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Abstract: In prediction-based reversible watermarking schemes, watermark bits are embedded in the prediction errors.

An accurate prediction results in smaller prediction errors, more efficient embedding, and less distortion for the water-

marked image. In this paper, an accurate prediction is made using artificial neural networks. Before the embedding

operation, 2 neural networks are trained by the pixel values of the image. Then the trained neural networks predict the

pixel values that are used in the embedding operation. Due to the training ability of the neural networks, the prediction

will be more accurate than the averaging technique. Experimental results show that the proposed scheme yields superior

results compared to several related schemes.

Key words: Reversible watermarking, prediction error expansion, difference expansion, histogram shifting, sorting,

artificial neural network

1. Introduction

Nowadays, most information in the world is in digital form. One of the most popular types of digital information

are digital images. Digital image watermarking embeds hidden data in the image, known as a watermark, for

various applications such as content authentication, copyright protection, and fingerprinting. The embedding

operation in watermarking techniques causes certain irreversible modifications in the original image that cannot

be removed; therefore, the receiver cannot access the original image before embedding. In sensitive fields, such as

military, medical, and astronomical applications, the receiver needs the original image without any changes [1].

Traditional watermarking methods cannot be used for these sensitive applications. Consequently, another kind

of watermarking known as reversible watermarking was introduced to solve this problem [1–35]. In reversible

watermarking schemes, after the watermark extraction, full recovery of the original image before embedding

is possible. So far, several reversible watermarking methods have been presented. Most existing methods

belong to three types: difference expansion [1,2,5,8,10,11,16–26], histogram-shifting [3,9,12,14,15,27,28], and

prediction-based methods [4,13,29–35]. Difference expansion was introduced by Tian [2]. In the difference

expansion method, the watermark bits are embedded by expanding the difference values between the pairs

of neighborhood pixels in the image. The histogram-shifting method was introduced by Ni et al . [3]. They

used the maximum and minimum points of the histogram for watermark embedding, and the lower bound of

the peak signal-to-noise ratio (PSNR) criterion value of the watermarked image versus the original image was

higher than 48.13 dB. The prediction-based methods used the prediction for reversible watermarking. One of

these methods, a reversible watermarking algorithm using sorting and prediction, was presented by Sachnev et

al . [4]. In Sachnev et al . ’s work, first the pixel values were predicted by averaging four pixel values in a rhombus
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pattern, and then the prediction errors were calculated. These errors were sorted by their local variance values.

Finally, watermark bits were embedded in sorted prediction errors with the histogram-shifting technique. When

embedding the watermark, if the prediction error value was small, the watermark bit was embedded in the

prediction error with the difference expansion technique. Otherwise, the embedding was not performed; only

a histogram shift was performed. It was proven that the rhombus pattern prediction scheme is more efficient

than the JPEG-LS used by Thodi and Rodriguez [5]. Prediction is a major step in prediction-based reversible

watermarking schemes, and an accurate prediction causes less distortion of the watermarked image. Since a

powerful prediction algorithm generates smaller prediction errors for embedding, finding a suitable prediction

method is an important task in prediction-based reversible watermarking schemes. In this paper, an intelligent

powerful prediction scheme is proposed. The paper uses artificial neural networks instead of averaging in a

rhombus pattern for prediction. Artificial neural networks simulate the human brain’s learning process and

hence they have high learning ability. After the training procedure, the neural networks can predict accurately.

The rest of this paper is structured as follows: Section 2 is a review of difference expansion, rhombus prediction

scheme, sorting technique, and artificial neural networks. Section 3 describes the proposed method, Section 4

presents the experimental results, and Section 5 concludes the paper.

2. An overview of related works

2.1. Difference expansion

One of the most popular methods in reversible watermarking is the difference expansion technique [2]. This

method is briefly described below.

