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Abstract: Although the support vector machine (SVM) algorithm has a high generalization property for classifying

unseen examples after the training phase and a small loss value, the algorithm is not suitable for real-life classification

and regression problems. SVMs cannot solve hundreds of thousands of examples in a training dataset. In previous studies

on distributed machine-learning algorithms, the SVM was trained in a costly and preconfigured computer environment.

In this research, we present a MapReduce-based distributed parallel SVM training algorithm for binary classification

problems. This work shows how to distribute optimization problems over cloud computing systems with the MapReduce

technique. In the second step of this work, we used statistical learning theory to find the predictive hypothesis that would

minimize the empirical risks from hypothesis spaces that were created with the Reduce function of MapReduce. The

results of this research are important for the training of big datasets for SVM algorithm-based classification problems.

We provided the iterative training of the split dataset with the MapReduce technique; the accuracy of the classifier

function will converge to global optimal classifier function accuracy in finite iteration size. The algorithm performance

was measured on samples from letter recognition and pen-based recognition of a handwritten digits dataset.
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1. Introduction

Most machine-learning algorithms have problems with the computational complexity of the training phase of

large-scale learning datasets. Applications of classification algorithms for large-scale datasets are computa-

tionally expensive to process. The computation time and storage space of the support vector machine (SVM)

algorithm are largely determined by the large-scale kernel matrix [1]. Computational complexity and compu-

tation time are always a limiting factor for machine learning in practice. In order to overcome this complexity

problem, researchers have developed the techniques of feature selection, feature extraction, and distributed

computing.

Feature selection methods are used for machine-learning model construction with a reduced number of

features. Feature selection is a basic approach for reducing feature vector size [2]. A new combination of feature

subsets is obtained with various algorithms, such as information gain [3], correlation-based feature selection [4],

Gini index [5], and t-statistics. Feature selection methods solve 2 main problems. The first solution is reducing

the number of feature sets in the training set to effectively use computing resources, such as memory and CPU;

the second solution is to remove noisy features from the dataset in order to improve the classification algorithm

performance [6].
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Feature extraction methods are used to remove the curse of dimensionality, which refers to the problems

resulting from increase in dimensionality. In this approach, high-dimensional feature space is transformed into

low-dimensional feature space. There are several feature extraction algorithms, such as principal component

analysis (PCA) [7], singular value decomposition (SVD) [8], and independent component analysis (ICA) [9].

The last solution for overcoming the large amount of memory and computation power requirements for

training large-scale datasets is chunking or distributed computing [10]. Graf et al. [11] proposed the cascade

SVM to overcome very large-scale classification problems. With this method, the dataset is split into n parts in

feature space. The nonsupport vectors of each subdataset are filtered, and only the support vectors (SVs) are

transmitted. The margin optimization process only uses combined subdatasets to find out the SVs. Collobert

et al. [12] proposed a new parallel SVM training and classification algorithm, where each subset of a dataset

is trained with SVM, and then the classifiers are combined into a final single classifier function. Lu et al.

[13] proposed a strongly connected network-based distributed SVM algorithm. In this method, the dataset

is split into k roughly equal parts for each computer in a network. Then SVs are exchanged among these

computers. Ruping et al. [14] proposed a novel incremental learning method with the SVM algorithm. Syed et

al. [15] proposed another incremental learning method. In this method, a fusion center collects all SVs from

the distributed computers. Caragea et al. [16] used the previous method. In this algorithm, the fusion center

iteratively sends the SVs back to the computers. Sun et al. [17] proposed a novel method for parallelized SVM

based on the MapReduce technique. This method is based on the cascade SVM model. Their approach is

based on the iterative MapReduce model Twister, which is different from our implementation of Hadoop-based

MapReduce. Their method is the same as the cascade SVM model. They only use the SVs of a subdataset to

find an optimal classifier function. Another difference from our approach is that they apply feature selection

with the correlation coefficient method for reducing the number of features in the datasets before training the

SVM to improve the training time.

