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Abstract: High-performance electrical drives can be achieved by using field-oriented controllers, which make torque

and flux naturally decoupled. A conventional vector-controlled drive has the disadvantage of either requiring flux and

speed sensors or being affected by rotor resistance, which varies along with the motor performance. The presented paper

focuses on developing a high-performance sensorless rotor flux-oriented controller of an induction machine independent of

the rotor resistance variation. This method applies spectral theory of Walsh functions, which are one of the most helpful

members of piecewise constant basis functions in solving dynamic models. Inherent characteristics of Walsh functions

and application of an operational matrix will make the system handy and robust against inverter switching effects.

Key words: Induction machine, vector control, parameter estimation, position control, sensorless control, spectral

analysis, Walsh series

1. Introduction

Decoupling control of electromagnetic torque and flux is a desirable achievement in advanced control drives of

induction machines. The amplitude and the position of the rotor flux phasor are two important variables that

have to be simultaneously observed in rotor flux-oriented control (RFOC) [1]. Since the rotor flux vector varies,

a high-performance electrical drive should consist of an online rotor flux observer and rotor speed estimators.

As air gap flux in induction machines includes several phasor space harmonics, shaft-mounted sensors in direct

control of RFOC drives have lower reliability along with extra expenses. Hence, sensorless vector control has

been getting more attention among researchers as a mature technology.

Several field-oriented induction motor drive methods without rotational transducers have been proposed

[2]. In [3], the authors proposed a fuzzy controller, which was applied in direct torque neuro-fuzzy control of an

induction motor, taking advantage of a time-variant PI controller. The disadvantage of these methods is that

the rotor resistance variation causes an error in rotor flux observation and they need the motor speed sensor [4].

Different approaches to rotor resistance estimation have been analyzed in some papers. Some methods

analyze estimation of rotor resistance based on model reference adaptive systems. In these methods, an error

signal detects variation effects of the time constant in a rotor circuit, which can be realized by using a rotor flux

computer [4] or torque signal [5]. This method is very sensitive to motor parameters’ variation, which results in

low performance [6]. On the other hand, the process of estimation can be done by sampling input and output

signals. Using sliding mode control [7] and Kalman filters [8] in the estimation process are some examples to be
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named. Because of noisy signals in the systems, these methods are unreliable and they also lose performance if

used for nonlinear models of the systems.

Different works have evaluated methods of rotor speed estimation. In [9,10], the MRAS method was

applied to estimate the rotor speed. Moreover, the rotor speed in an induction machine drive was given as

an unknown constant value and an extended Kalman filter was applied in the estimation process [11,12]. The

authors of [13] applied the least square method to find out the estimated value of the rotor speed where the

best fits interpolated measured signals of an induction machine with dynamic equations.

On the other hand, Walsh functions can be applied in order to study differential equations and dynamic

systems efficiently [14,15]. Walsh functions are one of the piecewise constant basis functions [16], which

can be applied in problem solving, e.g., optimization control, parameter identification, image processing,

communication, and harmonic elimination [17–19]. Walsh functions simplify the solution of nonlinear equations

while their piecewise properties decrease noise effects in the ultimate answer. In order to simplify and speed up

the solving process, an operational matrix can be used [20].

This paper presents a new online vector control scheme for induction motors that observes the rotor

flux orientation directly from machine equations without the need for rotor resistance knowledge. This method

applies stator current and voltage as input signals and thereafter estimates motor speed and observes the rotor

flux orientation. This process takes place in the Walsh domain with the help of operational matrices, since the

motor is analyzed at high speed in time intervals instead of taking samples. Individual characteristics of the

applied method diminish noise effects. In the end, as a pseudoinverse method is applied, the response gets more

reliable and precise.

2. Vector control in induction machines

In order to apply the system under control based on identifying needed parameters, the first essential step is

to have a simple and proper model of each involved component. In this section, an appropriate model for an

induction machine in different reference frames is defined.