Suppose x and y are two pixels of a gray-scale image. The difference and average values of these two

pixels can be calculated with Eq. (1).

l =

⌊
x+ y

2

⌋
; h = x− y (1)

The inverse of this transform is computed by Eq. (2).

x = l +

⌊
h+ 1

2

⌋
; y = l −

⌊
h

2

⌋
(2)

Given that the allowed range for x and y is [0,255] so as to avoid overflow, the difference value h should satisfy

Eq. (3).

0 ≤ l +

⌊
h+ 1

2

⌋
≤ 255 ; 0 ≤ l −

⌊
h

2

⌋
≤ 255 (3)

Hence, to avoid overflow and underflow, the difference value h must satisfy Eq. (4).

|h| ≤ min(2× (255− l), 2× l + 1) (4)

The embedding operation can only be performed for the expandable and changeable difference values. The

expandable difference value is defined by Eq. (5).

|2× h+ b| ≤ min(2(255− l), 2× l + 1) (5)
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The changeable difference value is defined by Eq. (6).∣∣∣∣2× ⌊
h

2

⌋
+ b

∣∣∣∣ ≤ min(2(255− l), 2× l + 1) (6)

2.2. Rhombus pattern prediction and sorting techniques

Sachnev et al . proposed a reversible watermarking based on the prediction and sorting technique [4]. In their

scheme, first, all pixels in the image are divided into 2 sets: crosses and dots. The pixels belonging to the dot

set are used to predict the pixels in the cross set and vice versa. In Sachnev et al . ’s work, a cell consists of five

pixels, namely a pixel in the center of the cell and four neighborhood pixels in four directions: up, down, left,

and right. First, a set of pixels belonging to the cross or dot set are predicted by another set, and then the

difference between the original value and the predicted value of the predicted pixels is calculated and referred

to as the prediction error. After computing the prediction errors, they are all arranged in ascending order based

on their local variance values. Finally, the watermark bits are embedded in the sorted prediction errors with the

histogram-shifting technique. In Sachnev et al . ’s work, half of the pixels are used to predict and the other half

are used for embedding the watermark bits. Hence, the maximum hiding capacity can be 0.5 bits per pixel (bpp).

To achieve higher levels of hiding capacity, the double-embedding scheme is used. Double-embedding consists

of two procedures: cross-embedding and dot-embedding. First, the cross-embedding procedure is performed.

In cross-embedding, the pixels belonging to the cross set are predicted by the pixels belonging to the dot set,

and embedding is performed in the prediction errors belonging to the cross set. Dot-embedding starts after

cross-embedding. The output of the cross-embedding procedure is the input for the dot-embedding procedure,

and the embedded pixels belonging to the cross set are used to predict the pixels in the dot set. The rest of

the watermark is embedded in the prediction errors belonging to the dot set. Maximum hiding capacity in

the double-embedding scheme can be 1 bpp. Cross and dot sets as well as the cells in cross-embedding and

dot-embedding procedures are shown in Figure 1. The cross-embedding procedure is as follows.

Figure 1. Cells in the cross- and dot-embedding procedures.

In cross-embedding, each pixel belonging to a cross set is predicted by four neighboring pixels belonging

to the dot set in the cell, as calculated by Eq. (7).

u′
i,j =

⌊
vi,j−1 + vi+1,j + vi,j+1 + vi−1,j

4

⌋
(7)
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ui,j is the pixel belonging to the cross set in the center of the cell. In Eq. (7), vi,j−1 , vi+1,j , vi,j+1 , and vi−1,j

are the neighboring pixels of ui,j belonging to the dot set. u′
i.j is the predicted value of pixel value ui,j . The

prediction error di,j is calculated by Eq. (8).

di,j = ui,j − u′
i,j (8)

The embedding procedure is performed by histogram shifting. In histogram shifting, two negative and positive

threshold values Tn and Tp are used. If the prediction error is small, bit bϵ {0, 1}is embedded by the difference

expansion in the prediction error; otherwise, only histogram shifting is performed and not embedding.