In our previous research [18], we developed a novel approach for MapReduce-based SVM training for

binary classification problems. We used several UCI datasets to show the generalization property of our

algorithm.

In this paper, we propose a novel approach and formal analysis of the models that are generated with

the MapReduce-based binary SVM training method. We distribute the whole training dataset over the data

nodes of the cloud computing system. At each node, the subset of the training dataset is used for training

in order to discover a binary classifier function. The algorithm collects SVs from every node in the cloud

computing system and then merges all the SVs to be saved as global SVs. Our algorithm is analyzed with

letter recognition [19] and pen-based recognition of handwritten digits [20] dataset with Hadoop streaming,

using the mrjob Python library. Our algorithm is built on the LibSVM and is implemented using the Hadoop

implementation of MapReduce.

The structure of this article is as follows. In the next section, we will provide an overview of SVM

formulations. In Section 3, we will present the MapReduce pattern in detail. Section 4 explains the system

model with our implementation of the MapReduce pattern for SVM training. In Section 5, the convergence of

our algorithm is explained. In Section 6, the simulation results with letter recognition and pen-based recognition

of handwritten digit datasets are shown. Finally, we will make concluding remarks in Section 7.
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ÇATAK and BALABAN/Turk J Elec Eng & Comp Sci

2. Support vector machine

In the machine-learning field, SVM is a supervised learning algorithm for classification and regression problems

depending of the type of output. SVM uses statistical learning theory to maximize the generalization property

of the generated classifier model. SVM prevents overfitting of the training dataset. Statistical learning theory

generalizes the quality of fitting the training data (empirical error). Empirical risk is R = 1
n

∑n
i=1 l(fθ (xi) ,yi),

which is the average loss l of the chosen estimator over the training set (xiyi)} . SVM uses a set of training

data and predicts, for each given input, one of 2 possible classes −1, 1} . As shown in Figure 1, the hyperplane

is defined by wTx+ b = 0, where w ∈Rn is orthogonal to the hyperplane and b ∈Rn is the bias. Giving some

training data D , a set of point of the form
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Figure 1. Classification of an SVM with maximum-margin hyperplane trained with samples from 2 classes.

D = {(xi, yi) |xi ∈ Rm, yi ∈ {−1, 1}}ni=1 (1)

where xi is an m-dimensional real vector and yi is the class of input vector xi , either –1 or 1. SVMs aim to

search a hyperplane that maximizes the margin between the 2 classes of samples in D with the smallest empirical

risk [22]. For the generalization property of SVM, 2 parallel hyperplanes are defined, such that wTx+ b = 1

and wTx+ b = −1. One can simplify these 2 functions into a new one:

yi
(
wTxi + b

)
≥ 1 (2)

The SVM aims to maximize the distance between these 2 hyperplanes. One can calculate the distance between

them with 1
∥w∥ . The training of the SVM for the nonseparable case is solved using the quadratic optimization

problem that is shown in Eq. (3).

minimize : P (w, b, ξ) =
1

2
∥w∥2 + C

m∑
i=1

ξi

subject to : yi ((⟨w, ϕ(xi)⟩+b)≥ 1−ξi (3)

ξi ≥ 0
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for i = 1, ...,m , where ξi are slack variables and C is the cost variable of each slack. C is a control

parameter for the margin maximization and empirical risk minimization. The decision function of SVM is

f(x) =wT ϕ(x) + b , where w and b are calculated by the optimization problem P in Eq. (3). Using Lagrange

multipliers, the optimization problem P in Eq. (3) can be expressed as:

min : F (α) =
1

2
αTQαT − αT1

subject to : 0 ≤ α ≤ C (4)

yTα = 0

where [Q]ij = yi yj ϕ
T (xi)ϕ(xj) is the Lagrangian multiplier variable. It is not necessary to know function ϕ ,

although it is necessary to know how to compute the modified inner product, which will be referred to as the

kernel function, represented as K(xixj) =ϕT (xi)ϕ(xj). Thus, [Q]ij = yiyjK(xi, xj) [23].

