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Abstract: Principal component analysis (PCA) is a well-known tool in image processing, especially in dimension

reduction schemes. Since using PCA is based on the vector representation of the image, the spatial locality of pixels in

the image is not considered. However, generalized PCA (GPCA) could be applied to images in two dimensional spaces.

Both schemes do not consider the noisy case of signals. Noise adjusted PCA (NAPCA) tries to find new coordinates for

signal representation based on signal to noise ratio (SNR) maximization. In this paper we generalized noise adjusted

GPCA to benefit the advantage of GPCA and SNR maximization case of NAPCA in two dimensional spaces. The

experimental results on the huge databases show its reliability.

Key words: Principal component analysis, generalized principal component analysis, signal to noise ratio improvement,

noise adjusted principal component analysis

1. Introduction

Principal component analysis (PCA) is mathematically defined as an orthogonal linear transformation that

transforms a number of possibly correlated variables into a number of uncorrelated variables called the principal

components [1]. To achieve this aim, first of all, the PCA theorem calculates the eigenvalue decomposition of a

data covariance matrix or singular value decomposition (SVD) of a data matrix, usually after mean centering

the data for each attribute. These eigenvalues are sorted decreasingly and then their corresponding eigenvectors

computed. It means that the eigenvalues define the variance of any projection data on their eigenvectors as new

coordinates.

To apply the PCA theorem on images, their vector based representation should be obtained, which leads

to a loss of spatial locality information and requires a lot of time and space costs. In 2004, the generalized

PCA (GPCA) algorithm was proposed to transform the image into a smaller matrix and to preserve the spatial

information with lower computational costs than PCA [2,3]. In GPCA, k images as {A1 , A2 ,. . . , Ak } in m ×
n size with a mean of zero are considered. The main aim is to compute two matrices, C in m × d1 size and

R in n × d2 size, with orthonormal columns such that variance(C,R) =
k∑

j=1

∥∥CTAjR
∥∥2
F

is maximized [3]. C

and R are defined as eigenmatrices instead of eigenvectors. These matrices are obtained from the image rows

and columns covariance matrix to project the image matrices on them. Now the projection of each image on
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two matrices, C and R, is determined by Eq. (1):

Dj = CTAjR. (1)

In this case Dj is in size d1× d2 . Therefore, instead of storing the k image matrix in size m × n, the k

matrix is stored in size d1× d2 so that the two principal matrices C and R could be done. Although PCA and

GPCA project data on the dimensions that have the strongest variance in the dataset, these two algorithms do

not consider the signal to noise ratio (SNR) in the noisy data case. Therefore, to increase SNR, Green et al.

developed a maximum noise fraction (MNF) transform based on the maximization of SNR [4]. Later Lee et al.

used a two-stage method comprising noise whitening and PCA processes [5]. In this new transform, called noise

adjusted principal components analysis (NAPCA), principal components are ranked by SNR maximizing rather

than by variance maximizing [5,6]. In the NAPCA observation model, k vectors {A1 + n1 , A2 + n2 ,. . . , Ak

+ nk } in size m × 1 with a mean of zero are considered, where noise, ni , and signal, Ai , are independent. The

covariance matrix is Σ = Σa+Σn , where Σa and Σn are the signal and noise covariance matrices, respectively.

Applying PCA on Σn leads to Eq, (2):

ET
∑
n

E = ∆n, (2)

where E and ∆n are eigenvectors and eigenvalues matrices of the noise covariance matrix, respectively. It is

noted that ∆n is the diagonal matrix. Therefore, F = E∆
−1/2
n is the noise whitening matrix that normalizes Σn

as FTΣnF = I , where I is the identity matrix. Next, Σ is transformed as Eq. (3) to compute a noise-adjusted

data covariance matrix called Σna [6]. In fact, Eq. (3) removes the noise effect from Σ.

∑
na

= FT
∑

F = FT
∑
a

F + I (3)

Applying PCA on
∑
na

results in:

UT
∑
na

U = ∆na, (4)

where U and ∆na are the eigenvectors and eigenvalues of matrix
∑

na , respectively. The desired NAPCA can

be obtained by the projection matrix:

Q = UF (5)

In this case, the projection of matrix A on matrix Q as Y = A Q = A U F could be defined. The rows of

matrix Q are ordered as the provided maximum SNR in the new database, Y. Estimation of the noise covariance

matrix from the data a priori is one of the major disadvantages of this approach [7]. However, problems such

as time requirements, memory costs, and vector based representation of images are found in PCA as well as in

NAPCA algorithms.

