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1Department of Computer Engineering, Sakarya University, Sakarya, Turkey
2Department of Electrical and Electronics Engineering, Dumlupınar University, Kütahya, Turkey
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Abstract: This paper presents a novel use of the principal component analysis (PCA) and regression methods for

quantitative feature extraction from gas sensor data. In this approach, PCA plots are interpreted by observing the

locations of samples in the principal component domain. A trainable data processing system that also produces numerical

output is designed to validate the method. The main advantages of this system are: 1) retrainability: once it is trained,

it can be used for any gas set; 2) flexibility: adaptation to different targets does not require hardware modifications

(if a sufficient number and variety of sensors are installed in the sensor cell); and 3) simplicity: all computations are

performed with only linear operators, and hence the system does not require complex structures or powerful computation
resources.

Several experiments are conducted using two industrial gases (toluene and ethanol) to validate the approach. The

new approach is also compared with two classic principal component regression (PCR) methods. The results show that

the new approach performs better than the classic PCR approaches.
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1. Introduction

Oscillation frequencies of quartz crystal microbalance (QCM) sensors change based on the mass of vapor

absorbed by the film covering the quartz surface. QCM sensors are preferred in electronic nose (e-nose)

applications for their linear response to concentrations over a wide range, from 100 ppm to 15,000 ppm. However,

the complex circuitry for data acquisition and decreased sensitivity to lower concentrations (lower than 50 ppm)

are the main drawbacks of QCM sensor systems.

Feature extraction from sensor data is an important task of e-nose systems. Depending on the appli-

cation, information on qualitative and/or quantitative properties is extracted, determining the species or the

concentration of a given species, respectively [1,2]. Since each sensor produces one-dimensional data (a con-

centration versus frequency shift), an array of sensors coated with different chemicals is used to detect various

types. Species and concentration determination for any sample in the sample space covering all vapors by means

of frequency shifts is quite difficult because, unlike the case with colors in digital pictures, there are no base
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vectors in this case. Hence, linear and nonlinear feature extraction approaches are used to analyze QCM sensor

data [3,4].

Principal component analysis (PCA) is mathematically defined as an orthogonal linear transformation

that transforms the data to a new coordinate system such that the greatest variance by any projection of the

data comes to lie in the first coordinate (called the first principal component), the second greatest variance

lies in the second coordinate, and so on [5]. The PCA method is mostly used for classification of gas species

by means of clustering. Sensor array data are transferred using PCA, and the clusters are identified on the

PCA plot with their deviating locations. PCA plots visually help analyzers identify different aspects of smells

(e.g., discriminating tea odor or coffee brands) [6,7]. The main objective of this type of work is to determine

the cluster in which a sample resides. When principal component scores are used for estimating regression

coefficients, the analysis method is called principal component regression (PCR) [8].

The general PCA approach is to extract qualitative information, such as the detection of gas species

in terms of presence or absence. Obtaining quantitative information, however, is much more difficult and

requires linear or nonlinear regression methods. In this work, a novel approach is developed for prediction of

gas concentrations using PCA scores. Initially, the system is trained with samples collected from a target gas

set. Once the system is trained, it can be used to estimate concentrations, providing both numerical and visual

outputs. The numerical outputs are the ppm amounts of the constituent elements of gas mixtures. The visual

output also helps a user infer the concentration from the location of the test sample in the PCA plot.

Simplicity and low computational complexity make this regression process valuable for mobile gas mea-

surement systems due to limited resources. The proposed method in this study utilizes this property by using

minimum necessary principal component variables and linear operators. Otherwise, classical regression methods

that use whole sensors’ data require much more memory and computational power. In the literature, there are

other PCR methods that use nonlinear approaches such as artificial neural networks, but these methods are not

suitable for mobile gas measurement systems [9,10].

2. QCM sensor systems

Fundamental to the e-nose system is the idea that each sensor in the array has a different sensitivity. For

example, gas A may produce a high response in one sensor and a lower response in others, whereas gas B might

produce high readings for sensors other than the one that is sensitive to gas A. Sensors are implemented with

equivalent quartz crystals; however, different sensitivities are obtained by coating them with various chemicals.