3. MapReduce model

MapReduce is a programming model, derived from the map, which reduces function combination from functional

programming. The MapReduce model is widely used to run parallel applications for large-scale dataset

processing. MapReduce uses the key/value pair data type in Map and Reduce functions [24]. An overview

of the MapReduce system is shown in Figure 2.

Figure 2. Overview of the MapReduce system.

The MapReduce pattern is divided into 2 functions, Map and Reduce. These 2 functions are separated

by a shuffle step of the intermediate key/value data. The MapReduce framework executes these functions in a

parallel manner over any number of computers [25]. Simply put, a MapReduce job executes 3 basic operations

on a dataset distributed across many shared-nothing cluster nodes. The first task is a Map function that

processes each node in parallel without transferring any data to the other nodes. In the next operation, the

data processed by the Map function is repartitioned across all nodes of the cluster. Lastly, the Reduce task is

executed in parallel by each node with partitioned data.

A file in the distributed file system (DFS) is split into multiple chunks, and each chunk is stored in

different data nodes. The input of a Map function is a key/value pair from the input chunks of the dataset,

which creates an output in the list of key/value pairs:

map (key1,value1)⇒ list(key2value2).
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The Reduce function takes a key value, and this value is listed as input. Then it generates a list of new values

as output:

reduce (key2, list (value2))⇒ list(value3) .

4. System model

The cloud computing-based binary class SVM algorithm works as follows. The training set of the algorithm is

split into subsets. Each node within a cloud computing system classifies the subdataset locally via the SVM

algorithm and gets α values (i.e. SVs), and then passes the calculated SVs to the global SVs to merge them. In

the Map stage of the MapReduce job, the subset of the training set is combined with global SVs. In the Reduce

step, the merged subset of training data is evaluated. The resulting new SVs are combined with the global SVs

in the Reduce step. The algorithm can be explained as follows. First, each node in a cloud computing system

reads the global SVs set, and then it merges it with the subsets of the local training dataset and classifies them

using the SVM algorithm. Finally, all the computed SVs set in cloud nodes are merged. Thus, the algorithm

saves the global SV set with new ones. Our algorithm consists of the following steps (our terminology is shown

in Table 1).

Table 1. The notation used in our work.

Notation Description
t Iteration number
L Number of computers (or MapReduce function size)
ht Best hypothesis at iteration t
Dl Subdataset at computer l
SVl Support vectors at computer l
SVGlobal Global support vector

1. At initialization, the global support vector is set as t = 0, SV t = ∅

2. t = t + 1

3. For any computer in ll = 1, ..., L reads the global SVs and merges them with the subset of the training

data

4. Train SVM algorithm with merged new dataset

5. Find out support vectors

6. After all computers in the cloud system complete their training phase, merge all calculated SVs and save

the result to the global SVs

7. If ht = ht−1 , stop; otherwise go to Step 2

Algorithm 1. Map function of binary SVM algorithm.

SVGlobal = ∅ // Empty global support vector set
while ht ̸= ht−1

for l ∈ L do // For each subset loop
Dt

l ← Dt
l ∪ SV t

Global
end for

end while
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Algorithm 2. Reduce function of binary SVM algorithm.

while ht ̸=ht−1do
for l∈L

// Train merged dataset to obtain support
// Vectors and binary class hypothesis

SVlh
t←binarySvm(Dl)

end for
for l∈L

SVGlobal ← SVGlobal ∪ SVl
end for

end while

The pseudocodes of our algorithm’s Map and Reduce functions are given in Algorithms 1 and 2.

For training SVM classifier functions, we used LibSVM with various kernels. Appropriate parameters

C and γ values were found by cross-validation test. We used the 10-fold cross-validation method. The entire

system was implemented with Hadoop and streaming Python package mrjob library.

