end, features were extracted from 3 different datasets using 12

MWs, and then the signals were classified using 3 classification algorithms, including k-nearest neighbor, support vector

machine, and linear discriminant analysis. The experiments proved that Daubechies and Shannon were the most suitable

wavelet families for extracting more discriminative features from imaginary EEG/ECoG signals.
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1. Introduction

The key idea behind brain–computer interface (BCI) systems is to allow paralyzed subjects to interact more

freely with society by driving external devices, such as robotic arms, wheelchairs, and computer cursors, simply

with their thoughts. The input signal of such a system may consist of various motor imagery signals such as an

electroencephalogram (EEG), which is noninvasively recorded from the scalp, or an electrocorticogram (ECoG),

which is invasively recorded by subdural electrodes [1].

Operation of current EEG- and ECoG-based BCI systems is generally performed in 5 main steps:

1. Signal acquisition: BCI systems begin with signal acquisition. In this step, brain signals are captured and

digitized for further analysis.

2. Preprocessing: Because EEG and ECoG signals are inevitably contaminated by various artifacts such as

ocular and myoelectric signals, a preprocessing stage is applied to prepare suitable signals for further steps

[2].

3. Feature extraction: Feature extraction is necessary to represent input signals in a reduced feature space

and identify discriminating information for every kind of signal that has been recorded.

4. Classification: The main task of this step is categorization of the signals between a fixed set of classes by

taking feature vectors into account.

5. Device control interface: This step translates the categorized signals into control commands that are used

to control external devices.
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Among these steps, feature extraction is the most challenging because choosing discriminating features

directly affects the recognition rate of the BCI system. The relevant literature has proposed several fea-

ture extraction algorithms to represent BCI signals, which include wavelet transform [1,3], power spectral

density [4], autoregressive (AR) parameters [5,6], amplitude of slow cortical potentials [7], and event-related

(de)synchronization (ERD/ERS) features [8]. Among these techniques, continuous wavelet transform (CWT)

has received the most attention from BCI researchers. CWT gives a highly redundant representation of BCI

signals in the time-scale domain [9]. Therefore, it preserves time and frequency information.

Mother wavelets (MWs) belonging to different wavelet families (WFs) can be used for extracting features

from imaginary EEG/ECoG signals. Although the fundamental attributes of CWT representations using

different MWs are similar, in reality these signal representations indicate different amplitudes and locations

with respect to time and frequency. Therefore, choosing the WF and MW significantly affects the success of the

CWT algorithm and its results. Researchers in the field of BCI have generally reported their results with only

one or a few MW(s). Hsu and Sun applied CWT together with Student’s two-sample t-statistics (a commonly

applied technique for assessing whether the means of 2 groups are statistically different from each other or not)

for feature extraction and representation of the left and right motor imagery (MI) data [10]. Using Daubechies

wavelets of order 4 in the second family [11] as the MW, they calculated the means and variances of CWTs to

represent left and right MI signals. In another CWT-based study, Darvishi and Al-Ani calculated the average

energy value of wavelet coefficients as features representing BCI competition II, dataset III signals [12]. In their

paper, they used a Morlet wavelet as the MW. Aydemir and Kayikcioglu applied their proposed method to

the BCI competition III dataset I by Morlet wavelet [1]. They calculated the means and standard deviations

of CWT coefficients in order to extract the features. In another approach, Bostanov used Mexican Hat as the

MW to extract features from BCI competition II datasets Ib and IIb [13].

No previous studies have examined the role of MWs in BCI signal processing using different classification

algorithms. The objective of this paper is to investigate the effect of MWs on classification results and find

the most appropriate MW. For this purpose, features were extracted from 3 different datasets using 12 MWs,

including Morlet, Shannon1-1.5, (shan1-1.5), Shannon2-3 (shan2-3), Daubechies1 (db1), Daubechies4 (db4),

Symlet2 (sym2), Symlet5 (sym5), Gaussian5 (gaus5), Gaussian6 (gaus6), Meyer, Coiflet3 (coif3), and Coiflet4

(coif4). Two MW types were randomly selected from the WFs. Then, in order to reach a stable conclusion

and decisively determine the most appropriate MW, 3 different EEG/ECoG-based BCI datasets were classified

using 3 classification algorithms, including k-nearest neighbor (k-NN), support vector machine (SVM), and linear

discriminant analysis (LDA). WFs and classification algorithms that are commonly used by BCI researchers

were taken into consideration in this study.

