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Abstract: A finite difference time domain algorithm on a wavefront-ray grid (WRG-FDTD) is proposed in this study

to reduce numerical dispersion of conventional FDTD methods. A FDTD algorithm conforming to a wavefront-ray grid

can be useful to take into account anisotropy effects of numerical grids since it features directional energy flow along the

rays. An explicit and second-order accurate WRG-FDTD algorithm is provided in generalized curvilinear coordinates

for an inhomogeneous isotropic medium. Numerical simulations for a vertical electrical dipole have been conducted

to demonstrate the benefits of the proposed method. Results have been compared with those of the spherical FDTD

algorithm and it is showed that numerical grid anisotropy can be reduced highly by WRG-FDTD.
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1. Introduction

The conventional finite difference time domain (FDTD) algorithm proposed by Yee [1] has been the milestone

to solve time-dependent Maxwell’s curl equations directly on numerical space grids with time updates. It is an

explicit, second-order accurate algorithm in time and space. Since then, extensions of this algorithm to various

gridding structures, reduction of numerical dispersion, and mitigation of stability condition have been done

continuously [2].

As for gridding of the medium and scattering objects, the conventional FDTD has been restricted to

rectangular grids and has some problems in modeling the curved surfaces/boundaries of objects accurately. A

general remedy has been to apply a staircasing method to the curved surfaces with very fine grids to have

better representation and accurate results. However, decreasing the cell size does not always give predictable

improvements and one may need subpixel smoothing schemes further to minimize errors [3], which requires

modification of the real boundary conditions and use of an anisotropic technique. In 1983, Holland [4], based

on the work of Stratton [5], developed a FDTD algorithm for generalized curvilinear coordinates. Fusco and

Fusco et al. [6,7] revisited and extended Holland’s formulation. Generalization of this approach assuming local

curvilinear coordinates for cell faces was achieved by Lee et al. [8]. In this respect, a number of alternate

FDTD methods have also been proposed, such as the contour path FDTD [9], discrete surface integral FDTD

[10], and nonorthogonal FDTD [11], in generalized curvilinear coordinates by using conformal meshes instead

of staircasing for curved surfaces.

Discretization of partial differential equations and gridding inherently causes numerical dispersion, which
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makes any FDTD method difficult to apply to large-scale and phase-sensitive problems. The above methods

pay attention to reducing numerical dispersion in some respects but not generating a specific grid for dispersion.

In this paper, rather than proposing a new FDTD method for curved surfaces/boundaries, a conformal FDTD

algorithm that conforms to the wavefront-ray grid (WRG-FDTD) is proposed for wave propagation. We claim

that the wavefront-ray grid will reduce numerical dispersion by taking into account directional energy propa-

gation. A simple, second-order accurate, explicit WRG-FDTD algorithm has been developed and simulations

have been conducted for an inhomogeneous isotropic medium for a vertical electrical dipole (VED).

2. FDTD numerical dispersion and grid structure

In all FDTD methods, the computational domain grid is generated either arbitrarily and/or conforming to the

curved surfaces of object. Although this grid generation is mathematically valid, the physical waves propagating

in the grid are ignorant of this grid structure, so they experience different numerical phase velocities and grid

anisotropy. Numerical dispersion inherent to FDTD mainly stems from these two unphysical errors. Dispersive

errors build up linearly with distance and establish the basic limitation to every grid-based Maxwell solver. To

mitigate this limitation, modifications to the conventional FDTD algorithm, such as centering the numerical

phase velocity or use of higher order spatial differences, led to new low dispersion algorithms including MRTD

by Krumpholz and Katehi [12], PSTD by Liu [13], the angle optimized algorithm by Wang and Teixeira [14], and

the higher order FDTD method by Zygridis and Tsiboukis [15]. Other low numerical dispersion and anisotropy

FDTD algorithms [16,17] have also been reported.

