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Abstract: Enhancing the exploration and exploitation of multimodal optimization is still an interesting and challenging

problem in optimization. Here we present a new population-based evolutionary algorithm for multiple optimal determi-

nations. The approach is simply based on partitioning the genotypic search space and running a simple genetic algorithm

with a small population within each partition. To increase the efficiency of the algorithm, the first-order discrete deriva-

tive of the fitness function for elite solutions was used to omit extra solutions. If the derivative of the fitness function
is larger than a specified gradient threshold, no optimum exists within a given partition, and no population is created

there after the first iteration. Except the adjusted gradient threshold, the proposed algorithm requires no other param-

eters rather than those of classical genetic algorithms. Moreover, unlike the other well-known algorithms, the proposed

algorithm is not sensitive to the niche radius, and it needs no prior knowledge about the fitness function. The algorithm

was tested for 10 multimodal benchmark functions, and its results were compared with the other related algorithms

considering 4 commonly performance criteria. Our results show that the proposed algorithm is not only acceptable in

terms of diversification and function evaluation number, but also has improved efficiency as compared to the others.

Key words: Evolutionary algorithms, multimodal optimization problem, genotypic search space partitioning

1. Introduction

In real-world problems such as planning, design and operational research problems, control engineering, and

optimal control, finding all multiple extrema of the objective function is desirable. For practical engineering

problems, due to time and cost constraints, robustness and stability considerations, and system performance

enhancement like transitions to the optimal operational point in online systems, all alternative solutions are

required to be found. In the optimization literature, multimodal optimization (MMO) refers to the art of finding

the number and location of all the global and local optima of an objective function in the search space. In light

of their high performance, efficiency, and ability to capture multiple solutions in a single run, evolutionary

algorithms (EAs) and especially genetic algorithms (GA) have been widely used for solving MMO problems in

the last decade.

Many techniques, such as the niching method, have been developed in recent years for preserving diversity

in the fitness landscape and promoting convergence of the GA. Nearly two decades ago original versions of niching

methods were proposed, including crowding [1], where offsprings are compared with their parents or a random

subpopulation and then replaced with the most similar individuals; fitness sharing [2], which penalized and
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degraded the fitness of an individual with respect to the presence of neighboring individuals within the niche

radius; clustering [3], which divides the population into some clusters on the basis of calculated k-means distances

between individuals and tries to locate all the optima at the center of the clusters; restricted tournament selection

[4], which selects offsprings with random individuals having minimum hamming or Euclidian distance; clearing

[5], which shares all of the resources among best individuals within the clearing radius (winners) and eliminates

or decreases other individuals’ fitness; and species conservation [6], which, according to individuals’ similarity,

divides the population into species and transitions individuals worth preserving within the species radius, i.e.

the dominant individuals, into the next generation.

The aforementioned methods fail to fully preserve all the optima in the search space and maintain the

diversity of the algorithm. Some of the problems with these methods along with proposed solutions are as follows.

First, to set the niche radius in the sharing and cleaning methods, prior knowledge about the fitness landing

is required; this problem has been tackled by dynamic niche clustering [7], sharing with population analysis

considering varying cluster size [3], the adaptive sequential niche technique [8,9], and crowding clustering [10].

Second, tuning the selection pressure in very rugged functions having both smooth and sharp optima (such

as Rastrigin’s and Shubert’s functions) is difficult, especially in the niching method, which can be overcome

with the use of island models [11]. Third, some methods such as sharing, particularly when the dimension of

the objective function or number of optima is high, are computationally expensive, resulting in the reduction

of the efficiency of the algorithms. Sequential fitness sharing [8] and dynamic niche sharing [12] have been

proposed for overcoming this weakness. Fourth, diversity maintenance in methods like clustering, crowding,

and clearing, which are based on keeping super individuals (elites), is difficult. To establish a balance between

elitism and diversity, deterministic and probabilistic crowding [13,14], a species-conserving GA [15], an adaptive

elitist population-based GA [16], and an adaptive elitist-population strategy [17] have been put forward. Fifth,

in niche-based algorithms, many parameters are required to be set. To remove these adjustable parameters,

there have been attempts to design parallel or series GAs to divide the population into many subpopulations

according to each optimum [18–21]. In new versions of these parallel methods, several populations associated

with different niche methods share their best individuals for the next generation via special selection rules [22].