The coating material is chemically formulated to shift the resonant frequency of a quartz sensor based on

the mass change of a target gas. To produce the sensors, AT-cut quartz crystals with a 10 MHz fundamental

frequency (Klove B.V., the Netherlands) are used. The jet-spray coating system is built up in a glove box

to control the ambient temperature and humidity. The jet-spray pressure is controlled by a regulation valve.

Solutions of the sensitive materials are prepared by dissolution in analytical grade chloroform. The solution

is sprayed on the electrodes of the QCM from a tube with a very narrow tip (capillary). During coating, the

frequency of the QCM is monitored and recorded, and after coating, each QCM sensor is compared with its

standard sensor properties to avoid any errors from coating and synthesizing [11,12].

An approximation of the frequency change fk−fk+1 and gas mass change mk−mk+1 is given by the

Sauerbrey equation (Eq. (1)) for consecutive samples k and k + 1 [13]:

fk − fk+1 = −Cff
2
0

A
(mk −mk+1) (1)
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where A is the area of sensitive layers, Cf is the mass sensitivity constant of the quartz crystal, f0 is the

fundamental resonance of the quartz crystals, and (mk −mk+1) are mass changes.

When a substance (such as a few hundred molecules of a target gas compound) is adsorbed onto these

films, the resonant frequency of the quartz sensor changes. This frequency change is not permanent and can

revert back to its original value when normal air is applied to the crystal surface (which is called cleaning or

purging). Because of this reversibility, these devices are generally used as sensing elements for gases.

Sensor selection is an important task and requires expertise in both sensor development and sensor data

processing [14,15]. An increase in the number of sensors in the cell does not necessarily guarantee an increase in

information. For most systems, a number of sensors are developed for a target gas set, but only some of them

are used in the e-nose because a few sensors may generate noisy data and some may have relatively insufficient

sensitivity, or some sensors may be redundant due to similar dynamic behavior. In this research, 4 out of 9

sensors are selected, and their data are used for processing based on the factors mentioned above.

The e-nose used in this research is a device that is equipped with 9 different polymer film-coated quartz

sensors and a reference sensor that is not coated with a steel cover on it. The e-nose generates numerical values

that carry information about concentrations of the target gases at a second interval. The photo in Figure 1

shows the inside of the e-nose used for this research: there are 9 sensors in two rows, and a temperature and

humidity sensor in the cell on the upper left corner (SHT11). The sensor cell is made of a hollow Teflon block.

Figure 1. Inside the e-nose system: the sensor array and the sensor cell.

After the sensor array is cleaned (purged with dry air), a gas mixture is applied to the e-nose. The sensor

frequencies change until they reach another stable state in which no more sensor frequency changes occur. This

event takes from 5 to 15 min and is called a measurement. During a measurement, as many as 500 samples are

collected from each sensor.

A steady-state response (∆f) is calculated subtracting the maximum value (at baseline) from the mini-

mum value (at the balanced state) of sensor frequency responses as given in Eq. (2). The absolute value of the

difference is taken since ∆f is considered as the distance between the states (see Figure 2).

∆f = |fmax−fmin| (2)

In this study, a population of steady-state data is obtained by conducting multiple measurements in series, which

are then used for training the data processing system. Obtaining a data population is called an experiment and

includes multiple measurements. Figure 3 shows the steady-state response points that are shaped like a surface
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of a selected sensor during an experiment (Table 1). The x and y axes show incremental steps (500 ppm) for

toluene and ethanol, and the z axis shows frequency shifts for each measurement. The surface is almost flat due

to the linear sensor response in the range.
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Figure 2. An example QCM sensor output: ∆f1 and

∆f2 are calculated using the dynamic samples as steady-

state representatives for two different measurements.

Figure 3. The steady-state responses of a selected sen-

sor to variable concentrations of toluene and ethanol in

Experiment C create a nearly flat surface.

3. The new sensor data evaluation method using PCA

Quantitative information extraction from gas sensor array data can be done using various linear and nonlinear

methods. Since the relationship between inputs and outputs is multidimensional, a multiple regression method

should be used to find a relation. Two of the well-known and commonly used multiple linear regression methods

are listed as follows [16]: 1) the first order no-interaction model (FONI) of Eq. (3); and 2) the second order

interaction model (SOI) of Eq. (4).