In Section 2 of this paper, 3 kinds of EEG/ECoG-based BCI datasets are introduced, and then the CWT

technique and feature extraction procedures are mathematically explained. In the last part of this section the

3 different classifiers are briefly defined. The EEG/ECoG-based BCI datasets are classified, and the results are

presented in the Section 3 in the form of tables and figures. A discussion and conclusion are given at the end

of the paper.

2. Materials and methods

In the following subsections, the used datasets are described, followed by a detailed description of the parts of

the proposed method.
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2.1. Description of the datasets

The algorithm was applied to 3 datasets: BCI competition II dataset Ia (Dataset 1), BCI competition II dataset

III (Dataset 2), and BCI competition III dataset I (Dataset 3). The following subsections describe these datasets

in detail.

2.1.1. Dataset 1

Dataset 1 was recorded from a single healthy subject by Blankertz et al. at the University of Tübingen,

Germany [14]. The subject was asked to move a cursor up and down a computer screen, while slow cortical

potentials (SCPs) of the subject were acquired. The subject received visual feedback for his/her SCPs, which

were corrected for vertical eye movements. It was observed that cortical positivity (negativity) led to downward

(upward) movement of the cursor on the screen.

Brain activity was recorded from 6 different channels at a sampling frequency of 256 Hz. Six EEG

electrodes were located according to the standard 10–20 system and were referenced to the vertex electrode Cz

as follows: Channel 1, A1 (left mastoid); Channel 2, A2 (right mastoid); Channel 3, FC3 (2 cm frontal of C3);

Channel 4, CP3 (2 cm parietal of C3); Channel 5, FC4 (2 cm frontal of C4); and Channel 6, CP4 (2 cm parietal

of C4). Each trial lasted for 6 s. During every trial, the task was visually presented by a highlighted goal at the

top or bottom of the screen to indicate up or down from 0.5 s until the end of the trial. The visual feedback

was presented from 2 to 5.5 s. Only this 3.5-s interval for every trial was provided for training and testing.

All trials were separated into a training set (268 trials, 135 for cursor-up and 133 for cursor-down) and

a testing set (293 trials), both of which contained EEG data only from the 3.5-s feedback phase of each trial.

The purpose was to categorize the trials in the testing set into cursor-up or cursor-down groups.

2.1.2. Dataset 2

Dataset 2 was recorded from a single healthy female subject at the Institute for Biomedical Engineering, Graz

University of Technology, Austria. Brain activity was acquired with 3 bipolar EEG channels (C3, Cz, C4) at

a sampling frequency of 128 Hz and was filtered between 0.5 and 30 Hz. The recording length of the trial was

set to 9 s. The first 2 s were quiet. At t = 2 s, an acoustic stimulus indicated the beginning of the trial and a

cross (‘+’) was displayed for 1 s. Then, at t = 3 s, an arrow (left/right) was displayed as a cue. The subject

was asked to imagine left or right hand movements and move the feedback bar toward the cue direction. The

order of the left and right cues was random. During the experiment, the subject sat in a comfortable chair with

armrests. It was decided to use only the last 6 s, because no event occurred in the first 3 s.

The experimental dataset consisted of 140 trials for the training set (70 trials for right hand movement,

RHM, and 70 trials for left hand movement, LHM) and 140 trials for the testing set (70 trials for RHM and 70

trials for LHM). For further information about the dataset, please refer to [15] and [16]. The purpose was to

categorize the trials in the testing set into RHM or LHM.

2.1.3. Dataset 3

Dataset 3 was recorded from an epileptic subject on 2 different days with approximately 1 week of delay by Lal

et al. at the University of Tübingen, Germany [17]. In both sessions, the subject was asked to imagine either a

left small finger or a tongue movement.