The difference between the expansion and histogram-shifting techniques used in the embedding procedure,

is computed by Eq. (9).

Di,j =

 2di,j + b if di,j ∈ [Tn, Tp]
di,j + Tp + 1 if di,j > Tp and Tp ≥ 0
di,j + Tn if di,j < Tn and Tn < 0

(9)

Here, Di,j is the prediction error after an expansion or shift. After data-embedding, the original pixel value

u i,j is changed to U i,j by Eq. (10).

Ui,j = Di,j + u′
i,j (10)

The extracting and recovery procedures are as follows.

The original values of the prediction errors di,j are restored by Eq. (11), and the embedded watermark

b is extracted by Eq. (12):

di,j =

 ⌊Di,j/2⌋ if Di,j ∈ [2Tn, 2Tp + 1]
Di,j − Tp − 1 if Di,j > 2Tp + 1 and Tp ≥ 0
Di,j − Tn if Di,j < 2Tn and Tn < 0

, (11)

and
b = Di,j mod 2, Di,j ∈ [2Tn, 2Tp + 1]. (12)

Finally, the original pixel values are recovered by Eq. (13).

ui,j = u′
i,j + di,j (13)

Sachnev et al . used a sorting technique to reduce the distortion of the watermarked image. Afterwards, the

prediction error values ??are calculated for the cells, and then the cells are sorted based on their local variance

values in ascending order. The embedding procedure is performed in the sorted cells. In fact, the sorting

procedure sorts the cells based on the degree of their smoothness. A small local variance value represents a

smooth cell. The sorting technique causes the embedding procedure to start from smoother cells in the image.

The local variance value µ i,j is computed from four neighboring pixels, νi,j−1 , νi+1,j , νi,j+1 , and νi−1,j , by

Eq. (14):

πi,j =
1

4

4∑
k=1

(∆νk −∆n̄uk)
2 (14)

where
∆ν1 = jνi,j−1 − νi−1,jj,∆ν2 = jνi−1,j − νi,j+1j,
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∆ν3 = jνi,j+1 − νi+1,jj,∆ν4 = jνi+1,j − νi,j−1j,

and
∆ν̄k = (∆ν1 +∆ν2 +∆ν3 +∆ν4)/4.

2.3. Artificial neural network

An artificial neural network simulates the human brain’s decision-making and learning processes. It is composed

of neurons that perform computing operations and try to simulate the human brain’s neural system. All neurons

are placed in three types of layers: input, hidden, and output. The backpropagation neural network is a

supervised neural network [36]. Figure 2 shows a backpropagation neural network. As shown in Figure 2, each

layer has one or more neurons. Each neuron is connected to the adjacent neurons in the neighboring layers.

Two neurons in neighboring layers are connected directly to create a connection. Each connection has a weight

that determines the degree of the correlation between the two neurons. The purpose of this network is training

by input samples and then an accurate prediction on similar inputs. In the backpropagation neural network,

the weights are updated by Eqs. (14) and (15):

wjk(new) = wjk(old) + αδkyj , (15)

and
vij(new) = vij(old) + αδjxi. (16)

In Eqs. (14) and (15), wjk is the weight between hidden and output layers, α is the learning rate, δk is the

error signal between hidden and output layers, and δj is the error signal between input and hidden layers. To

achieve an optimal artificial neural network structure, the number of layers and the number of neurons in each

layer should be determined. Choosing the number of neurons in the hidden layer is an important issue. A very

small number of neurons in the hidden layer results in weak learning, and too many neurons in the hidden layer

results in a complex neural network. Hence, the neural network stops at the local optimums in the training

procedure.