YFONI−PCR = b0 +
k∑

i=1

bixi (3)

YSOI−PCR = (b0 +
k∑

i=1

bixi)(c0 +
k∑

i=1

cixi) (4)

In these equations, xi is the principal component scores (PC-i), Yi is the corresponding gas concentration as

ppm, bi and ci are regression coefficients, and ki is the number of principal components (correspondingly used

sensor count).

The sensor array data are transferred to the PCA domain to observe variances. After the operations over

the training data, it is found that the PCs, except the first one, have smaller variances than 1% in total. Thus,

PC-1 is found sufficient for concentration predictions. However, if the target is a mixture of gases, then PC-2

must be taken into account to determine the constituent species. The remaining correlated components could

be disregarded. The input dimensionality of the new data processing system is reduced to 2 as an optimum

solution. Since the components did not correlate in the PCA domain due to the orthogonalization procedure,

the interaction terms drop out in Eq. (4). Then, the regression equations given above become as follows (see
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Table 1. Training data for single and binary gas mixtures of toluene and ethanol. The first column indicates the

experiment, the second column shows the measurement number, the third column shows gas concentrations, the fourth

column lists principal components, and the last column shows the percent variances of the principal components in each

experiment.

E. no. M. no.
Concentrations (ppm)

PCs Variances (%)
Toluene Ethanol

A

1 0 0 PC-1 100.00

2 0 512 PC-2 0.00

3 0 1024 PC-3 0.00

4 0 1536 PC-4 0.00

5 0 2048

6 0 2560

7 0 3072

8 0 3584

9 0 4096

10 0 4608

B

1 0 0 PC-1 99.66

. . . PC-2 0.33

. . . PC-3 0.00

10 0 4608 PC-4 0.00

11 490 0

12 1050 0

13 1540 0

14 2030 0

15 2520 0

16 3010 0

17 3500 0

18 4060 0

19 4550 0

C

1 0 0 PC-1 99.65

. . . PC-2 0.31

. . . PC-3 0.04

10 4550 0 PC-4 0.00

11 490 512

. . .

. . .

19 490 4608

20 1050 512

. . .

. . .

37 1050 4608

. . .

. . .

. . .

100 4550 4608

950
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Eqs. (5) and (6)):

YFONI−PCR = b0 + b1x1 + b2x2 (5)

YSONI−PCR = b0 + b1x1 + b2x2 + b3x
2
1 + b4x

2
2 (6)

Besides these well-known methods, we propose a new approach that simplifies calculations by reducing the

independent variables to one without so much sacrificing from the prediction correctness. In this approach, a

linear regression is used with only PC-1, and PC-2 is used along with PC-1 to determine constituent species

(see Eq. (7)).

YR−PCR = b0 + b1x1 (7)

The proposed approach is compared with regression methods given in Eqs. (5) and (6) in this work.

3.1. The proposed approach

The system comprises three major units: 1) a preprocessing unit; 2) a steady-state data extraction unit; and 3)

a trainable PCR unit (see Figure 4). The preprocessing unit removes outliers caused by noise, and then filters

quantization errors caused by the sampling system using a sliding window algorithm. Steady-state measurement

data are calculated using dynamic sensor responses in the second unit.
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Figure 4. The data processing system is composed of three units: 1) the preprocessing unit removes outliers and filter

quantization errors; 2) frequency shifts are calculated in the steady-state data extraction unit; and 3) arithmetic mean

values, a transfer matrix, and approximation functions are determined in the training unit.

A line-fitting method is used for all training data to increase prediction quality. The predefined training

sample space is shown in Figure 5. In the figure, PC-1 and PC-2 values of a sample point include the necessary
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Figure 5. Training and testing samples used in the Experiment C. Each subpopulation forms a linear path, and test

samples (shown with circles) may fall anywhere among the subpopulations.
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information to predict the concentrations of the gases. When looking at the sample points in the PCA plot, it

can be seen that the points create linear paths like lines. This is because we applied 1st order linear regression

to the training samples.

The samples from a mixture with variable concentrations of a single constituent follow a linear path in

the PCA plot. Consider an experiment conducted with measurements of a mixture that includes individual

gases A and B, such that either the concentration of A is fixed and that of B is changed, or the concentration

of B is fixed and that of A is changed. The PCA plot of this experiment includes two linear paths: the fixed

concentration amounts are represented by lines, and the variable amounts are represented by points on the lines

(see Figure 5). If an experiment includes all possible balanced steps, then the sample space becomes a surface

knit by lines.