In a uniform Cartesian FDTD grid, the following 3D numerical dispersion relation (NDR) holds:
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where k∗ = k∗xx̂+k∗y ŷ+k∗z ẑ and υp are numerical wave number vector and phase velocity, respectively. Liu [18]

analyzed the conventional FDTD grid and alternative grids for numerical dispersion. Qualitatively speaking,

numerical dispersion errors can be reduced to any desired level by employing sufficiently fine gridding (∆x →0,

∆y →0, ∆z →0) and the theoretical ideal dispersion relation k = ω/υp is obtained. Numerical dispersion

can also be made optimal if the Courant–Friedrich–Levy stability number and direction of propagation are

chosen suitably (equality case of stability condition and diagonal propagation). However, for general 2D/3D

electromagnetic problems, all these have little practical use.

In generalized curvilinear coordinates, the NDR expression cannot be formulated neatly as in Eq. (1).

Navarro et al. [19] and Ray [20] studied the stability and numerical dispersion aspects of algorithms for

conformal grids. Numerical dispersion, which is studied with variations in numerical phase velocity ∆υphy

and grid anisotropy ∆υaniso , was also quantitatively discussed in [21] with nonorthogonal meshes only for

some uniform skewed cases. ∆υaniso is useful in quantifying wavefront distortion. Numerical waves in 2D/3D

grids exhibit nonphysical variation of phase velocity as a function of numerical wave vector k∗ . Thus, the grid

behaves like an anisotropic medium. The nature of gridding determines this anisotropy ∆υaniso in a manner that

is almost independent of time stepping ∆t . A suitable choice of time discretization can improve total numerical

dispersive error by reducing ∆υphy , but it cannot reduce the anisotropy ∆υaniso resulting from spatial gridding.

The proposed FDTD algorithm on a wavefront-ray grid structure has been put forward [22] to reduce

grid anisotropy ∆υaniso of FDTD numerical dispersion because this special grid structure, by its nature, is
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aligned with actual wave propagation vector (k = kxx̂+ ky ŷ + kz ẑ), which is in the direction of energy flow,

Poynting vector (E ×H). To the best of the authors’ knowledge, conformal gridding in this sense has not been

proposed before. Formulation and implementation of WRG-FDTD has been introduced and it is shown that

grid anisotropy ∆υaniso can be eliminated by WRG-FDTD.

3. WRG-FDTD formulation and implementation

The gist of the proposed method relies on the special grid structure and computations done on it [22]. Grids are

generated so that they lie on the wavefront surfaces and along the ray trajectories. Before starting computations,

the initial wavefront on which sources/fields are defined is meshed for desired resolution and accuracy. Moving

in the ray direction (E ×H) by an amount ∆t , which is determined by the stability condition, the new grid

points on the next wavefront are constructed. The grid generation procedure is continued in this way until the

entire grid is created in generalized curvilinear coordinates by using medium parameters (ε, µ).

u1

u3

u2

(i,j,k)

a
2

a
1

a
3

Figure 1. General curvilinear system and a typical cell.

Mathematically, the grid cell in the computational domain is approximated as a parallelepiped whose

sides are the basis vectors (a1, a2, a3). Reciprocal basis vectors (b1, b2, b3) are defined as:

b1 =
a2 × a3

V
, b2 =

a3 × a1
V

, b3 =
a1 × a2

V
. (2)

V = a1 · (a2 × a3) is the volume of the cell. The metric and inverse metric tensors also have the following

elements respectively:

gij = ai · aj , hij = bi · bj . (3)

(ai, aj) and (bi, bj) satisfy δij = ai · aj and δij = bi · bj where δij is the Kronecker delta. Any vector field

in generalized curvilinear coordinates can be written in terms of basis and reciprocal basis vectors [5]. For

example, electric field E can be expanded as:

E =
3∑

i=1

Ebiai =
3∑

i=1

Eaibi, (4)
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where Eai = E · ai, Ebi = E · bi are called covariant and contravariant components of E and can be written in

terms of each other as follows:

Eai =

3∑
j=1

gijEbj , Ebi =

3∑
j=1

hijEaj . (5)

With the above generalized curvilinear coordinates’ preliminary, discretization of Maxwell’s curl equations leads

to the following update equations in terms of covariant and contravariant components of E and H similar to

S-FDTD [23]. Note that these update equations are two-dimensional since the sample VED radiation problem

is symmetric around the ϕ-axis and can be treated as a 2D problem in θ and r variables.
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4. Sample problem and numerical studies

It is conjectured that the VED radiation problem in the isotropic, inhomogeneous medium shown in Figure 2

can be solved. For simulation, as an initial condition, an electric field is defined on an initial wavefront whose

radius r0 = 1m is centered at the origin. Inhomogeneity is introduced along the z -axis, and then the azimuth

ϕ -axis symmetry can still be utilized and all works can be done only on the yz -plane as a 2D problem. Medium

inhomogeneity is as follows:

εr(z) =

{
1elsewhere
1− (z + 10)/5z ≤ −10

. (7)

ε μ

ε μ

ε με

Figure 2. VED radiation problem.