Figure 2. Backpropagation neural network.
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3. Proposed method

Choosing an appropriate prediction scheme is one of the most important tasks in reversible watermarking

methods. An accurate prediction generates small prediction errors. The watermark bits are embedded into

the prediction errors; therefore, small prediction errors improve the embedding performance and reduce the

distortion of the watermarked image. Sachnev et al . used the rhombus pattern prediction method [4]. In this

method, the value of each pixel in the center of a cell is predicted by averaging four neighboring pixels in the

cell. These four pixels are the adjacent pixels in four directions: up, down, left, and right.

In this paper, we also use the rhombus pattern method, although we use two artificial neural networks

to predict the pixel values instead of using the averaging technique. Both artificial neural networks used in

this paper include 4 neurons in the input layer and one neuron in the output layer. In the cross-embedding

procedure, the central cross pixel in each cell is considered as the output for the neural network, and the 4

neighboring dot pixels in each cell are considered as the inputs.

To have an optimal neural network structure, we must determine the number of layers and the number

of neurons in each layer. The number of neurons in input and output layers are four and one, respectively.

We tested several neural networks with different hidden layers and a different number of neurons in the hidden

layers to determine the appropriate neural network structure. We compared the accuracy of all neural networks,

and the number of neurons in the hidden layer is set to the number that gives maximum accuracy to the neural

network.

We tested the neural networks with one hidden layer where each network has 1–20 neurons, and the

network with 18 neurons had the highest accuracy. For two hidden layers, we tested the networks with 1–5

neurons in the hidden layers. The neural network with five neurons in each layer had the highest accuracy, as

a higher number of neurons needs more training time. The networks with more than two hidden layers require

a long training time.

Each pixel predicted by neural networks is a float number. Since the pixel values are integers, the value

predicted by the neural networks should be rounded. The comparison between two neural networks (first neural

network with one hidden layer and 18 neurons, and second network with two hidden layers and five neurons in

each layer) shows that there is no difference between them after rounding. This means that the predicted values

from these two neural network structures are the same, because there is such little difference in the decimal part

of the predicted values between these two neural networks that, after rounding, their predicted outputs will be

the same. Finally, we chose the network with one hidden layer and 18 neurons in the hidden layer.

In this paper we use the double-embedding technique. The double-embedding technique is composed

of cross-embedding and dot-embedding procedures; therefore, we need two neural networks for the embedding

procedure. The first is used in cross-embedding to predict the pixel values belonging to the cross set, and the

second is used in dot-embedding to predict the pixel values belonging to the dot set. Both are tested with a

different number of hidden layers and a different number of neurons in the hidden layers. For both the neural

networks, the number of neurons in the hidden layer is set to the number that gives maximum accuracy. We got

one hidden layer and 18 neurons in the hidden layer for both the neural networks. For this network, training

time is approximately 10 min. The architecture of both the neural networks used in this paper is shown in

Figure 3. The architecture of the other appropriate neural network is shown in Figure 4. If we need to train

the neural networks for the image, then we can embed different watermarks in the image with the saved trained

neural networks. Both neural networks are trained only in the embedding stage and the weight of the neural

network is adjusted. These data are used as side information in the extraction stage, and the trained neural

networks are used to predict the pixel values.
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Figure 3. The architecture of both neural networks. Figure 4. The architecture of another appropriate neural

network.

In our proposed method we use the double-embedding technique, which consists of cross-embedding and

dot-embedding procedures. The proposed cross-embedding and extracting procedures are described below.

3.1. Proposed embedding procedure

The proposed cross-embedding algorithm is as follows:

Find all the cells whose central pixel belongs to the cross set.

Predict the cross pixel in the center of each cell using the first neural network.

Compute the prediction errors di,j by Eq. (8).

Compute the local variance values for all cells by Eq. (14).

Sort the cells based on their local variance values.

Skip the first 34 cells of the sorted cells. The 34 least significant bits (LSBs) are collected as a port of

the watermark.

Determine threshold values Tn and Tp as presented by Sachnev et al . [4].

Embed the watermark according to the histogram shifting presented by Sachnev et al . [4].