In view of its easy implementation and robust adaptability, the particle swarm optimization (PSO) method

has recently been increasingly used for solving MMO problems; it can, in combination with the niching method,

other EAs, or local searches, improve the algorithm efficiency [9,23–29]. Furthermore, several combinations

of other artificial intelligence (AI) methods with themselves or with classical optimization methods have been

developed to increase the efficiency of the algorithm. Some of the popular synthesis or intelligence methods that

maintain the diversity of MMO algorithms are memetic PSO [30], the fuzzy clustering-based niching approach

[31], hybrid PSO-BFGS [32], the firefly algorithm [33], artificial immune systems [34,35], evolution strategy

[36], differential evolution [37–39], niching-based ant colony optimization [40], and multiobjective optimization

methods [41].

Here we introduce a simple iterative population-based algorithm, with improved precision and conver-

gence, for solving MMO problems. In this algorithm, the genotypic search space is partitioned, and a simple GA

searches the optima in each subregion using traditional GA operators. The residual individuals, especially at

the boundaries of considered subregions, are eliminated based on the concept of the discrete derivative concept

of the objective function. The proposed algorithm requires no prior knowledge about the fitness landscape

and only the GA parameters are needed to be set; moreover, no additional EA scheme such as the external
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population for elite individuals is used in the algorithm. To evaluate the performance of the proposed method

and compare the obtained results with other reports, we have used 10 difficult benchmark functions with 4

performance criteria.

The rest of the paper is organized as follows: in Section 2, after reviewing the related previous works, the

proposed algorithm is discussed in detail. Benchmark test function characteristics and performance measure-

ments of the algorithm are given in Section 3. Section 4 is devoted to the experimental and simulation results

using 10 multimodal test functions and 4 performance criteria. Comparison results with other well-known

algorithms are also presented in that section. Finally, the paper is concluded in Section 5.

2. Algorithm background and methodology

In this section, some population-based algorithms that divide the genotypic search space are reviewed. There-

after, the fundamental concepts behind our proposed algorithm are elaborated.

2.1. Related works

One of the first attempts at solving MMO problems through dividing the genotypic or phenotypic search space,

in the respectively so-called g-forking genetic algorithm (g-fGA) and p-forking genetic algorithm (p-fGA), was

made by Tsutsui and Fujimoto [19]. In g-fGA all individuals in each subspace are forking to parent and

child populations. Then, to obtain the salient schema (optima point) within each subspace, parent and child

populations are respectively evolved through blocking and shrinking modes; then the best individuals in the

child population are copied to the parent population. On the other hand, in the p-fGA, the search space is

divided by defining a neighborhood hypercube around the best solutions in the phenotypic parameter space;

then the child and parent individuals are respectively evolved inside and outside of the considered hypercube,

with the use of the neighborhood hypercube size. The forking algorithm suffers from many drawbacks, including:

1) tuning many parameters such as the schema threshold, salient schema constant, neighborhood hypercube

size, and population elitist selection; 2) dependency upon the chromosome length to calculate the neighborhood

hypercube size and hamming distance; 3) the necessity of the binary GA for calculating the salient schema; and

4) the need for a large number of function evaluations (NFEs). Later on, Ursem [20] proposed a multinational

evolutionary algorithm that groups the individuals, each covering one part of the fitness landscape. Grouping

of individuals to other nations is done with the use of the hill-valley detection procedure. Based on the fitness

of a random individual in a hill-valley, new nations are created and the individual immigrates to other nations,

merging the same nations together; after some iteration, the capital of each government is an optimum point.