The datasets consisted of 278 trials (training data: 139 trials for finger movements and 139 trials for

tongue movements), which were performed during the first session, and 100 trials (testing data) from the
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AYDEMİR and KAYIKÇIOĞLU/Turk J Elec Eng & Comp Sci

second session. Each trial lasted for 3 s. To prevent visually evoked potentials from being reflected by the

data, the recording intervals started 0.5 s after the end of the visual cue. Electrical brain activity was recorded

by an 8 × 8 ECoG platinum electrode grid (from a total of 64 points) that was placed on the contralateral

(right) motor cortex. All the recordings were performed at a sampling rate of 1 kHz (acquired 3000 samples

per channel for every trial). For further information about the dataset, please refer to [17]. The purpose was

to categorize the trials in the test set as finger or tongue movement imagery.

2.2. Continuous wavelet transform (CWT)

CWT is a powerful signal processing tool that is used for many BCI data analysis applications in order to

extract feature(s) [1,10–13].

CWT is defined as the convolution of signal x(t) with wavelet function ψτ,s(t),which is given by:

CWTψx (τ, s) =
1√
|s|

∫
x(t)ψ∗

(
t− τ

s

)
dt, (1)

where ψτ,s(t) is dilated and shifted versions of the wavelet function ψ(t), and is defined as follows:

ψτ,s(t) =
1√
s
ψ(
t− τ

s
). (2)

Here, t , τ , and s denote time parameter, shift parameter, and scale parameter, respectively [18]. The wavelet

function ψτ,s(t) has a zero mean, as given in Eq. (3):

+∞∫
−∞

ψτ,s(t)dt = 0. (3)

An important point of wavelet analysis is choosing a particular wavelet function ψ(t).

2.3. Feature extraction

Two types of feature extraction procedures were utilized to represent BCI signals. The first procedure was used

for Datasets 1 and 3. The second was used for Dataset 2. These 2 procedures are described in the following

subsections.

2.3.1. Feature extraction procedure 1

First, a variance normalization process was implemented in all trials, as given in Eq. (4) [1]:

TN =
T

std(T )
, (4)

where TN and std(T ) denote normalized trial signal and standard deviation of the trial signal, respectively.

The estimated standard deviation of a trial was calculated with the following formula:

std(T ) =

√∑
(T − T̄ )2

n− 1
, (5)
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where T̄ is the mean value of all samples of the trial and n is the length of the trial.

After the normalization process, wavelet transform coefficients (WTCs) of the signal bands, including

theta (4–8 Hz), alpha (8–12 Hz), beta (12–20 Hz), and total band (4–20 Hz), were calculated. The scale of the

wavelet function was set to integer values of the corresponding MW with a step size of τ = 1. Empirical feature

analysis of the training sets demonstrated that the means and standard deviations of the absolute values of the

WTCs of all 6 channels of Dataset 1, and the 12th and the 29th channels of Dataset 3, yielded discriminative

feature sets. Hence, those features were selected to classify both tasks. Mean and standard deviations were

calculated with the following formulas, respectively:

WTCsAvr =

∑
|WTCs|
LWTCs

, (6)

WTCsstd =

√∑
(|WTCs| −WTCsAvr)2

LWTCs − 1
, (7)

where LWTCs is the length of WTCs. All computed WTCs of the selected channels were used to calculate

features.

2.3.2. Feature extraction procedure II

Since feature extraction procedure I did not provide a discriminative feature set for Dataset 2, feature extraction

procedure II was developed.

WTCs of the signal bands were obtained by applying the same procedure. Empirical feature analysis of

the training set demonstrated that total energy (TE) of WTCs of all 3 channels yielded discriminative feature

sets for Dataset 2. Hence, those 3-dimensional features were used to classify both tasks. Total energy of WTCs

was calculated with the following formula:

TE =
∑

|WTCs|2. (8)

2.4. Classification algorithms

In the present study, k-NN, SVM, and LDA classification algorithms were trained using training datasets. In

the following subsections, the aspects of the 3 classifiers are briefly reviewed.