3. Model of induction machines in arbitrary reference frame

This subsection elaborates the model of an induction machine in an arbitrary reference frame that rotates

at angular speed of ωe(α − β frame). In this arbitrary reference frame (Figure 1), the direct and quadratic

components of the stator and the rotor voltage equations of an induction machine can be stated as follows [1].

vsα = Rsisα + ψ̇sα − ωeψsβ

vsβ = Rsisβ + ψ̇sβ + ωeψsα
(1)

0 = Rrirα + ψ̇rα − (ωe − ωr)ψrβ

0 = Rrirα + ψ̇rβ + (ωe − ωr)ψrα
(2)

Here, vsα andvsβ are real and imaginary components of the stator voltage, and irα ,irβ ,isα , and isβ are

two components of the rotor and stator currents, respectively. These components are shown in Figure 1. In

Eq. (2), Rr and Rs are respectively the resistance for the rotor and stator and ψrα , ψrβ , ψsα , and ψsβ are

respectively two components of the rotor and stator fluxes, which can be determined as follows.
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Figure 1. Different reference frames in an induction machine.

ψsα = Llsisα + Lm(isα + irα)

ψsβ = Llsisβ + Lm(isβ + irβ)
(3)

ψrα = Llrirα + Lm(isα + irα)

ψrβ = Llrirβ + Lm(isβ + irβ)
(4)

Here, Llr ,Lls , and Lm are the leakage inductances of the rotor and stator coils and the mutual inductance

between stator and rotor coils per unit, respectively. Eqs. (1) and (2) describe two-phase modeling of the stator

and rotor voltage equations in an arbitrary reference frame. Having a squirrel cage rotor causes the components

of the rotor voltage to be zero since the rotor voltage equations take the form of Eq. (2). Eqs. (1) through (4)

are illustrated in real and imaginary parts, which are very useful for designing the controller and estimation

algorithm of the induction machines.

Simultaneous positions of reference frames are shown in Figure 1, where i⃗s , i⃗sg , and i⃗sψr are the space

phasor of the stator current in the stationary, arbitrary, and rotor flux reference frames; ρ is the angle between

the stationary and rotor flux reference frames; and i⃗r , i⃗rg , and i⃗rψr are the space phasors of the rotor current

in the stationary, arbitrary, and rotor flux reference frames, respectively.

It can be inferred from Figure 1 that the rotor frame is ahead of the stator frame by an angle of θr ,

mentioning the stator frame as the stationary reference frame, which is defined as the beginner. In these

equations, the rotor frame rotates at an angular speed of ωr , which can be introduced by the electromechanical

equation for an induction machine as follows.

θ̇r = ωr (5)

Jω̇r +Bωr = P (Te − TL) (6)
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Here, P and Tl are the number of paired poles and load torque, and Te is the electromagnetic torque in an

induction machine, which can be determined as follows.

Te = 3P
2 Lm (irαisβ − isαirβ)

= 3P
2
Lm

Lr
ψ⃗rg × i⃗sg

(7)

Here, ψ⃗rg is the vector of the rotor flux in the arbitrary reference frame.

4. Rotor flux-oriented control

The vector form of the variables can be substituted into Eq. (2) to determine a space phasor of the rotor voltage

relation of an induction machine as follows.

0 = Rr⃗irψr +
˙⃗
ψrψr + j (ωψr − ωr) ψ⃗rψr (8)

Here, ψ⃗rψr is the space phasor of the rotor flux in the rotor-flux reference frame. Combining Eqs. (3) and (4),

the space phasor of the rotor flux in the rotor flux reference frame can be obtained by the following.

ψ⃗rψr = Llr⃗irψr + Lm(⃗isψr + i⃗rψr) (9)

Because the rotor flux reference frame is aligned with rotor flux, ψ⃗r is real and we can write the following.

ψ⃗rψr =
∣∣∣ψ⃗rψr∣∣∣ = ψrψr (10)

By combining Eqs. (8) and (9) to (10) and resolving the result into real and imaginary components, the modulus

and angular speed of the rotor flux space phasor can be obtained as follows.