If some part of the fitness landscape is very rugged and some other part is very smooth, the performance of

the hill-valley procedure will diminish. Furthermore, to improve the diversity within each nation, the distance

to policy, which plays the mutation role, should be chosen adaptively [42]. The roaming technique is another

algorithm for solving MMO using subpopulation evolution. After the division of the search space, the best

individuals in each subpopulation are detected, and the stability measure (the likeness to the optima point) of

them is calculated. If the stability measure is larger than the stability threshold (individual is 1-stable), the

considered chromosome is added to the archive as a candidate optima point; for a stability measure larger than

the roaming subpopulation, the algorithm switches to another part of the search space using a high mutation

rate. Besides using the external population, the algorithm suffers from the drawback that if the number of

optima is very high or all of them have the same fitness, e.g., in Schaffer’s, Sheckel’s, and Roots’s functions,

emigration of roaming subpopulations to another point of the search space will not help increase the diversity

of the algorithm.
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2.2. Methodology of the proposed algorithm

The proposed method aims at finding all the global/local optima in multimodal problems with an acceptable

compromise between exploration and exploitation of obtained solutions, minimum running time (function

evaluations) of the algorithm, and considerable scalability with a low number of setting parameters. To this

end, keeping the original genetic algorithm methodology and operators, we have made use of the concept of the

discrete derivative of the fitness function instead of using hybrid or combinational AI methods.

Figure 1 shows the pseudocode of the proposed algorithm. First, the genotypic search space is divided

into some Np equal partitions. Since we do not have any prior information about the number of optima and

fitness function variation, the number of partitions is considered as a parameter of the algorithm, independent

of the dimension of the fitness function or the number of optima. This partitioning of the genotype search space

divides the fitness function with some simple curves, assuming that each optimum is located within only one

partition. Thereafter, a random population chromosome is created within each partition with the size of the

population being 5 to 20; all chromosomes within each partition are evolved by a simple GA with the same

crossover selection operators and probability; and then the elite solutions of each partition are extracted. Figure

2 shows the distribution of the solutions over the fitness function after first iteration. As seen from the Figure

2, some of the solutions are located near actual optima and some at the highest border of the partition with

better fitness. To eliminate these solutions, the first-order discrete derivative of the fitness function is calculated

using Eq. (1) where ε is the gradient threshold, n is candidate optimum, and n – 1 and n + 1 are the previous

and next closest chromosomes within the accuracy level. The absolute gradient of the fitness function near the

actual optima is approximately zero, whereas the gradient of the solutions located at the border of the partitions

is considerably high. Therefore, solutions except for those between partition c and d and within the partition

g in Figure 2 all have a gradient larger than ε and are removed. To increase the exploration and exploitation

of the algorithm, two policies are adopted.

∇f(n) ∼= min {|f(n+ 1)− f(n)| , |f(n)− f(n− 1)|} ≤ ε (1)

1) After the first iteration, if the solution gradient is higher than the adjusted threshold gradient, no

population is created within those partitions. Hence, the algorithm focuses on the partitions including

the actual optima.

2) If two optima are located within the same partition, the number of partitions should be increased. In

this case, two optima are too similar and hence their hamming distance in two consecutive iterations is

smaller than the partition’s length. Therefore, the number of partitions will be increased so that all the

conditions are satisfied. The hamming distance is defined only for strings of the same length and denotes

the number of places in which two strings have different characters.

According to the proposed method, the population size within each partition, GA operators such as

crossover and selection, gradient threshold, and crossover probability will be kept constant across generations.

The algorithm does not require a large population, an external population to save elite solutions, or any previous

information on the fitness function and it has no parameter to be set. Therefore, the search space of the GA is

limited to each partition. Note that the population size within each partition is small and hence in all iterations

the mutation rate is set to zero.
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Input   : Np- number of partition  for sub genetic algorithms to run 

: PopSize- populations size for each partitions 

: Nite- maximum number of iterations 

: Ngen- maximum number of generations 

: Pc- crossover probability 

: ε - gradient threshold 

Output: the set of all optima 

  Partition the genotype space to Np partition (P1,P2,…,PNp)

For each iteration from 1 to Nite

{

For each partition from P1 to PNp 

{

Initialize a population with the size of PopSize and each individual containing L binary genes. 

Execute a simple GA for Ngen generation with the crossover probability of Pc. Save the current 

evolved population in an array. 

Calculate the gradient of the elite individual for the current partition, and save it into the current 

population, and remove extra individuals in the border and extra partitions. 

Calculate the hamming distance of the elite individual for current partition into the current 

population and create a new partition if necessary. 

}

}

Calculate the MPR, execution time, number of function evaluation and standard deviation. 