2.4.1. k-nearest neighbor (k-NN)

k-NN classifier is a common classification algorithm that determines a testing sample’s class by the majority

class of k closest training samples [18,19]. This issue is illustrated with a simple example in Figure 1, which

shows each data record with 2 attributes that represent 2 classes of data (plus, ‘+’, and circle, ‘o’). In this case,

k = 6. The unlabeled test trial would be labeled by category of class plus, because 4 of its 6 closest samples

(neighbors) are plus.
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Class plus

Class circle

Test trial

Figure 1. A simple example of the k-NN algorithm.

In the present work, the Euclidean distance metric and leave-one-out cross-validation technique were used

to determine the best value of k for maximizing the classification performance. The k value was sought in the

interval between 1 and 25 with a step size of 1.

2.4.2. Support vector machine (SVM)

The SVM performs classification tasks by constructing the best hyperplane in a multidimensional space through

finding the maximum margin [20–22]. In this paper, the SVM classification framework was implemented by the

following expression:

f(x) = sign(

T∑
i=1

αiyiK(x, xi) + b), (9)

where f(x) is the decision function, T is the number of trials,αi ∈ R are Lagrangian multipliers obtained by

solving a quadratic optimization problem, yi ∈ {1,−1} are class labels, b is bias, and K(x, xi)is kernel function.

Although there are many alternatives for kernel function, the most common radial basis function kernel was

used as:

K (x, xi) = exp(−∥x− xi∥2

2σ2
). (10)

This kernel was chosen because the number of its hyperparameters was smaller than that of other kernels. This

kernel function was specified by the scaling factor sigma, σ . The same validation procedure as in the k-NN

classification algorithm was used to determine the optimum value for the scaling factor. The most appropriate

σ value was sought in intervals of 0.1 to 2.5 (step size: 0.2) with the same validation procedure used in the

k-NN classification algorithm.

2.4.3. Linear discriminant analysis (LDA)

LDA categorizes 2 classes based on the assumption that both classes are under normal distribution with equal

covariance matrices. The discriminating hyperplane is obtained by finding the projection of the labeled training

data that maximizes the distance between the means of 2 classes and minimizes the interclass variance. The
main aim is to solve the following problem:

y = wTx+ w0, (11)
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where x is feature vector. Vectors w and w0 are determined by maximizing interclass means and minimizing

interclass variance [23].

3. Results

The results of training and testing classification accuracy (CA) for Datasets 1, 2, and 3 are presented in Figures

2, 3, and 4, respectively. In these figures, TrCA represents training classification accuracy and TCA represents

test classification accuracy. Classification accuracy is defined as the percentage of the number of trials classified

correctly in the corresponding (training or testing) set over total trials. With respect to the CA results of the

3 classifiers, the following was found from Figures 2–4:

Morlet Shan1−1.5 Shan2−3 Db1 Db4 Sym2 Sym5 Gaus5 Gaus6 Meyer Coif3 Coif4
55

60

65

70

75

80

CA (%)

+ / + / +   : k-NN/SVM/LDA #eta band TrCA  /  /    : k-NN/SVM/LDA Beta band TrCA 

o / o / o  : k-NN/SVM/LDA #eta band TCA  x / x / x     : k-NN/SVM/LDA Beta band TCA 

*  / *  / *    : k-NN/SVM/LDA Alfa band TrCA  ◊/ ◊ / ◊     : k-NN/SVM/LDA All bands TrCA 

/ / : k-NN/SVM/LDA Alfa band TCA   / / : k-NN/SVM/LDA All bands TCA 
 

 

 

Figure 2. The training and test classification accuracy results of the classification algorithms for Dataset 1.

1) For Dataset 1, LDA provided the highest value of CA on the training dataset as 78.36% when theta band

features were extracted by Morlet wavelet. On the contrary, the lowest value of CA was calculated by

k-NN (k was calculated as 3) on the testing dataset as 58.36% when theta band features were extracted

with the db1 wavelet.