Trψ̇rψr + ψrψr = Lmisx (11)

ωψr = ωr +
Lmisy
Trψrψr

(12)

Here, Tr is the time constant of the rotor circuit, which is as follows.

Tr =
Lr
Rr

(13)

The simultaneous position of the rotor flux (ρ) can be determined by using the angular speed of the rotor flux

(ωψr) in Eq. (12) as follows.

ρ̇ = ωψr (14)

Mentioning Eq. (11), the recommended signal for the direct component of the stator current ( îsx) in the steady

state can be calculated from the following.

îsx =
ψrc
Lm

(15)
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Here, ψrc is the out signal of the flux controller. The quadratic component of the stator current (̂isy) for

producing torque reference (Tref ) in the rotor flux frame can be obtained from Eq. (7) as follows.

îsy =
2

3P

LrTref
Lmψrψr

(16)

As Figure 2 shows, the rotor flux-oriented control can be performed by applying Eqs. (15) and (16).

Figure 2. Rotor flux-oriented control of an induction machine.

5. Rotor flux observation and speed estimation

Here the observation and estimation processes will be investigated in the stator reference frame (d− q) where

ωe in Eq. (1) will be substituted with zero. First the manner of calculating components of the rotor flux vector

using the stator and rotor components will be studied; applying produced components, this method estimates

the unknown rotor speed. Using each two components of Eq. (1) and then integrating them, we will have the

following.

ψsd =

∫
t

lim
0

(vsd −Rsisd) dt+ ψsd(0) (17)

ψsq =

∫
t

lim
0

(vsq −Rsisq) dt+ ψsq(0) (18)

Here, ψsd(0) and ψsq(0) are two initial values of the stator flux in the stationary reference frame. Real

components of the stator and rotor fluxes (ψsd and ψsq) can be determined by the following.

ψsd = Llsisd + Lm(isd + ird) (19)

ψrd = Llrird + Lm(isd + ird) (20)

By eliminating ird in Eqs. (19) and (20), we have the following.

ψsd = L
′

sisd − ψrd (21)
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Here, L
′

s is the transient inductance of the induction machine, which can be obtained by the following.

L′
s = Lls +

LlrLm
Llr + Lm

(22)

By substituting Eq. (21) into Eq. (17), we can get the following.

ψrd =

∫
t

lim
0

(vsd −Rsisd) dt+ ψsd(0)− L′
sisd (23)

Similarly, by eliminating irq from the relations between imaginary components of the stator and rotor fluxes

(ψsq and ψrq) and substituting results into Eq. (18), we can write the following.

ψrq =

∫
t

lim
0

(vsq −Rsisq) dt+ ψsq(0)− L′
sisq (24)

Based on Eqs. (23) and (24), we can estimate the real and imaginary components of the rotor flux vector in

the stationary reference frame ( ψ̂rd and ψ̂rq). Thus, regarding Figure 1, the quantity and position of the rotor

flux in the stationary reference frame can be obtained from the following.

ψ̂rψr =
√
ψ2
rd + ψ2

rq (25)

ρ̂ = tan−1

(
ψrd
ψrq

)
(26)

Eqs. (25) and (26) make the rotor flux vector a known value that can be used in order to compute the rotor

speed and position. Moreover, the simultaneous values of the rotor resistance and rotor speed can be estimated

by stator currents and voltages in the stationary reference frame. Therefore, by substituting ird from Eq. (20)

into the real component of Eq. (2) in the stationary reference frame, we can conclude the following.

Rr

∫
t

lim
0

(
Lm
Lr

isd −
1

Lr
ψrd

)
dt− ωr

∫
t

lim
0
ψrqdt = ψrd − ψrdi (27)

Similarly, by eliminating irq from the imaginary component in Eq. (2) in the stationary reference frame, we

have the following.