The trainable PCR unit forms a discrete sample space with the supplied data. As more data are provided

during training, prediction accuracy increases in testing. The unit contains memory to save training parameters

for each experiment. These parameters are: 1) arithmetic mean values; 2) a transfer matrix; and 3) a matrix

for line functions.

3.2. Calculating training parameters

The training parameters are obtained using the steady-state sensor responses (∆f), which are calculated using

collected dynamic samples from the selected sensors. The sensor sample populations are formed conducting

several measurements during an experiment.

Multiple measurements of each sensor in an experiment are saved into memory as vectors of ∆f s. This

vector is known as a sample vector (SVm×1) as in Eq. (8). For example, SV1 and SV2 represent measurement

vectors for sensor-1 and sensor-2, respectively.

SVi =
[
∆f1 ∆f2 . . . ∆fm

]T
i = 1, . . . , n (8)

where n and m represent sensor count and measurement count, respectively. In this work, n = 4, and m = 10,

which is experiment-dependent.

A matrix, called the sample matrix (SMm×n), is formed using theSVs for each sensor in the system.

The rows of this matrix represent measurements, and the columns represent sensor responses.

SM =
[
SV1 SV2 . . .SVn

]
(9)

The following list details how to obtain the training parameters:

1. The arithmetic mean values: Arithmetic averages are calculated for each column ofSM in order to

center the data. Arithmetic mean values can be arranged as a vector, as shown in Eq. (10).

µi = E (SVi) (10)

µV =
[
µ1 µ2 . . . µn

]T
(11)

2. The transfer matrix:

• A covariance matrix (Cn×n) is calculated using the SM :
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C = cov (SM) (12)

• Eigenvalues and eigenvectors of this covariance matrix are calculated using the following equations:

det [λI−C] = 0, λisareeigenvalues, i = 1, . . . , n. (13)

CXi = λiXi,Xiistheeigenvectorofλi. (14)

• A transfer matrix (TMn×n) is formed using eigenvectors (Xi s) in columns, with the most significant

eigenvector in the first column.

TM =
[
X1 X2 . . .Xn

]T
(15)

The transfer matrix is used both in training and testing. In training, all data in the population are

transferred to the PC domain at once using the following equation:

ASMn×m =
[
SV1 − µ1 · · · SVn − µn

]T
(16)

TSMn×m = TMn×n ×ASMn×m (17)

where TSM denotes a transferred sample matrix (PCA scores).

3. The line functions: The transferred samples in the training phase form a new domain: the principal

component domain. In this domain, when the concentration of one constituent component of a mixture

is held fixed and the other is changed incrementally, special subpopulations occur in the total population.

Linear paths (lines) known as training lines (see Figure 6) appear in the domain and their number

corresponds to the number of special subpopulations ( l). A first-order polynomial regression function

is obtained using training samples on each linear path. All training line functions produce a training

function vector(fi), as shown in Eq. (18).

FVtraining =
[
f1 f2 · · · fl

]T
(18)

A linear relationship is observed between PC values and the concentrations during preliminary experiments.

Since PC-1 is the most informative component of the PCA, we decided to select only PC-1 for the regression.

The first order polynomial regression that describes this relation is called the transition function, and the line

that represents this function is called the transition line, as shown in Figure 7. The transition line function

vector (gi) is formed by all transition line functions given in Eq. (19).

FVtransition =
[
g1 g2 · · · gl

]T
(19)

Training line and transition line functions are used to create a matrix where the first column holds the training

data and the second column contains transition line functions, as in Eq. (20).

FMl×2 =
[
FVtraining FVtransition

]T
(20)

Training line functions compose the training space. The row index of FM points to the line functions, so

traversing in the training space is fairly straightforward. These functions are formed in the training phase, and

they are used in the testing phase.
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3.3. Using the system for a test sample

In a measurement, a steady-state sample vector (TSV) that comes from sensor array is converted to an

adjusted test sample vector (ATSV) by subtracting the arithmetic mean vector (µV), a training parameter

for the system (see Eq. (21)). Then, this modified test sample is transferred to the PC domain using Eq. (22).