2) For Dataset 2, k-NN (k was calculated as 21) had the highest value of CA on the testing dataset as 85.00%

when theta band features were extracted by the shan2-3 wavelet. In addition, the lowest CA was obtained

by k-NN (k was calculated as 4) on the testing dataset as 52.14% when theta band features were extracted

using the db1 wavelet.

3) For Dataset 3, the highest value of CA was obtained by SVM (σ was calculated as 2.5) on the testing

dataset as 93.00% when alpha band features were extracted by the sym2 wavelet. However, the lowest

value of CA was calculated by k-NN (k was calculated as 21) on the testing dataset as 45.00% when theta

band features were extracted by the Meyer wavelet.

4) There was no single MW that could perform the best CA with all the classifiers and on each dataset.
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Figure 3. The training and test classification accuracy results of the classification algorithms for Dataset 2.

Morlet Shan1−1.5 Shan2−3 Db1 Db4 Sym2 Sym5 Gaus5 Gaus6 Meyer Coif3 Coif4
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Figure 4. The training and test classification accuracy results of the classification algorithms for Dataset 3.

According to the performance results of the individual classifiers with the considered MWs, it is difficult

to propose the most appropriate MW, because the best and worst classification accuracies obviously depend on

the feature set, classifier, and MW. It is well known that if the results of different datasets are not comparable,

their means and standard deviations are significantly different. Hence, the means and standard deviations of

the CA results were calculated for a general comparison. The means and standard deviations of the CA of

Datasets 1, 2, and 3 are given in Tables 1, 2, and 3, respectively. These tables demonstrate that although the

average classification accuracy (ACA) results were very close, the classification algorithms reached their highest

ACA using different MWs.

For Dataset 1 (Table 1), LDA had the highest mean value of CA on the training dataset as 76.78% when

the features were extracted by the db1 wavelet. As seen in Table 2, LDA provided the highest mean values of
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CA on the training dataset as 82.68% when the features were extracted by the db4 or sym2 wavelets. Finally,

as seen in Table 3, SVM provided the highest mean value of CA on the testing dataset as 79.25% when the

features were extracted by the shan2-3 wavelet.

Table 1. Averages and standard deviations of the classification accuracy of Dataset 1.

Mother k-NN SVM LDA
wavelet Training Test Training Test Training Test
Morlet 71.74 ± 1.34 63.40 ± 3.11 66.23 ± 1.94 63.49 ± 1.60 72.67 ± 1.99 65.44 ± 3.77
shan1-1.5 73.04 ± 2.33 67.07 ± 2.39 67.54 ± 4.57 64.59 ± 0.43 73.51 ± 2.30 67.15 ± 0.52
shan2-3 72.86 ± 2.10 65.28 ± 2.79 67.26 ± 4.96 64.76 ± 1.09 73.32 ± 2.21 66.72 ± 0.86
db1 72.86 ± 1.78 62.46 ± 3.49 69.78 ± 2.14 64.50 ± 2.41 76.78 ± 1.73 65.45 ± 1.98
db4 72.30 ± 2.03 64.85 ± 1.93 66.23 ± 5.12 64.94 ± 2.32 73.97 ± 2.72 66.98 ± 1.88
sym2 72.76 ± 2.64 65.70 ± 1.73 67.07 ± 4.02 64.17 ± 3.18 74.72 ± 2.01 66.64 ± 0.81
sym5 72.11 ± 2.31 63.14 ± 2.38 67.26 ± 3.23 62.89 ± 2.95 74.07 ± 1.51 66.73 ± 0.91
gaus5 72.30 ± 2.41 65.19 ± 2.21 66.79 ± 3.47 63.23 ± 1.51 73.14 ± 2.04 66.04 ± 2.02
gaus6 72.20 ± 1.94 63.23 ± 2.83 65.67 ± 3.67 63.31 ± 2.37 71.54 ± 5.20 67.42 ± 4.40
Meyer 72.30 ± 3.32 64.51 ± 2.37 66.24 ± 2.61 63.06 ± 1.23 72.76 ± 2.36 66.13 ± 2.47
coif3 71.92 ± 1.78 65.02 ± 2.26 67.26 ± 2.99 63.74 ± 2.82 73.60 ± 1.41 66.98 ± 1.49
coif4 71.83 ± 2.03 64.59 ± 2.04 66.70 ± 2.43 63.23 ± 2.50 73.60 ± 1.41 66.72 ± 2.50

Table 2. Averages and standard deviations of the classification accuracy of Dataset 2.