Figure 1. The pseudocode of the proposed algorithm.
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Figure 2. A schematic illustration of the solutions’ distribution over the fitness function after the first iteration. All the

solutions located at the border of two partitions will be removed according to the gradient condition of the algorithm.
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3. Evaluation of the proposed algorithm

Here we evaluate the performance of the proposed algorithm after introducing 10 well-known benchmark

functions [43]. After applying the proposed algorithm, 4 standard performance metrics of the obtained results

were calculated. The numerical findings have been compared with other similar related works.

3.1. Test functions

To test and analyze the proposed method, we consider a set of unconstrained multimodal benchmark functions

with different characteristics. Table 1 shows the multimodal test functions, their initial intervals, and the

number of global/local optima for maximization problem. Some of these functions have symmetric landscapes

or equal optima (e.g., F1, F5, F9), some have unequal optima (e.g., F2, F3) with a varying optima distribution

over the landscape (e.g., F4, F7, F10), and some functions have both rigid and very smooth fitness landscapes

(e.g., F4, F7, F9). Figure 3 shows the 1-dimensional (1D) plot of F3−5 and 2-dimensional (2D) surface plot

of F8−10 . The specifications and characteristics of the considered test functions are briefly reviewed here. F1

(Deb’s function), which has 5 equal peaks, is defined over the interval [0, 1]. F2 (Deb’s function), defined over

[0, 1], has 1 global maximum and 4 local maxima. F3 (Beasley’s function), defined over [0, 1], has 5 decreasing

optima. F4 (1D decreasing Shekel function) has 5 peaks (1 global and 4 local maxima) with different widths and

sharpnesses. Traditional niche methods such as sharing and crowding could not solve this problem and their

parameters (niche radius and cluster distance) need to be chosen very adaptively [44]. F5 has 9 uneven optima

with different heights and spans over the interval [0, 1]. F6 (1D Shekel with 4 variables) is the 1D version of the

Shekel function, dramatically fluctuating so that all optima are spread unevenly through the fitness landscape.

F7 (Michalewicz) has a single global maximum, 1 global maximum, and an infinite number of local maxima

located at the orthogonal lines. Traditional niche methods have much difficulty in finding all the optima for

this function. F8 (six-hump camel back) is a 3D function with 2 global maxima, 2 stable local maxima, and 2

unstable local maxima being symmetric about the origin. F9 (Ursem f3) is a symmetric 2D function with 15

optima located at either very smooth or very sharp regions. F10 (waves), an asymmetric function, has peaks

on boundary and flat hills. Some optimum regions are wide and vast, and some of them are malformed.

3.2. Performance measurements

As discussed earlier, the final aim of the MMO is to find all optima in the search space with acceptable diversity

and convergence speed. To analyze the performance of the proposed algorithm, 4 criteria are used to measure

the performance of the algorithm, including:

1) Success rate (SR), the percentage of independent runs for which all obtained solutions are located near

local/global optima. That is, the success rate is the percentage of runs with their solutions located at an

acceptable distance (the level of accuracy) of the actual solutions.

2) Maximum peak ratio (MPR), the ratio of the obtained solutions’ summation to the actual solutions’

summation, is defined as in Eq. (2) [36], where q is the number of the actual optima, and fi and Fi are

the fitness values of the obtained and actual optima within the final generation, respectively. The MPR

indicates the quality of the obtained results and does not give any information about the diversity of the

results.
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Figure 3. Illustrations of multimodal functions F3−5 and F8−10 in one and two dimensions. All functions have uneven

and asymmetric optima that spread in both rigid and very smooth fitness landscapes. According to Table 1, all objective

functions are plotted versus x and y parameters. a) Beasley’s function (F3), b) 1D decreasing Shekel function (F4),

c) uneven optima function (F5), d) 2D plot of six-hump camel back function (F8), e) 2D plot of Ursem f3 function (F9),

f) 2D plot of waves function (F10).
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Table 1. Test functions, initialization interval, and their number of global/local optima.