In this paper, we decide to propose the noise adjusted GPCA, which could be attractive in image

processing applications. In this idea, spatial locality information and SNR maximizing could be preserved

simultaneously. In Section 2, GPCA is introduced and the proposed noise adjusted GPCA is explained in the

following section. The paper is finalized by some simulation results to compare GPCA and NAGPCA.
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2. Mathematical basics of GPCA in two-dimensional spaces

In PCA, for an image database with k images in size m × n, we need three m n × m n matrices to represent

the covariance and the eigenvector matrices and m n scalar for representing the eigenvalues. On the other

hand, calculating these huge covariance and eigenvector matrices needs a high CPU power. The loss of pixel

neighboring properties in PCA is another important issue that makes PCA an improper method for image

database processing. So, some authors offered the generalized form of PCA as GPCA [3].

Let us consider k image matrices as Aj , for j = 1, ..., k , with a mean of zero in size m× n. In GPCA,

the main aim is to compute two matrices C in size m× d1 and R in size n × d2 with orthonormal columns

such that Eq. (6) is maximized:

k∑
j=1

∥∥CTAjR
∥∥2
F
=

k∑
j=1

trace
(
CTAjRRTAT

j C
)
. (6)

In this situation the KL transform is defined as the projection of each image on two matrices, C and R, by Eq.

(7):

Dj = CTAjR, for j = 1, 2, · · · , k (7)

C and R are obtained from eigenvectors of the image’s weighted rows and weighted columns covariance matrix,

MR and MC, as:

MC =

k∑
j=1

AjRRTAT
j ;

MR =

k∑
j=1

AT
j CCTAj . (8)

Similar to the KL transform based PCA where the first largest eigenvalues and corresponding eigenvectors

could be used for the reconstruction of data, in KL transform based on GPCA the first d1 columns of C (the

first d1 eigenvectors corresponding to the first largest eigenvalues of MC) and the first d2 columns of R (the

first d2 eigenvectors corresponding to the first largest eigenvalues of MR) could be used to reconstruct a good

estimation of data. In this situation Dj would be in size d1 × d2 (Eq. (1)) [5]. Unfortunately, there is not

a closed solution to find C and R and it should be solved using iteration algorithms; however, the solution is

found only after a few iterations. Let i = 0 to start iterations, and C0 equals the identity matrix to initialize.

The GPCA algorithm block diagram is given in Figure 1.

Experiments show that the algorithm converges only after two to four iterations. To store a dataset

containing k matrix image in size m × n, the required memory is k × m × n space without any processing.

However, using GPCA leads to storing a database in k×d1×d2+m×d1+n×d2 memory space. For example,

for k = 10, 000,m = n = 145 and d1 = d2 = d; Table 1 shows the percentage of saving.

The computational load for this method as compared with PCA is so low because of the calculation of

the smaller covariance and eigenvector matrices [3].

In the following section, noise adjusted GPCA, which could be attractive in image processing applications,

is introduced. In this idea, spatial locality information and SNR maximizing could be preserved simultaneously.
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Figure 1. GPCA iteration algorithm block diagram.

Table 1. Saving percentages using GPCA (details are in the text).

d 50 75 100 110 120
Saving percentage 88% 73% 52% 42% 31%

3. The proposed idea

Since GPCA is a generalized form of PCA, a noise adjusted version of GPCA (NAGPCA) could be obtained.

The aim of NAGPCA is to transfer images in size m × n to different matrices in size d1 × d2 that are smaller

than the original matrices to save memory and also increase SNR after recovering. Let us consider k noisy

matrices as Aj = Sj +Nj , for j= 1, . . ., k, with a mean of zero. The GPCA row covariance matrix (MR) and

column covariance matrix (MC) are obtained as Eqs. (9) and (10) (in the definition of NAGPCA, we used the

symbols CandR):

MC =
k∑

j=1

AjR̄R̄
T
AT

j =
k∑

j=1

SjR̄R̄
T
ST
j +

k∑
j=1

NjR̄R̄
T
NT

j (9)

MR =

k∑
j=1

AjC̄
T C̄A

T
j =

k∑
j=1

SjC̄
T C̄S

T
j +

k∑
j=1

NjC̄
T C̄N

T
j , (10)

where C and R matrices should be computed to transform Aj matrices as defined in Eq. (7). In the noise

adjusted version, we redefine the new forms for MR and MC matrices to reduce the noise effects as MRandMC .