The output of the cross-embedding procedure is the input of the dot-embedding procedure. In the dot-

embedding procedure, the embedded pixels belonging to the cross set are used to predict the pixels belonging

to the dot set. The dot-embedding procedure is similar to the cross-embedding procedure. The proposed

watermark-embedding procedure is shown in Figure 5.
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Divide

Figure 5. Proposed watermark-embedding procedure.

3.2. Proposed extracting and recovery procedures

The extracting and recovery procedures are inverse in the embedding procedure. The cross-extracting and

recovery procedures are as follows:

Find all the cells whose central pixel belongs to the cross set.

Predict the cross pixel in the center of each cell using the first neural network.

Compute the prediction errors di,j by Eq. (8).

Compute the local variance values for all cells by Eq. (14).

Sort the cells based on their local variance values.

Read the first 34 LSBs from the sorted cells and restore the values of Tn and Tp and the length of

watermark that is embedded in the image.

Skip the first 34 cells of the sorted cells.
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Extract the watermark as presented by Sachnev et al . [4].

Recover the original LSBs from the first 34 sorted prediction errors.

Restore the original pixel values ui,j with Eq. (13).

4. Experimental results

In this paper, we use two artificial neural networks for predicting pixel values in reversible watermarking. We

tested a different number of hidden layers and a different number of neurons in the hidden layers, and we selected

the architecture that produces maximum accuracy for the neural network. We obtained one hidden layer and

18 neurons in each hidden layer for both neural networks. In this paper, for the purpose of training the neural

networks, we used the error backpropagation method and the sigmoid function as the activation function. The

sigmoid function was computed by Eq. (17).

φ(x) =
1

1 + e−x
(17)

The initial weight values are defined randomly in the range of [–1, 1], and the learning rate α is equal to 0.15.

We stopped training neural networks using a threshold value equal to 0.001. Obviously, smaller threshold values

lead to increased training time and convergence of the neural network. Larger threshold values may reduce the

computational complexity and convergence time of the network but lead to poor predictions and an inefficient

embedding operation, resulting in smaller PSNR values. Our proposed method is compared to several methods

proposed by Sachnev et al . [4], Thodi and Rodriguez [5], Jung et al . [9], Al Qershi and Khoo [11], and other

methods [2,6–8,12–15]. The results are shown for four 512 × 512 eight-bit gray-scale test images: Lena, Baboon,

Barbara, and Airplane. These images are shown in Figure 6.

Figure 6. Four standard 512 × 512 gray-scale test images: (a) Lena, (b) Baboon, (c) Airplane, (d) Barbara.
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The PSNR criterion is used to evaluate the quality of the watermarked image. For a M × N gray-scale

image, the PSNR value is described by Eq. (18).

PSNR = 10× log
2552

MSE
10 (18)

The mean squared error (MSE) criterion in Eq. (18) is used to quantify the difference between the original and

the watermarked image. The MSE value is described by Eq. (19).

MSE =

N∑
i=1

M∑
j=1

(ci,j − si,j)
2

M ×N
(19)

In Eq. (19), c i,j and s i,j are the pixels of the original image and the watermarked image, respectively, whose

coordinates are (i,j).

In Figure 7, capacity-versus-distortion results are shown for four test images. Among the four experi-

mental images, the Airplane image is the smoothest image and the Baboon image has the maximum number

of edges. A smooth image makes an accurate prediction and has small prediction errors, and therefore it is

an efficient embedding procedure. For this reason, as shown in Figure 7, the Airplane image has maximum

efficiency and the Baboon image has minimum efficiency in the embedding procedure. In Figure 8, the effect

of the different threshold values in dB is shown in the quality of the embedded image. We compare the effect

of using different threshold values on PSNR values for threshold values Tn and Tp equal to [–1, 0], [–1, 1], [–3,

3], and [–8, 7]. The smaller threshold values resulted in larger PSNR values in the equal size of the embedded

watermark, and the larger threshold values resulted in minimum PSNR values.
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Figure 7. Quality-versus-capacity results for four test images.