Rr

∫
t

lim
0

(
Lm
Lr

isq −
1

Lr
ψrq

)
dt+ ωr

∫
t

lim
0
ψrddt = ψrq − ψrqi (28)

The last presented equation can be restated in matrix form as:[
H11 H12

H21 H12

][
Rr

ωr

]
=

[
U1

U2

]
, (29)

in which we have the following.

H11 =
∫
limt

0

(
Lm

Lr
isd − 1

Lr
ψrd

)
dtH12 = −

∫
limt

0 ψrqdt

H21 =
∫
limt

0

(
Lm

Lr
isq − 1

Lr
ψrq

)
dtH22 =

∫
limt

0 ψrddt

U1 = ψrd − ψrdiU2 = ψrq − ψrqi

(30)
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In order to produce the optimal estimation out of Eq. (29), this paper applies the least square method [21],

which minimizes the estimation process error. As can be seen, the least square estimation values for R̂r and

ω̂r can be obtained from the following.

 R̂r

ω̂r

 =

[ H11 H12

H21 H22

]T [
H11 H12

H21 H22

]−1 [
H11 H12

H21 H22

]T [
U1

U2

]
(31)

Getting to estimation values from Eq. (31) requires us to solve integral equations; here we apply the Walsh

series to find algebraic relations for the estimation of rotor resistance and speed.

6. Estimating rotor resistance and speed by Walsh series

In this section, the properties in the Appendix will be applied in order to solve the dynamic equations used

in Eqs. (23), (24), and (31). As a result, the rotor speed and the rotor resistance values will be estimated

taking advantage of the Walsh series. First, assuming that the voltage and current of the stator are known

signals, transformation of the signals to the Walsh domain takes advantage of Eqs. (A.2), (A.3), and (A.4).

According to Eq. (A.3), it is necessary to get an integral of the signal over t ∈ [ts, tf ) in order to define its

Walsh coefficient in Eq. (A.4), where ts stands for the start time of each process interval and tf shows the end

of them. Based on the order of the Walsh series, each process interval can be divided into n subintervals. In

order to find the arrays of Eq. (A.4) the integral of the signal in each subinterval will be computed. Thereafter,

arrays attributed to each Walsh function can be obtained from the sum of all quantities, where the quantity will

be negative or positive based on the sign of that function in the mentioned subinterval. Finally, the definition

of real and imaginary components of signals with the Walsh series will be as follows.

vsd = cTvsdw(t) vsq = cTvsqw(t) (32)

isd = cTisdw(t) isq = cTisqw(t) (33)

Using the operational matrix in Eq. (A.8) and combining Eqs. (32) and (33) with Eqs. (23) and (24), the

Walsh coefficient vectors’ real and imaginary components of the stator flux can be obtained as follows.

cψ̂sd = ET (cvsd −Rscisd) + cψ̂sd0 (34)

cψ̂sq = ET (cvsq −Rscisq) + cψ̂sq0 (35)

Here, cψ̂sd and cψ̂sq are Walsh coefficient vectors for two components of the stator flux, and cψ̂sd0 and cψ̂sq0

are constant initial values of the stator flux components, which are zero for the starting conditions. With Eqs.

(23), (24), (34), and (35), the Walsh coefficient vectors for the two components of the rotor flux can be obtained

as follows.

cψ̂rd = ET (cvsd −Rscisd) + cψ̂sd0 − L′
scisd (36)

cψ̂rq = ET (cvsq −Rscisq) + cψ̂sq0 − L′
scisq (37)
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These relations can be used for determination of direct and quadrature components of the rotor flux in the

stationary reference frame on t ∈ [ts, tf ). Thus, at t = t−f , we have the following.

ψrd(t
−
f ) = cT

ψ̂rd
w(t−f ) (38)

ψrq(t
−
f ) = cT

ψ̂rq
w(t−f ) (39)

Here, t−f means approaching tf from below. By substituting Eqs. (38) and (39) into Eqs. (25) and (26), the

amplitude and position of the rotor flux can be obtained as follows.