Mother k-NN SVM LDA
wavelet Training Test Training Test Training Test
Morlet 78.04 ± 7.77 75.18 ± 9.21 78.22 ± 6.96 75.18 ± 8.23 77.68 ± 8.98 75.54 ± 8.50
shan1-1.5 79.29 ± 6.20 79.11 ± 6.91 79.11 ± 5.64 77.32 ± 6.56 79.64 ± 6.46 78.57 ± 4.78
shan2-3 79.11 ± 6.07 78.75 ± 6.98 79.29 ± 5.28 77.14 ± 6.36 79.64 ± 5.99 78.93 ± 4.46
db1 76.79 ± 5.61 72.86 ± 13.83 77.14 ± 4.99 75.72 ± 5.05 79.82 ± 4.79 77.14 ± 5.09
db4 80.89 ± 1.69 80.18 ± 2.36 80.36 ± 2.14 79.64 ± 0.72 82.68 ± 0.69 79.64 ± 2.37
sym2 81.07 ±1.49 79.29 ± 3.35 81.07 ± 0.92 78.93 ± 0.92 82.68 ± 0.36 80.18 ± 1.78
sym5 81.97 ± 0.68 78.21 ± 2.77 81.43 ± 1.31 79.47 ± 1.22 82.50 ± 0.72 80.18 ± 2.94
gaus5 80.00 ± 2.26 79.46 ± 1.58 80.36 ± 2.89 78.39 ± 1.88 81.97 ± 1.35 79.29 ± 3.82
gaus6 78.04 ± 7.88 75.72 ± 8.94 78.39 ± 6.15 75.18 ± 8.74 80.18 ± 4.96 76.97 ± 7.41
Meyer 81.96 ± 1.22 79.64 ± 2.77 81.25 ± 2.82 78.75 ± 1.07 82.15 ± 0.83 80.54 ± 2.88
coif3 81.61 ± 1.47 79.64 ± 2.64 81.79 ± 1.24 78.39 ± 0.90 82.15 ± 0.83 80.18 ± 2.70
coif4 81.79 ± 1.49 78.93 ± 3.52 81.43 ± 1.65 78.22 ± 1.24 82.32 ± 0.69 80.00 ± 2.97

The simplest way to determine the overall performance of the MWs and choose one of them is the

voting method. Table 4 indicates the MW with which the classification algorithms achieved the highest ACA.

According to the voting method, both the Shannon and Daubechies families provided the highest ACA 6 times

with different classifiers. On the other hand, Meyer and Coiflet provided the highest ACA only once, whereas

the Morlet wavelet never provided the highest ACA.

4. Discussion and conclusion

This paper presented the use of CWT-based methodology for extracting features from imaginary EEG/ECoG

signals and proposed the most suitable MW for this purpose. The proposed approach was based on evaluating

classification accuracies between the calculated means, standard deviations, and energy of the wavelet coefficients

for 12 different MWs.

46
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Table 3. Averages and standard deviations of the classification accuracy of Dataset 3.