This process could be done using two whitening matrices FC and FR subjected to Eq. (11) and Eq. (12):

FT
R

 k∑
j=1

NjR̄R̄
T
NT

j

FR = I (11)

FT
C

 k∑
j=1

NjC̄C̄
T
NT

j

FC = I (12)

Therefore MRandMC are obtained as Eq. (13) using Eqs. (9)–(12):

MC = FT
R ×MC × FR;MR = FT

C ×MR× FC . (13)
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Therefore, we introduce the transfer matrices C and R , which contain d1 and d2 first eigenvectors of

MCandMR corresponding to d1 and d2 largest eigenvalues, respectively. Eq. (1) in this case is changed

to Eq. (14) to transform each matrix Aj to a new smaller matrix as D̄j :

D̄j = C̄TAjR̄; j = 1, 2, · · · , k. (14)

The iterative algorithm for NAGPCA to find C and R is operated as GPCA. Its steps in summary are as

follows:

Algorithm NAGPCA: (i is the iteration number)

1. C1 ← [Id1 ,0]
T ;

2. Compute NR =
k∑

j=1

NT
j .C̄i.C̄

T
i .N j ;

3. Apply PCA to NR as V T
NR.NR.V NR = ∆NR and find FCi = VNR.∆

−1/2
NR ;

4. Obtain MR = FT
Ci

[
k∑

j=1

AT
j .C̄i.C̄

T
i .Aj

]
FCi and compute the d2 eigenvectors

{
ϕR̄
j=1

}d2

j=1
of MR corre-

sponding to the d2 largest eigenvalues of MR ;

5. ConsiderR̄i =
[
ϕR̄
1 , ϕ

R̄
2 , · · · ,ϕR̄

d2

]
;

6. Compute NC =
k∑

j=1

Nj .R̄i.R̄
T
i .N

T
j

7. Apply PCA to NC : V T
Nc.NC .V NC = ∆NC , and find FRi = VNC .∆

−1/2
NC ;

8. Obtain MC = FT
Ri

[
k∑

j=1

Aj .R̄i.R̄
T
i .A

T
j

]
FRi and compute the first d1 eigenvectors

{
ϕC̄
j=1

}d1

j=1
of MC

corresponding to the d1 largest eigenvalues of MC ;

9. ConsiderC̄i =
[
ϕC̄
1 , ϕ

C̄
2 , · · · ,ϕC̄

d2

]
;

10. Compute the transfer images in ith iteration as: D̄ji = C̄T
i .Aj .R̄i , for j=1, . . .,k;

11. Compute the reconstructed images in ith iteration as: Āji = Ci.D̄ji.R
T
i , for j=1, . . .,k;

12. Compute the error between the original images, Aj , and the reconstructed images in ith iteration, Āji ,

as RMSE(i) =

√
1
k

k∑
j=1

∥∥Aj−Āji

∥∥2
F

;

13. If RMSE(i)−RMSE(i− 1) ≤ thresholdlevel , stop and go to step 14, otherwise go to step 2;
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14. Set the transferred matrices and the transferred images as: C̄ = C̄i, R̄ = R̄i, D̄j = C̄T .Aj .R̄forj =

1, · · · , k.2

To recover matrices Aj , as Āj , Eq. (15) is used:

Āj = C̄.D̄j .R̄
T
forj = 1, · · · , k (15)

So, instead of storing Aj matrices, D̄j matrices, C̄ , and R̄ should be stored. The complexity of NAGPCA

is comparable with GPCA and only the computations of NR and NC are added. It should be noted that with

small d1 and d2 , we lose a lot of information, so the SNR would be very small. By increasing d1 and d2 , more

information is available after reconstruction, and since the eigenvector orientation maximizes the SNR, therefore,

the SNR will be increased. It should be mentioned that by increasing d1 and d2 , in fact we reconstruct the

entire set of signals, which also contains noise, so therefore the SNR decreases and the SNR curves of GPCA

and NAGPCA approach each other. However, in all cases, NAGPCA had better performance than GPCA. As

mentioned, in NAGPCA as well as in NAPCA, the biggest problem is estimation of the noise level. Because

in our work noise covariance estimation is not the original intention, in our experiment the noise sample was

assumed as given. However, the procedure could be repeated with different amounts of noise samples to get the

best results.