ψ̂rψr =
(
cT
ψ̂rd

w(t−f )w
T (t−f )cψ̂rd + cT

ψ̂rq
w(t−f )w

T (t−f )cψ̂rq

) 1
2

(40)

ρ̂ = tan−1

(
cT
ψ̂rd

w(t−f )

cT
ψ̂rq

w(t−f )

)
(41)

The initial value for the first time interval is zero. The initial value for each interval is the ultimate value for
the last interval. Thereafter, having the above variables in the Walsh domain, the optimal estimation in Eq.

(31) can be obtained as:  R̂r

ω̂r

 =
(
ĤT Ĥ

)−1

ĤT û, (42)

in which we have the following.

Ĥ =
1

Lr

 ET
(
Lmcisd − cψ̂rd

)
−LrET cψ̂rq

LrE
T cψ̂rd ET

(
Lmcisq − cψ̂rq

)  (43)

û =

[
cψ̂rd − cψ̂rd0

cψ̂rq − cψ̂rq0

]
(44)

In this section, the estimation process was elaborated in the Walsh domain. Figure 3 shows the closed-loop

speed controlled for an induction machine where the rotor speed estimator is implemented from Eq. (42) by

Walsh functions. In order to have better insight about this process, the next section is allocated to a case study

on the estimation of the speed and resistance of the rotor.

7. Illustrative example

This section illustrates the estimation process on one time interval (∆t = 5 ms) and uses a 2-order Walsh

series (k = 2) in order to evaluate the method. In this section, the machine and controller parameters are as

introduced in Table 1.
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Figure 3. Rotor flux-oriented control of an induction machine in Walsh domain.

Table 1. Induction machine and controller parameters.

Parameter Symbol Quantity
Rated power Pn 1.1. kW
Rated line voltage PII 415 V
Rated current In 2.77 A
Rated speed P 1415 RPM
Poles Nn 4
Stator resistance Rs 6.03 Ω
Stator leakage inductance Lis 29.3 mH
Rotor leakage inductance Lir 29.3 mH
Magnetizing inductance Lin 489.3 mH
Moment of inertia J 0.0517 kgm2

Friction coefficient B 0
Speed proportional gain Kpw 0.3
Speed integral gain Kiw 4
Position proportional gain Kpθ 35
Position integral gain Kiθ 500
Flux proportional gain Kpf 1.7
Flux integral gain Kif 3.4
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Variation of the rotor resistance is given as follows.

Rr =


6.0850 t ≤ 0.1

4t+ 2.0850 0.1 ≤ t ≤ 0.2

8.5190 t ≥ 0.2

(45)

In this process, voltages and currents of the stator are known as input values. Hence, the Walsh coefficient

vectors of real and imaginary components of these signals are available. With this preface, the coefficient vectors

for each component of Eqs. (36) and (37) in milliwebers can be written as follows.

cψ̂rd
=

 0.1cvsd0 − 61.0cisd0 + 0.1cvsd1 − 0.3cisd1 + 1059.9cψ̂sd0

0

−0.1cvsd0 + 0.3cisd0 − 60.4cisd1

 (46)

cψ̂rq
=

 0.1c
vsq
0 − 61.0c

isq
0 + 0.1c

vsq
1 − 0.3c

isq
1 + 1059.9c

ψ̂sqi

0

−0.1cvsq0 + 0.3c
isq
0 − 60.4c

isq
1

 (47)

Substituting Eqs. (46) and (47) into Eqs. (43) and (44), we have the following.