In Table 1, we compare the values of the watermarked image quality by using the PSNR criterion between

our proposed method and many other methods [2,4–9,11–15] in some hiding capacities from 0.1 to 0.9 bpp for

the Lena image. As this table shows, our proposed scheme has higher PSNR values in all hiding capacities for

the Lena image. According to Figure 8, we used the appropriate threshold values to embed the watermark in

the image. In the embedding procedure, in order to embed payloads of less than 0.3 bpp, we used negative and

positive threshold values equal to –1 and 0, respectively. For embedding payloads between 0.3 and 0.4 bpp, we

used negative and positive threshold values equal to –1 and 1, respectively. For embedding payloads between 0.4
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and 0.7 bpp, we used negative and positive threshold values equal to –3 and 3, respectively, and for embedding

larger payloads, we used negative and positive threshold values equal to –8 and 7, respectively. Using these

appropriate threshold values makes for an efficient embedding procedure and results in higher PSNR values. In

Table 1, “-” means that the mentioned method cannot embed a watermark of that size in an image.

Table 1. PSNR comparison results for the proposed scheme and other methods for the Lena image in dB.

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 Payload (bpp)
32.1 33.2 34.4 35.4 36.8 39.5 41.8 43.4 46.2 Tian [2]
32.6 34.1 34.9 36 36.8 37.6 38.4 39.1 39.7 Thodi [5]
36.5 38.2 39.7 41.1 42.6 44.8 46.8 50.6 54 Sachnev [4]
- - 35 32.8 34.4 35.8 37.5 39.9 43.5 Celik [6]
- - - - 36.8 38.2 40.1 41.9 44.8 Yang [7]
- - - 37.3 37.9 38.8 40.3 42.6 45.3 Hsiao [8]
- 32 33.1 35 36.8 38.9 40.9 43.7 47.1 Jung [9]
- - - - 42.8 43.9 45.6 47.3 51.8 Al-Qershi [11]
- 34.7 36.7 38.9 41.3 43.4 46.5 - - Luo [12]
34.4 36.1 37.6 38.9 40.7 42.1 44.2 48.4 51.6 Hu [13]
- - 33 35.1 36.9 40.3 43.2 47.1 - Tai [14]
32.6 34.1 35.5 37.6 39.9 42.2 45 48.4 - Tsai [15]
37.9 39.5 40.7 41.8 43.4 45.7 47.4 51 54.5 Proposed
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Figure 8. Effect of using different threshold values on image quality in dB for the Lena image.

In Table 2, hiding capacity and PSNR values for different threshold values are shown for the test images.

Table 2 shows that larger threshold values cause larger embedding capacities and smaller PSNR values. Larger

threshold values cause more prediction errors and can be used for embedding the watermark. This results in

greater capacity and smaller PSNR values.

Table 2. Hiding capacity and PSNR values for the proposed method in different threshold values for four images.

PSNR (dB) Embedding capacity (bpp)
Image

[–12,12] [–8,7] [–3,3] [–1,0] [–12,12] [–8,7] [–3,3] [–1,0]
36.2311 37.2454 40.3743 48.7958 0.9722 0.9319 0.7178 0.2683 Lena
34.0914 35.7491 39.9106 48.7627 0.9355 0.8599 0.6345 0.2543 Baboon
40.4013 41.5578 44.6217 52.1156 0.9736 0.9426 0.8127 0.3859 Airplane
33.2024 35.2054 39.5832 48.6539 0.8987 0.8227 0.6005 0.2113 Barbara
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In Table 3, maximum hiding capacity is compared to that of Sachnev et al. [4] for different threshold

values. As this table shows, our proposed scheme achieves higher embedding capacities compared to Sachnev

et al . for all tested images and threshold values.