Name Test function Range Global/
local

F1 f1(x) = sin6 (5πx) 0 ≤ x ≤ 1 5/0

F2 f2(x) = exp
[
−2 log (2)×

(
x−0.1
0.8

)2]× sin6 (5πx) 0 ≤ x ≤ 1 1/4

F3 f3(x) = exp
[
−2 log (2)×

(
x−0.08
0.854

)2]× sin6
(
5π

(
x0.75 − 0.05

))
0 ≤ x ≤ 1 1/4

F4 f4(x) = (1− x)× sin4
(

5π
(1+x)4

)
0 ≤ x ≤ 1 1/4

F5 f5 (x) = ln(x) (sin (ex) + sin(3x)) 0 ≤ x ≤ 4 1/8

f6 (x) =
10∑
i=1

[
(x− ai)

T
(x− ai) + ci

]−1

where

F6

i aTi ci
1 4.0 4.0 4.0 4.0 0.1
2 1.0 1.0 1.0 1.0 0.2
3 8.0 8.0 8.0 8.0 0.2
4 6.0 6.0 6.0 6.0 0.4
5 3.0 7.0 3.0 7.0 0.4
6 2.0 9.0 2.0 9.0 0.6
7 5.0 5.0 3.0 3.0 0.3
8 8.0 1.0 8.0 1.0 0.7
9 6.0 2.0 6.0 2.0 0.5
10 7.0 3.6 7.0 3.6 0.5

0 ≤ x ≤ 10 1/7

F7 f7 (x, y) = sin (x) sin20
(

x2

π

)
+ sin (y) sin20

(
2y2

π

)
0 ≤ x, y ≤ π 1/many

F8 f8 (x, y) = −
[(

4− 2.1x2 + x4

3

)
x2 + xy +

(
−4 + 4y2

)
y2
] −1.9 ≤ x ≤ 1.9

−1.1 ≤ y ≤ 1.1
1/5

F9 f9 (x, y) = sin (2.2πx+ 0.5π) 2−|y|
2

3−|x|
2 + sin

(
0.5πy2 + 0.5π

) 2−|y|
2

2−|x|
2

−3 ≤ x ≤ 3
−2 ≤ y ≤ 2

2/14

F10 f10 (x, y) = (0.3x)
3 −

(
x2 − 4.5y2

)
xy − 4.7 cos

(
3x− y2 (2 + x)

)
sin

(2.5πx)

−0.9 ≤ x ≤ 1.2
−1.2 ≤ y ≤ 1.2

1/9

MPR =

q∑
i=1

fi

q∑
i=1

Fi

(2)

3) The chi-square like deviation (Pchi), a measure defined as in Eq. (3) [44], indicates the quality of the

obtained results’ distribution over the actual local/global values within the level of accuracy. A low Pchi

indicates that the obtained results tend to be very close to real optima. Obviously, Pchi is reduced over

generations. In Eq. (3), µi and σi are the mean and standard deviation of n i solutions, respectively,

over the accuracy level of the ith optima in the last iteration, and q is the number of the actual optima.

Pchi =

√
q+1∑
i=1

(
ni−µi

σi

)2

σi =

√
1
N

q+1∑
i=1

(ni − µi)
2

(3)
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4) The box plot, a nonparametric graphical method to display differences within a data set without making

any assumptions about the statistical distribution. It summarizes the degree of data dispersion with five

numbers: the minimum and maximum of data, the lower and upper quartile, and the median of the data.

That is, the box plot of the last generation’s solutions show how close the median number is to the actual

optima and how other obtained results are distributed around the median number within the accuracy

level.

4. Experiments and results

The simulation was implemented using the Microsoft Visual C# compiler in a computer with Intel Core 2 Duo

CPU running at 2.0 GHz with 2 GB of RAM and a Vista Home premium operating system. Table 2 shows

the dimension of the objective function, population size within each partition, number of generations, level of

accuracy, gradient threshold, and number of partitions for each objective function. As explained earlier, the

number of partitions is a parameter of the algorithm. To prevent losing any optima, a high number of partitions

was selected; that is, it was chosen to be respectively 10 and 20 for 1D and 2D objective functions. The crossover

operator was chosen to be roulette wheel selection, and the crossover probability and chromosome length were

respectively set to 0.9 and 20 for all functions. The algorithm was run 50 times (iteration) for each test function,

and the best fitted optimal solutions were obtained.

Table 2. The population size within each partition, number of generations, level of accuracy, gradient threshold, and

partition number for each objective function.