5. Convergence of the algorithm with statistical learning theory

Let S denote a subset of training dataset D . F (S) is the optimal classifier function over dataset S , h∗ is

the global optimal hypothesis that has a minimal empirical risk Remp(h) over dataset D , and YS is the vector

space of all possible outputs over subdataset S . Our algorithm’s aim is to find a classifier function f : X → Y

such that f (x) ∼ y . Let H be the hypothesis space of functions f : X → Y . Our algorithm starts with

SV 0
Global = ∅ and generates a nonincreasing sequence of a positive set of vectors SV t

Global , where SV t
Global is

the vector of the SV at the tth iteration. We used hinge loss for testing our models trained with our algorithm.

Hinge loss is effective in SVM as a classifier, since the more the margin is violated, the higher the penalty is

[26]. The hinge loss function is the following:

l (f (x) , y) = max {0, 1− y.f(x)}yi (5)

Empirical risk can be computed with an approximation:

Remp (h) =
1

n

∑n

i=1
(l (h (xi) , yi)) (6)

According to the empirical risk minimization principle, the binary class learning algorithm should choose a

hypothesis ĥ in hypothesis space H , which minimizes the empirical risk:

ĥ = arg Remp(h) (7)

A hypothesis is found in every cloud node. Let X be a subset of training data at cloud node i , where

X ∈Rmxn , SV t
Global is the vector of the support vector at the tth iteration, and ht,i is the hypothesis at node

i with iteration t .

The algorithm’s stop point is reached when the hypothesis’s empirical risk is the same as the previous

iteration. That is:

Remp

(
ht
)
= Remp

(
ht−1

)
(8)

begin{lemma} The accuracy of the classifier function of our algorithm at iteration t is always greater than or

equal to the maximum accuracy of the classifier function at iteration t− 1. That is:

Remp

(
ht
)
≤ argRemp (h) (9)
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Proof Without loss of generality, the iterated MapReduce binary class SVM monotonically converges to an

optimum classifier:

SV t
Global = SV t−1

Global ∪ {SV
t−1
i | i = 1, ...n }, (10)

where n is the dataset split size (or cloud node size). Then the training set for SVM algorithm at node i is

d = X ∪ SV t
Global (11)

Adding more samples cannot decrease the optimal value. The generalization accuracy of the subproblem in

each node monotonically increases in each iteration step.

6. Simulation results

Our experimental datasets consist of real handwriting data. The first dataset, a pen-based recognition of a

handwriting digit dataset [20], contains 250 samples from 44 different writers. All input features are numerical.

The classification feature of the dataset is in the range of 0 to 9. The second dataset is a letter recognition

dataset that contains capital letters in 20 different fonts.

Linear kernels were used with optimal parameters (C, γ). Parameters were estimated with the cross-

validation method. In our experiments, datasets were randomly partitioned into 10 subdatasets of approximately

equally sized parts. We ensured that all subdatasets were balanced and that the classes were uniformly

distributed. We fit the classifier function with 90% of the original dataset. Then, using this classifier function,

we predicted the class of the 10% remaining test dataset. The cross-validation process was repeated 10 times,

with each part used once as a test sample. We added the errors of all 10 parts to calculate the overall error.

6.1. Computation time comparison between SVM and MapReduce-based SVM

In our experiments, we compared the single-node SVM-training algorithm to the MapReduce-based SVM

training algorithm. We used the single-node training model as the baseline to find the speedup. The calculation

of the speedup is computation time with MapReduce divided by the single-node training model computation

time. We show the different node size computation results in Tables 2 and 3.

Table 2. Letter recognition dataset SVM training speedup using MapReduce with different node size.

Number of MapReduce job Speedup

1 1.00

2 3.39

4 4.45

6 4.76

8 5.97

10 6.42

The speedups in both data sets range from 6× to 7× . The speedup shown in the tables is the average

of 50 runs.