0.9(cisd0 − cψ̂rd

1 )− 1.9cψ̂rd

0 + 0.4cisd1 −cψ̂rq

0 − 0.5c
ψ̂rq

1

−0.5cisd0 + cψ̂rd

0 0.5c
ψ̂rq

0

0.9(c
isq
0 − c

ψ̂rq

1 )− 1.9c
ψ̂rq

0 + 0.4c
isq
1 cψ̂rd

0 + 0.5cψ̂rd

1

−0.5c
isq
0 + c

ψ̂rq

0 −0.5cψ̂rd

0


 R̂r

ω̂r

 = 104



cψ̂rd

0 − cψ̂rd0

0

cψ̂rd

1

c
ψ̂rq

0 − c
ψ̂rq0

0

c
ψ̂rq

1


(48)

For an evaluation of the estimation method, the matrix relation in Eq. (48) will be extracted in t = 0.1 s. In

this moment, the Walsh coefficients of the voltages and currents of the stator in the induction machine are as

follows.

cvsd =

[
0

300

]
cvsq =

[
0

300

]
(49)

cisd =

[
1.9786

0.0095

]
cisq =

[
1.5466

0.0135

]
(50)

Initial values for the direct and quadrature fluxes in the stationary reference frame are as follows.

cψ̂rd0

0 = 0.86138 (51)

c
ψ̂rq0

0 = 0.61284 (52)
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Thereafter, by applying Eq. (48) to (52), we have the following.
−0.31291 0.570932

0.154233 −0.285547

−0.364699 −0.808202

0.179005 0.404087


 R̂r

ω̂r

 =


1.104950

−0.566727

−6.478690

3.219450

 (53)

With Eq. (42), the estimated values for the rotor resistance and speed can be determined as follows.

R̂r = 6.0850Ω (54)

ω̂r = 5.2706 rad/σ (55)

Continuing this process, we can find similar results for R̂r and ω̂r through time. Table 2 shows these estimated

values by different orders of Walsh functions.

Table 2. Estimated rotor resistance and speed by Walsh functions with different orders.

Time Rotor resistance Estimated rotor Rotor speed Estimated rotor

(s) Rr(Ω) Resistance R̂r(Ω) ωr (rad/s) Speed ωr (rad/s)
k = 2 k = 4 k = 2 k = 4 k = 2 k = 4

0.10 6.0850 6.0850 6.0850 5.0972 5.1115 5.2706 5.2763
0.12 6.5718 6.4478 6.4575 3.4820 3.4715 4.0230 4.0354
0.14 7.0586 6.9450 6.9374 1.2513 1.2482 1.8979 1.9057
0.16 7.5454 7.4252 7.4126 –0.9237 –0.9241 –0.4006 –0.3846
0.18 8.0322 7.9047 7.8949 –2.4916 –2.4914 –2.2088 –2.1882
0.20 8.5190 8.3948 8.3661 –3.1006 –3.1224 –3.2173 –3.2556

8. Simulation results

This section studies the system performance under different conditions. The machine used in these simulations

has parameters the same as those in Table 1. The reference value has been set as 0.1 rad for the desirable

position and 1 Wb has been taken as rated flux. For examining the efficiency of the system performance under

rotor resistance variation this value was set to 1.4 times its preliminary value. This increment started to take

part in 0.1 s with a ramp pattern of which the controller was completely unaware. In this study, the 4-order

Walsh series was applied and new estimated values were uploaded to controller in each 5 ms. By operating

the motor as seen in Figure 3, the controller started to estimate the rotor flux and took advantage of that in

order to estimate the rotor speed, which was used in estimation of the rotor position. These estimated values

helped the closed-loop controller in making the motor follow its references. Figure 4 shows the performance of

the system under unit and ramp changes of the reference value.

In Figure 4a, it can be seen that the motor has started to run with making its flux, which gets to the

rated value and sticks to it. It can be seen that under alteration of the reference value the quantity of the flux

will not change and the position of the rotor flux vector will be in charge of adaptation. Figure 4b illustrates the

mechanical output of the system under the mentioned variation of the reference. It shows that the motor varies

its speed in order to adjust itself with the new desirable position. Here, motor speed fluctuates and settles down

when the rotor has reached its position. These results verify the high performance of the proposed estimator in

control of induction machines.
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Figure 4. Closed-loop response of the sensorless vector control system with Walsh function estimator.