Function Dimension
Population Number of Level of Gradient Initial partition
size generation accuracy threshold (ε) count

F1 2D 5 5 0.000001 0.001 10
F2 2D 5 5 0.00001 0.001 10
F3 2D 10 20 0.00001 0.001 10
F4 2D 10 20 0.00001 0.001 10
F5 2D 10 20 0.05 0.001 10
F6 2D 5 5 0.00005 0.001 10
F7 3D 10 10 0.05 0.05 20
F8 3D 5 5 0.005 0.05 20
F9 3D 10 10 0.005 0.05 20
F10 3D 10 20 0.05 0.05 20

4.1. Success rate and MPR

Table 3 presents the execution time, the success rate, and the MPR of the obtained results within the accuracy

level and number of function evaluations. For more challenging problems (F7 and F9), although the MPR is

relatively low, the value of the SR is significantly near 1.00. This happens because both functions have sharp

and smooth peaks simultaneously. This problem could be solved more efficiently if the gradient threshold were

varied adaptively in each optimum point. As seen from Table 3, the proposed algorithm not only achieves all

the global/local maxima with a good performance in terms of success rate and MPR (more efficient) but can

also balance between the number of function evaluations and execution time (more effective).

Figures 4 and 5 give a clearer view of the performance of the proposed algorithm. Figure 4 shows the

distribution of the obtained solutions over the fitness landscape of F1–F6, and Figure 5 shows the contour plot
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Figure 4. Snapshots of the results distribution over the fitness landscape of F1–F6 in the last iteration for 50 runs.

Horizontal axis (x) shows the genotypic value of optima points. a) Deb’s function (F1), b) Deb’s function (F2),

c) Beasley’s function (F3), d) 1D decreasing Shekel function (F4), e) uneven optima function (F5), f) 1D Shekel function

with 4 variables (F6).
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Table 3. The execution time, success rate, maximum peak ratio, standard deviation, P chi , and number of function

evaluations for 50 runs.

Function
Time (s) SR MPR

Standard
Pchi NFEs

number deviation
F1 0.12 1.00 1.00 0.00120 4.82 470
F2 0.14 1.00 0.9998 0.0099 4.63 470
F3 2.38 0.98 0.9967 0.0051 6.1 10,300
F4 3.17 0.98 0.9950 0.0065 6.14 21,400
F5 5.10 1.00 0.9879 0.0132 5.86 35,375
F6 0.35 1.00 0.9995 0.0374 4.46 1100
F7 4.54 0.98 0.9493 0.0282 8.31 24,640
F8 1.33 1.00 0.9940 0.0271 9.86 7080
F9 4.52 1.00 0.9560 0.0212 7.10 24,640
F10 11.52 0.98 0.9875 0.1265 8.33 66,000

of the solution distribution for F8 and F9; as seen, the proposed algorithm has properly located all the local

and global optima.
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Figure 5. Snapshots of the results’ distribution over the counter plot landscape of F8 and F9 in the last iteration for

50 runs. Horizontal and vertical axes (x, y) show the genotypic value of optima points, whereas the color of counter plot

lines represents the height of the optima points. a) Counter plot of six-hump camel back function (F8), b) counter plot

of Ursem f3 function (F9).

4.2. Standard deviation and Pchi

Besides the success rate and the MPR, the standard deviation and Pchi of optima found are also among the

most important criteria to show the quality of the results’ distribution. The value of the standard deviation is

dependent on the accuracy level; indeed, with a very low accuracy level, we can reduce the standard deviation.

The numerical simulations show that the population size within each partition does not have any significant
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Table 4. Comparisons results with differential evolution, PSO niching, and its related algorithms.

Function This work
FER- SPSO- R3PSO- R3PSO-

MSPO
Crowding

PSO-LS LS LS LHC DE-STL

F1
SR 1.00 1.00 1.00 1.00 0.992 1.00 0.846
MPR 1.00 0.999 0.999 0.999 0.999 - -

F2
SR 1.00 0.24 1.00 0.04 0.16 1.00 -
MPR 0.9998 0.5229 1.00 0.3498 0.6299 - -

F3
SR 0.993 0.00 0.00 0.00 0.00 1.00 1.00
MPR 0.9967 0.288 0.288 0.4411 0.8718 - -

F8
SR 1.00 0.76 0.52 0.64 0.72 - -
MPR 0.9940 1.00 0.38 1.00 1.00 - -

Table 5. Success rate comparison results with other numerical optimization algorithms.