Table 3. Maximum hiding capacity for the proposed scheme and that of Sachnev et al. in bpp.

[Tn, Tp]

Lena Baboon Airplane Barbara
Sachnev Proposed Sachnev Proposed Sachnev Proposed Sachnev Proposed
et al. [4] method et al. [4] method et al. [4] method et al. [4] method

[–1,0] 0.2456 0.2683 0.2222 0.2543 0.3166 0.3859 0.1844 0.2113
[–2,1] 0.4585 0.4909 0.3974 0.4464 0.5770 0.6354 0.3479 0.3969
[–3,3] 0.6941 0.7178 0.5800 0.6345 0.7800 0.8127 0.5370 0.6005
[–5,5] 0.8373 0.8625 0.7141 0.7709 0.8658 0.8979 0.6639 0.7389
[–6,6] 0.8748 0.8997 0.7606 0.8142 0.8900 0.9204 0.7022 0.7798
[–8,7] 0.9090 0.9319 0.8126 0.8599 0.9154 0.9426 0.7424 0.8227
[–12,12] 0.9592 0.9722 0.9077 0.9355 0.9587 0.9736 0.8181 0.8987

In Figure 9, comparison results of distortion versus capacity are shown for our proposed scheme, as well

as three other methods presented by Sachnev et al . [4], Luo et al . [12], and Hu et al. [13]. As seen in Figure

9, our proposed scheme achieves higher PSNR values at all embedding capacities and for all test images. In all

the images, our proposed scheme is the top curve. In Figures 10 and 11, the embedding results for the Lena

and Baboon images at different threshold values are shown. We set the Tn and Tp thresholds to [–1, 0], [–5,

5], and [–12, 12] values. Larger threshold values resulted in larger capacity values and smaller PSNR values. In

Figure 10, maximum threshold values are set to [–12, 12]. For the Lena image these threshold values resulted

in 0.97 bpp capacity with 36.23 dB. Hence, the embedded images are not easily detectable from the original

image by the human visual system.
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Figure 9. Comparison results of distortion versus capacity for our proposed scheme and other methods on four images.
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Figure 10. Lena-embedding results: (a) original, (b) 48.79 dB embedded with 0.27 bpp with [Tn , Tp ] = [–1,0], (c)

38.41 dB embedded with 0.86 bpp with [Tn , Tp ] = [–5,5], (d) 36.23 dB embedded with 0.97 bpp with [Tn , Tp ] =

[–12,12].

Figure 11. Baboon-embedding results: (a) original, (b) 48.76 dB embedded with 0.25 bpp with [Tn , Tp ] = [–1,0], (c)

37.45 dB embedded with 0.77 bpp with [Tn , Tp ] = [–5,5], (d) 34.09 dB embedded with 0.93 bpp with [Tn , Tp ] =

[–12,12].
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5. Conclusion

In this paper, an intelligent approach for predicting pixel values was proposed using artificial neural networks.

Artificial neural networks are powerful tools of prediction. We used the neural networks in a rhombus pattern

technique to predict the pixel values instead of averaging neighboring pixels. In many cases, the averaging

technique did not offer accurate predictions. For example, in the nonsmooth areas of the image, the averaging

technique was not accurate for prediction, yet the proposed scheme had a high predicting power. The artificial

neural networks provided an accurate prediction for all areas of the image, including nonsmooth areas. This

technique provided an accurate prediction, and, consequently, smaller prediction errors were generated. Since

watermark bits were embedded in the prediction errors, using artificial neural networks resulted in a better

embedding procedure that reduced the image distortion after watermark embedding. The experimental results

were compared with the proposed methods presented by Sachnev et al . [4], Thodi and Rodriguez [5], Jung et

al . [9], Al-Qershi and Khoo [11], and other methods [2,6–8,12–15]. The superiority of the proposed method was

demonstrated in the experimental results.
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