Mother k-NN SVM LDA
wavelet Training Test Training Test Training Test

Morlet 67.54 ± 12.76 69.50 ± 18.08 68.35 ± 12.19 70.50 ± 14.57 69.97 ± 13.08 72.75 ± 14.15

shan1-1.5 73.47 ± 6.85 78.00 ± 9.49 71.76 ± 12.19 78.50 ± 7.94 74.37 ± 8.17 78.25 ± 10.87

shan2-3 73.38 ± 7.36 78.50 ± 9.57 71.85 ± 11.53 79.25 ± 8.66 74.28 ± 7.78 78.25 ± 10.15

db1 65.92 ± 10.17 70.25 ± 15.97 67.99 ± 7.33 70.00 ± 14.02 67.65 ± 11.64 71.25 ± 14.32

db4 70.87 ± 12.20 74.00 ± 17.15 73.38 ± 9.97 74.50 ± 20.09 72.66 ± 11.98 73.00 ± 18.66

sym2 71.95 ± 11.20 74.00 ± 17.03 72.03 ± 10.40 76.75 ± 14.62 74.46 ± 8.94 77.50 ± 14.62

sym5 72.03 ± 11.22 72.75 ± 18.46 73.47 ± 8.28 74.751 ± 17.23 74.55 ± 11.02 75.50 ± 13.96

gaus5 70.33 ± 12.43 71.75 ± 18.01 71.49 ± 10.37 74.25 ± 15.84 71.77 ± 13.37 73.50 ± 18.41

gaus6 69.07 ± 13.88 70.50 ± 19.19 73.72 ± 10.54 73.50 ± 15.33 71.41 ± 11.71 74.50 ± 14.39

Meyer 69.34 ± 11.75 68.00 ± 18.94 71.47 ± 10.22 73.50 ± 17.34 70.78 ± 12.39 73.25 ± 16.60

coif3 71.04 ± 11.90 72.50 ± 17.39 73.22 ± 8.71 75.50 ± 15.44 73.02 ± 11.83 75.25 ± 15.71

coif4 71.67 ± 11.78 73.25 ± 19.10 72.30 ± 9.28 75.00 ± 14.07 73.02 ± 11.62 75.00 ± 15.51

Table 4. Performance of the MWs.

Dataset 1 Dataset 2 Dataset 3

k-NN
TrCA shan1-1.5 sym5 shan1-1.5
TCA shan1-1.5 db4 shan2-3

SVM
TrCA db1 coif3 gaus6
TCA db4 db4 shan2-3

LDA
TrCA db1 db4 & sym2 sym5
TCA gaus6 meyer shan1-1.5 & shan2-3

The results showed that the EEG/ECoG signals can be represented using CWT coefficients. However,

it is important to develop a suitable feature extraction procedure for each individual dataset. Hence, since

feature extraction procedure I did not provide a discriminative feature set, feature extraction procedure II was

developed for Dataset 2.

It was observed that the LDA algorithm achieved much better performance than the SVM and k-NN

algorithms in terms of the obtained highest classification accuracy results. Moreover, the LDA classifier was

more robust than the SVM and k-NN algorithms, because it had only limited flexibility (less free parameters

to tune) and was less prone to overfitting.

According to the obtained statistical voting results, it could be generalized that Daubechies and Shannon

were the most suitable WFs for extracting more discriminative features from the imaginary EEG/ECoG signals.

The general characteristics of these WFs should be examined to understand and reveal the cause of their

superior performance. In comparison to other tested wavelets, Daubechies wavelets are compactly supported

with extreme phase and the highest number of vanishing moments, which are a necessary condition for the

smoothness of the wavelet function and for a given support width. On the other hand, Shannon wavelets are

analytically defined, infinitely differentiable, and sharply bounded in the frequency domain. These advantages

provide a very good localization of energy in the frequency domain and make those WFs the best candidates to

identify the EEG/ECoG-based BCI signals. On the contrary, it is worthwhile to mention that the Morlet wavelet

presented the poorest performance due to the fact that it is a Fourier-based time-frequency transformation and

thus suffers from many of the shortcomings of Fourier analysis.
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It can be concluded that the proposed study could greatly contribute to the selection of a suitable MW

through parameterization that leads to performance improvement of EEG/ECoG-based BCI signal classification

in comparison to random selection of the MW.

The results also proved that the performance of the classifiers depended on the characteristics of the

datasets. Therefore, it is obvious that for another kind of EEG/ECoG signals, researchers should specifically

seek the most appropriate MW among the existing members of the WFs.
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