Test function This work BMPGA MPGA DNC MNGA Clearing
F5 SR 1.00 1.00 1.00 1.00 1.00 0.967
F8 SR 1.00 0.933 0.733 0.033 0.067 0.067
F10 SR 0.98 1.00 0.933 0.067 0.964 1.00

impact on the performance of the algorithm. Table 3 shows the execution time, the standard deviation of the

obtained results within the accuracy level, and Pchi . The high value of the standard deviation in F10 is because

of its irregular behavior and infinite local optima. F5 also has the same situation, as some of the optima are

located at sharp regions and some at smooth regions.

4.3. Box plot

As mentioned, the box plot provides a revealing summary of the data distribution around actual optima. Figure

6 shows the distribution of solutions around the actual optima in the box plot format for F1–F6 . The horizontal

lines within the boxes show the median, while the upper and lower ends of the boxes are the upper and lower

quartiles. The dashed appendages illustrate the spread and shape of the distribution, and the dots represent

the outlying values. Clearly, the length between the lower and upper quartiles is very small, and the median

number is very close to the actual optima. The boxes of the same functions are not comparatively tall or short

with respect to each other. This shows that within the considered accuracy level, the distribution of obtained

results around actual optima is relatively uniform.

4.4. Effect of different partition counts and gradient threshold

In this section, we compare the performance of the proposed algorithm with different partition counts and

different gradient thresholds (ε) on the F5 and F8 functions. As discussed in Section 3.1, the optima points of

F5 are different in width and sharpness and some optima points of F8 are unstable. Therefore, their performance

is very sensitive to good tuning of partition counts and gradient threshold. We perform the experiments using

partition count values of 5, 10, 15, 20, 25, and 30, whereas other algorithm parameters values are in accordance

with Table 2. Figures 7a–7d show the obtained results of the SR, MPR, Pchi , and time execution of algorithm for

the F5 and F8 functions with varying partition counts. From Figures 7b and 7d, as expected, as the partition

counts are increased, time execution of the algorithm is increased significantly, whereas the distribution of

obtained results around actual optima does not decrease. According to performance-increasing policies that
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Figure 6. Box plots of results achieved by 50 runs for F1–F6 functions. The box has lines at the lower quartile, median,

and upper quartile values. The whiskers extending to the most extreme data points not considered outliers. Outliers

(denoted by +) are data with values beyond 100 units of interquartile range. a) Box plots of results for Deb’s functions

(F1), b) box plots of results for Deb’s function (F2), c) box plots of results for Beasley’s function (F3), d) box plots of

results for 1D decreasing Shekel function (F4), e) box plots of results for uneven optima function (F5), f) box plots for

1D Shekel function with 4 variables (F6).
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were introduced in Section 2.2, notice that after a certain number for partition counts (10 for F5 and 20 for

F8), SR and MPR get significantly closer to 1.00. In other words, the proposed algorithm is relatively robust

against the population count varying.
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Figure 7. The comparisons of success rate (SR), maximum peak ratio (MPR), P chi , and execution time values for

F5 and F8 functions when partition counts are varying for 50 runs. Horizontal axis represents the partition counts

values. a) SR of F5 and F8 functions with varying partition counts value, b) MPR of F5 and F8 functions with varying

partition counts value, c) Pchi of F5 and F8 functions with varying partition counts value, d) execution time of F5 and

F8 functions with varying partition counts value.

To examine the influence of the gradient threshold, ε , we conduct a series of experiments, again using

the F5 and F8 functions, in which we set the value of ε to 1E-04, 1E-03, 1E-02, 5E-02, and 1E-01 and record

the SR, MPR, Pchi , and time execution of the algorithm whereas other algorithm parameters values are in

accordance with Table 2. Figures 8a–8d show the obtained results of the SR, MPR, Pchi , and time execution

of algorithm for the F5 and F8 functions with varying gradient thresholds. It is obvious that when the gradient

threshold decreases, the computational effort of the algorithm for finding the actual optima within considered

accuracy level is increased. It causes the execution time of the algorithm to grow significantly. From Figure 8d,

as the gradient threshold is increased, time execution of the algorithm increases significantly while Pchi , SR,

and MPR changes are not considerable. In other words, for better performance, a good compromise between ε

and time execution is necessary. From Figure 8, we notice that the best final results for ε are 1E-03 and 5E-02

for the F5 and F8 functions, respectively.
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Figure 8. The comparisons of success rate (SR), maximum peak ratio (MPR), P chi , and execution time values for F5

and F8 functions when gradient threshold varies for 50 runs. Horizontal axis represents the value of gradient threshold.