4. Experimental results and discussion

In this section the effectiveness of the NAGPCA method in the noisy dataset reconstruction is shown. For our

experiments two types of datasets were used. The first database was ORL faces that contained 400 images in

size of 112 × 92 (available at http://www.cl.cam.ac.uk/Research/DTG/attarchive:pub/data/att faces.tar.Z).

There were ten different images of each of the 40 distinct subjects. For some subjects, the images were taken

at different times, in varying light, facial expressions (open/closed eyes, smiling/not smiling), and facial details

(glasses/no glasses). All the images were taken against a dark homogeneous background with the subjects in an

upright, frontal position (with tolerance for some side movement). Several image samples of the ORL database

are shown in Figure 2a.

The second dataset employed the airborne visible infrared imaging spectrometer (AVIRIS). This hyper-

spectral image database has 220 bands ranging from 0.4 µm to 2.5 µm wavelength (available at

ftp://ftp.ecn.purdue.edu/biehl/MultiSpec/). Each image is of a 145 × 145 pixel size. Several image sam-

ples of the AVIRIS database are shown in Figure 2b. These datasets have a very important difference. The

images of AVRIS are taken from a specific area with fixed objects as shown in Figure 2b. So, to store and

reconstruct, the AVRIS dataset requires a small number of eigenvectors. However, the images of the ORL

dataset contain 400 persons with different poses as shown in Figure 2a, and to store and reconstruct them, a

large number of eigenvectors is required. This fact is also confirmed by Figure 2c, which shows the normalized

eigenvalues of the datasets using ordinary PCA factorization.

First, each dataset was corrupted with white Gaussian noise of different variances. We assumed that

the noise information is not available. So, we only estimated the noise variance using MATLAB command

(randn(size(database))*estimated noise variance)) and constructed matrices NC and NR of steps 2 and 6 of

the proposed algorithm. Each noisy dataset was used as an input to both algorithms, GPCA and NAGPCA.

Experiments were done in three noisy cases with different reduced dimension values. Comparisons between the

original images (without noise) in the two datasets and the reconstructed images in the three noisy cases and
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Figure 2. Several image samples from two databases: a) AVIRIS data; b) ORL face database; c) normalized eigenvalues

of AVIRIS and PIX datasets.

different dimensions were completed with computation of the peak signal to noise ratio (PSNR) and one image

quality measurement as SSIM. The structural similarity (SSIM) index is a method for measuring the similarity

between two images [8]. The SSIM index is a full reference metric; in other words, the measuring of image

quality based on an initial uncompressed or distortion-free image as a reference. In this research, the database

of ORL was corrupted using white Gaussian noise with different noise variances to acquire 400 noisy images

with SNR = 18 dB, 25 dB, and 32 dB with respect to the original ORL images. Since these images were in

the 112 × 92 size, d1 ∈ {30, 40, 50, 60, 70, 80, 90, 100, 110} and d2 = round (d1× 92 / 112) were used in the

simulation. The PSNR and SSIM of the entire noisy database with respect to the entire original database are

shown in Figure 3 (with SNR = 18 dB in Figure 3a, 25 dB in Figure 3b, and 32 dB in Figure 3c).

The AVIRIS images were also corrupted using white Gaussian noise with different noise variances to

attain noisy images with SNR = 32 dB, 25 dB, and 18 dB with respect to the original AVIRIS database. Since

these images are in the 145 × 145 size, d1 = d2 = d ∈ {40, 50, 60, 70, 80, 90, 100110, 120, 130, 140} were used in
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the simulation. The PSNR and SSIM of the entire noisy database with respect to the entire original database

are shown in Figure 4 (with SNR = 18 dB in Figure 4a, 25 dB in Figure 4b, and 32 dB in Figure 4c).
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Figure 3. Simulation results with different noisy ORL datasets: a) added noise variance = 15 with a noise input dataset

SNR = 18 dB; b) added noise variance = 7 with a noise input dataset SNR = 25 dB; and c) added noise variance = 3

with a noise input dataset SNR = 32 dB.