For a better understanding of estimation process, Figure 5 elaborates the process for speed and position

of the rotor flux and the rotor itself. The represented part occurs during the increment of the rotor resistance

value.

Figure 5. Real and estimated values.

Here, Walsh functions have been defined in time intervals of 100 µ s and the estimation process was done

in this period. Achieving the estimated values, these quantities were saved and used for the next 4.9 ms. This

means that needed values could be updated after each 5 ms. A higher order of Walsh series and smaller period

of processing time can be chosen based on the need for a more precise answer.

Figure 6. Two components of the stator voltages and currents.

6 shows the stator voltages and currents under switching mode. These patterns happen due to nonlinear

characteristics of induction machines. As can be seen, these signals with high harmonics are not considered a

big deal for the estimation process.
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9. Conclusions

The development of a high-performance sensorless RFOC of an induction machine that is insensitive to rotor

resistance variation has been addressed in this paper. This method needed the induction machine to be modeled

in the Walsh domain; hence, the evaluation process became simpler and sped up in respect to application of

the operational matrix. Applying the stator voltage and current as input values, the rotor flux space vector

was observed and used in order to estimate motor speed. Finally, the system applied the provided values to

produce the needed signals to feed the motor in order to adjust the position of the induction motor in the rotor

flux-oriented control. The validity of the proposed method was illustrated in some simulation results, which

showed the excellent performance of the system and its capability of reducing noise effects.
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Appendix. Walsh series.

Here Walsh functions will be introduced, which help us get an easier solution of dynamical equations. Walsh

functions are defined in the time interval of [0, 1) and take the form of an orthogonal set of rectangular functions,

and this characteristic diminishes the noise effect. There are different well-known types of ordering for Walsh

functions [22]. Figure A.1 shows the set of the first four Walsh functions arranged in Paley order.

Figure A.1. The first four Walsh functions.

The Walsh functions are orthogonal, and this characteristic explains the following.∫ 1

0

wm (t)wn (t) dt = δmn (A.1)

Here δmn is the Kronecker delta function. The Walsh functions can even be used on the time interval of

t ∈ [0, t). Mentioning x(t) as a square-integrable signal with smooth variation, it can be restated in the Walsh

domain by a finite Walsh series as follows.

x (t) ≈
∑ k−1

lim
n=0

cxnwn (t) = cTxw(t) (A.2)

Here, cxn is the Walsh coefficient of x(t), which can be obtained by orthogonality property as follows.

cxn =

∫ t

0

x (t)wn (t) dt, n = 0, 1, 2, . . . , k − 1 (A.3)

cx and w(t) in Eq. (A.2) are two column vectors, which are given as follows.

cx =
(
cx0 cx1 cx2 · · · cxk−1

)T
(A.4)

w (t) =
(
w0 (t) w1 (t) w2 (t) · · · wk−1 (t)

)T
(A.5)

1
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For square-integrable x(t) and y(t) on the time interval of t ∈ [0, t), cx and cy are their Walsh coefficient

vectors, respectively, and then we have the following.

x (t)± y (t) ≈ (cx ± cy)
Tw(t) (A.6)

The effect of the integration function on the Walsh series on the time interval of t ∈ [0, t) can be written as

follows. ∫ t

0

w(τ)dτ ≈ Ew(t) (A.7)

Here, the operational matrix of E is a k× k well-defined numerical matrix that can be defined as follows [22].

E =
t

k



1
2

1
4

1
8 0

−1
4 0 0 1

8

−1
8 0 0 0

0 − 1
8 0 0

· · ·

...
. . .

1
2k I k

2

1
2k I k

2
0 k

2


(A.8)

Here, I k
2
and 0 k

2
are two k/2× k/2 squared-identity and zero matrices. Combining Eqs. (A.2) and (A.7), the

integral of x(t) can be converted into an algebraic relation as follows.

∫ t

0

x (τ) dτ = cTx

(∫ t

0

w(τ)dτ

)
≈ cTxEw (t) (A.9)
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