6.2. Results with MapReduce-based SVM

Figure 3 shows the average accuracy of the test error for each dataset. The figure shows the improvement in

MapReduce-based SVM at each iteration and stability on large datasets. Figure 4 shows the average number

869
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of SVs for each dataset. The figure shows the stability of the number of SVs with MapReduce-based SVM at

each iteration.

Table 3. Pen-based recognition of handwriting digit dataset SVM training speedup using MapReduce with different

node sizes.

Number of MapReduce job Speedup

1 1.00

2 2.72

4 4.39

6 4.56

8 6.46

10 7.78
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Figure 3. Hinge loss values over iterations with 2 datasets.
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Figure 4. Support vector sizes over iterations with 2 datasets.

To analyze our algorithm, we randomly distributed all the training data to a cloud computing system with

10 computers and pseudo-distributed Hadoop. We developed a Python script for the distributed SVM algorithm
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with scikit, SciPy, NumPy, mrjob, Matplotlib, and LibSVM. Dataset prediction accuracies with iterations are

shown in Tables 4 and 5.

Table 4. Average, maximum, and minimum values of hinge loss for the pen-based recognition of handwriting digit

dataset with 10-fold cross-validation.

Iteration no. Loss (µ) Loss (µ+σ) Loss (µ−σ)
1 0.02550 0.03605 0.01736

2 0.00961 0.01602 0.00401

3 0.00801 0.01335 0.00267

4 0.00694 0.01335 0.00134

5 0.00681 0.01335 0.00134

6 0.00654 0.01335 0.00134

7 0.00654 0.01335 0.00134

8 0.00641 0.01335 0.00134

9 0.00641 0.01335 0.00134

10 0.00641 0.01335 0.00134

Table 5. Average, maximum, and minimum values of hinge loss for the letter recognition dataset with 10-fold cross-

validation.

Iteration no. Loss (µ) Loss (µ+σ) Loss (µ−σ)
1 0.00925 0.01201 0.00600

2 0.00045 0.00150 0.00000

3 0.00005 0.00050 0.00000

4 0.00005 0.00050 0.00000

5 0.00005 0.00050 0.00000

6 0.00005 0.00050 0.00000

7 0.00005 0.00050 0.00000

8 0.00005 0.00050 0.00000

9 0.00005 0.00050 0.00000

10 0.00005 0.00050 0.00000

The total number of SVs is shown in Table 6. When iteration size becomes 5, the test accuracy values of

all datasets reach their highest values, i.e. the smallest value of the hinge loss of empirical error. If the iteration

size increases, the value of the test accuracy falls into a steady state. The value of the test accuracy does not

change with a large enough number of iteration sizes.

7. Conclusion

In this article, we proposed a new MapReduce-based distributed and parallel binary class SVM classification

implementation in cloud computing systems with a MapReduce model. We showed the generalization property

of our algorithm with the 10-fold cross-validation method. The results of the empirical analyses show that our

algorithm reaches a steady state condition in approximately 5 iterations. Our research differs from the previous

distributed or parallel works in 2 main ways. First, we used full datasets for training the SVM algorithm.
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Second, we used binary class classification to obtain a classifier function using the structural risk minimization

property of statistical learning theory. Our approach is simple to implement in other development environments

such as Java, MATLAB, etc.

Table 6. Average SV size for pen-based recognition of handwriting digit and letter recognition dataset with 10-fold

cross-validation.

Iteration no. Pen digit Letter recognition

1 1068.7 186.9

2 2147.6 314.9

3 2837.7 418.2

4 2981.1 487.6

5 3003.8 520.4

6 2995.8 541.0

7 2996.7 550.1

8 2996.5 553.8

9 2997.5 556.9

10 3001.0 558.2

At present, the term ‘big data’ is used quite frequently. Most datasets used in machine learning fields,

such as human genomes, social networks, and complex physics simulation, can be classified as big data. The

results of this research are important for the training of big datasets for SVM algorithm-based classification

problems. In our future work, we plan to use this algorithm in multiclass classification problems with an iterative

approach of MapReduce with Twister.
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