a) SR of F5 and F8 functions with varying gradient threshold value, b) MPR of F5 and F8 functions with varying

gradient threshold value, c) Pchi of F5 and F8 functions with varying gradient threshold gradient value, d) execution

time of F5 and F8 functions with varying gradient threshold value.

4.5. Comparison with other niching algorithms

The proposed algorithm is compared with a number of well-known multimodal methods:

1. FER-PSO-LS [43]: fitness Euclidian distance ratio PSO with local search

2. SPSO [43]: speciation-based PSO with local search

3. R3PSO-LS [43]: PSO with ring topology and local search

4. R3PSO-LHC [43]: PSO with ring topology and local search and hill climbing

5. MSPO [30]: adaptive local search with PSO

6. Crowding DE-STL [45]: crowding differential evolution using spatial and temporal locality

7. DE/isolated /1 [46]: differential evolution based on the selection isolated vector

8. BMPGA [41]: biobjective multipopulation genetic algorithm

9. MPGA [41]: multipopulation genetic algorithm

10. MNGA [41]: multinational GA

11. DNC [41]: dynamic niche clustering

12. Clearing methods [41]
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In Tables 4 and 5 the SR and MPR of different multimodal algorithms are compared. Algorithms 1–4

are executed on a computer with Intel Pentium 4 CPU, 2.50 GHz, and 2 GB of memory with 25 runs and a

maximum of 10,000 NFEs using MATLAB 7.1. Algorithm 5 is executed with 30 runs and a maximum of 30,000

NFEs. Algorithm 6 is implemented on the EC4 framework using Sun’s Java programming language with 50

runs and a maximum of 10,000 NFEs, and the results of Algorithm 7 is obtained with 100 runs. Algorithms

8–12 are implemented on a computer with Intel Xeon 2.66 GHz with 512 KB of cache and 512 MB DDR RAM,

running the Red Hat Linux 8.0.3.2-7 platform with 30 runs and more than 100,000 NFEs. The dashes in Table

4 indicate that the corresponding results are not available from the literature. In contrast to other well-known

algorithms (especially PSO niching methods and related algorithms), the proposed method performed better in

terms of accuracy (success rate and MPR).

5. Conclusion

Here a novel population-based evolutionary algorithm for multimodal function optimization was put forward.

The algorithm partitioned the genotypic search space so that each would be ideally associated with a peak of

the fitness function. Within each partition, a simple GA with a small population was evolved. To increase the

efficiency and speed of the algorithm, the first-order discrete derivative of elite solutions was used to remove

extra solutions, particularly those located on the border of two partitions. If the derivative of the fitness function

is larger than a specified value (the gradient threshold), there are no optima within the considered partition,

and consequently no population is created within this region after the first iteration. Therefore, the number of

partitions is optimized. Except for the adjusted gradient threshold, the proposed algorithm does not need the

niche radius or any prior knowledge about the objective function and many parameters settings. The proposed

algorithm was experimentally tested with a difficult test suite consisting of 10 benchmark multimodal function

optimizations. Considering 4 performance measures, the performance of the proposed algorithm was calculated

and compared against existing well-known algorithms. The experimental results show that the proposed method

is very efficient and superior in accuracy and number of function evaluations when compared to existing well-

known algorithms.

For future work, it is straightforward to determine the number of clusters with mathematical methods

such as multivariate statistical methods or other intelligent methods such as self-organizing neural networks.

Another interesting research work is to combine the proposed method with local search methods or other

evolutionary algorithms such as differential evolution. It would also be interesting to use the gradient threshold

adaptively or examine the performance of the proposed algorithm with other criteria such as the Mann–Whitney

U test and the two-sample Kolmogorov–Smirnov test.
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