Examples of grid generation along the rays are given in Figures 3 and 4, which illustrate ray trajectories

and wavefronts for coarse (minimum spatial spacing ≤ λmin/5 ) and fine gridding (minimum spatial spacing

≤ λmin/10).
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Figure 3. Rays for coarse and fine gridding.
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Figure 4. Wavefronts for coarse and fine gridding.

Analytical ray trajectories for given permittivity profile can be obtained by:

y(z) =

z∫
z0

adγ√
n2(γ)− a2

. (8)

Examples of analytical rays from Eq. (8) and numerical rays with launching angles (θ = 107◦ , 122◦ , 143◦ ,

162◦ , 170◦ ) starting on the initial wavefront and moving in the direction of energy flow as described in Section
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3 are depicted in Figure 5. They are in very close agreement (overlapped) even for coarse gridding; hence, we

can rely on generated grid points on the rays and our computations in this grid.
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Figure 5. Analytical and numerical ray trajectories for computational grid (coarse case).

For simulations, Gaussian excitation is assumed at the VED source. For the proposed WRG-FDTD for

the problem under consideration, computations have been performed based on update equations in Eq. (6)

and they yielded the following results for each ray (θ = 107◦ , 122◦ , 143◦ , 162◦ , 170◦ ) for both coarse

and fine grids (Figures 6–9). The S-FDTD of [23] is used for comparison with WRG-FDTD. The Eθ = Eth

component propagated along rays (Figure 5) into the inhomogeneous region is calculated. Note that S-FDTD

is expected to yield good results due to the problem of spherical geometry. However, it is still ignorant of the

nature of wave propagation. Hence, instead of S-FDTD, if rectangular FDTD were used, results would be worse.

WRG-FDTD performs much better than even S-FDTD. Waveform distortions (∆υaniso) due to phase errors

caused by numerical dispersion have almost been removed.
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Figure 6. S-FDTD for coarse grid. Figure 7. WRG-FDTD for coarse grid.
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Figure 8. S-FDTD for fine grid. Figure 9. WRG-FDTD for fine grid.

5. Conclusions

A FDTD algorithm (WRG-FDTD) whose computational grid conforms to wavefronts and rays in the medium

is presented in this paper to reduce numerical dispersion inherent to FDTD methods. A second-order accurate,

explicit, and simple formulation is provided in generalized curvilinear coordinates for an inhomogeneous,

isotropic medium. It takes into account directional energy flow along the rays and hence removes the anisotropy

∆υaniso of the conventional FDTD grid, even with S-FDTD ideal for VED problem geometry. Quantitatively

it is observed that the ∆υaniso effect on numerical dispersion is eliminated. Numerical wave modes on each

ray still experience the same type and amount of ∆υphy on numerical dispersion but no ∆υanisodirectional

dependence. The proposed WRG-FDTD is an explicit algorithm and its stability analysis in generalized

curvilinear coordinates has already been covered in [19,20]. As mentioned before, exact numerical dispersion

analysis in generalized curvilinear coordinates is not available yet but [21] tried to quantify it only for some

skewed angles.

Compared to conventional FDTD grids, the use of WRG-FDTD brings some complications in genera-

tion of high-fidelity grids because a unique grid (WRG) for each problem must be generated before starting

computations. However, WRG-FDTD appears very useful for eliminating ∆υanisoof numerical dispersion for

phase sensitive, high accuracy, electrically large problems. Luckily, very good grid generation software from ray

tracing is available today. Future studies will cover more complex electromagnetic problems such as reflection,

refraction, and possibly diffraction for single/multiple sources and scatterers.
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