As shown in Figures 3 and 4, in the case of low noise (Figures 3c and Figure 4c) NAGPCA and GPCA

have the same results and the NAGPCA algorithm can always be used, even in the case without noise. However,

in the cases of higher noise, the NAGPCA algorithm leads to better results. In all plots, there is approximately

an optimum point for which high PSNR and SSIM are obtained. In the PCA theorem, the first eigenvalues

(corresponding eigenvectors) refer to the low frequency components and the last eigenvalues (corresponding

eigenvectors) refer to the high frequency components, which in the noisy case show the noise effects. As

mentioned in the previous section, since by using a large value of d the algorithm in fact uses noise components,

and PSNR converges or decreases. In addition, the optimum point, or the optimum d for dimension reduction

with increasing noise, decreased.
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Figure 4. Simulation results with different noise AVIRIS datasets: a) added noise variance = 15 with a noise input

dataset SNR = 32 dB; b) added noise variance = 7 with a noise input dataset SNR = 39 dB; and c) added noise variance

= 3 with a noise input dataset SNR = 44 dB.

In the high noise case, the last eigenvalues (corresponding eigenvectors) contain noise, so the optimum

point was prepared with a small d. However, without noise, we tend to a normal case, the number of

eigenvectors used increases, and the quality improves. Therefore, in the low noise case, PSNR and SSIM

increase approximately monotonically (Figures 3c and 4c). Figures 5a, 5b, and 5c show some samples of the

original database, the noise database, and the reconstructed images in the optimum state of high, middle, and

low noise cases of the ORL database. Figures 6a, 6b, and 6c show some samples of the original database, the

noise database, and the reconstructed images in the optimum state of high, middle, and low noise cases of the

AVIRIS database.

Before the optimum point, the d value is too small to reconstruct images with their suitable energy. After

the optimum point, the d value is too large, which is similar to considering all available signals plus noise that

leads to decreased PSNR in the noise cases. The percentages of saving in all cases are shown in Tables 2 and

3. The quality of the reconstructed images should be judged by looking at their percentages of saving.
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Figure 5. Left to right: a sample of the original ORL database, a sample of the noise database, a sample of the database

reconstructed by GPCA in optimum point, a sample of the database reconstructed by NAGPCA in optimum point. a)

Data noise with SNR = 18 dB, optimum point d1 = 50, d2 = 41, saving percentage = 79%; b) data noise with SNR =

25 dB, optimum point d1 = 70, d2 = 57, saving percentage = 60%; c) data noise with SNR = 32 dB, optimum point

d1 = 110, d2 = 90, saving percentage = 3%.

Table 2. Saving percentages in the ORL database.

d1 30 40 50 60 70 80 90 100 110
d2 25 33 41 49 57 65 73 82 90
Saving percentage 92% 87% 79% 71% 60% 48% 35% 19% 3%

Table 3. Saving percentage in the AVIRIS database.

d = d1 = d2 10 20 30 40 50 60 70 80 90 100 110 120 130 140
Saving
percentage 99% 97% 95% 91% 87% 81% 75% 68% 60% 50% 40% 29% 17% 4%

5. Conclusion

In this paper an algorithm called NAGPCA based on the same procedure that is used in NAPCA was proposed.

This algorithm uses the advantage of GPCA, which is matrix based, instead of the vector based PCA. It simul-

taneously uses eigenimages ordered with respect to maximizing SNR. The required time and the computation

complexity of the NAGPCA differ from the GPCA only by the calculation of two noise matrices. Experimental

results show that by using the NAGPCA algorithm in the noise image databases, higher reconstruction perfor-

mance is obtained as compared with the GPCA algorithm. Also, in the noiseless case, the implementation of
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 (a)
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Figure 6. Left to right: a sample of the original VIRIS database, a sample of the noise database, a sample of the

database reconstructed by GPCA in optimum point, a sample of the database reconstructed by NAGPCA in optimum

point. a) Data noise with SNR = 18 dB, optimum point d1 = 30, saving percentage = 95%; b) data noise with SNR =

25 dB, optimum point d1 = 50, saving percentage = 87%; c) data noise with SNR = 32 dB, optimum point d1 = 70,

saving percentage = 75%.

the NAGPCA is the same as the GPCA. So, the NAGPCA could be used in all cases. In the NAGPCA, similar

to the NAPCA, identifying the noise sample is done with approximate estimation.
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