A transferred test sample is shown in Figure 6.

ATSV = SV − µV (21)

TTSV = TM−ATSV (22)

A test sample point may fall in a location where no training line crosses it, and cannot be recognized in the

training unit. Thus, a virtual line intersecting the test sample point can be formed using regression analysis

for the prediction (see Figure 7). However, this requires an additional virtual line (transition) to convert a

PC-1 value to an amount in ppm. Another solution is to merge the sample point into the closest subpopulation

(training line). Since it is simpler, requires less calculation, and results in reasonable error, the second solution

is preferred. The tasks to find quantitative outputs for a measurement sample can be listed as follows:

3l

d2

d1

d3

test sample

training line

training sample

PC−3

PC−1

PC−2

1l

2l

dual point

PC−1

PC−2

ppm

y

x

test sample
training line

transition line

deviation

virtual training line

Figure 6. Finding the closest line to the test sample point

in a 3D PC domain.

Figure 7. The graph shows how a concentration amount

is obtained from a test sample in the PC domain.

1. Find the closest line to the test sample: when the test sample is associated with a line in the space, a

numerical value related to the concentration amount of the first constituent component can be found for
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that test sample. Searching a line that has a minimum distance to the sample point is conducted by

calculating the perpendicular distances to each line using Eq. (23). Figure 6 shows how to find the closest

line to a sample point graphically.

di =
|(Xi,2 −Xi,1)× (Xi,1 − sp)|

|Xi,2 −Xi,l|
, i = 1, . . . , l. (23)

where Xi,j represents the j th point on the ith line, sp represents the sample point, and l is the line

count.

2. Find the closest point (dual point) on the line: the dual point is the footprint of the test sample on the

closest training line. The conversion process from PC values to concentration (ppm) is shown graphically

in Figure 7. The transition line on the figure is obtained easily following the steps of the approach. The

maximum absolute error in this method equals one half of a step (approximately 250 ppm for this study).

Therefore, using sample data, the concentration is predicted conveniently by doing some linear matrix

operations. Figure 7 illustrates concentration prediction in a two-dimensional PC domain.

MATLAB software by MathWorks was used for all calculations.

4. Experimental setup

Figure 8 shows the experimental setup used to obtain samples for the training and testing stages. Dry air

in a tank was used to clean sensors before gas application to the chamber. A microcontroller system (MKS

unit) that generates programmed electrical signals was used to control the valves (MFC: mass flow controller)

to obtain desired flow rate. Software run on a computer was developed to implement time-based tasks in the

MKS. The other software run on the same computer receives dynamic samples every second and saves them to

files on the internal disk. Both the MKS unit and the e-nose communicate with the computer over the serial

ports (RS-232).

MFCs control signals MKS control signals
Sample data

EXHAUST

Toluene

Bubbler

Ethanol

MFC

COOLER

MKS

MFC

MFC

DRY
AIR

E−NOSE
MIXER

Flow rate? 1000 ccm
MKS1

MKS3
MKS2

Figure 8. The experimental setup to obtain the desired gas concentrations from toluene and ethanol.

Condition parameters such as temperature and flow rate are calculated using Antoine’s equation to obtain

the desired gas concentrations [15]. Individual gases are obtained by adding toluene and ethanol to dry air using
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ÖZMEN et al./Turk J Elec Eng & Comp Sci

a bubbler in a temperature-controlled cabin. Then, the individual gases are mixed together in another chamber

(the mixer).

During the experiments, single and binary gas mixtures are obtained. For this work, the MKS unit is

programmed to obtain a 0–4500 ppm range of concentrations for constituent components with approximately

500 ppm steps. Table 1 shows some of the experimental data presented in this paper.

Three different experiments were selected from a series of extensive tests with various scenarios for two

industrial gases: toluene and ethanol. The test experiments were designed as follows:

• Experiment A utilized a single type of gas (ethanol) in variable concentration measurements. The

performance evaluation of a single gas concentration prediction is the goal of this experiment.

• Experiment B makes measurements on two different gases with nonoverlapping variable concentrations.

The total population is formed from two subpopulations, one of which comes from Experiment A.

• Experiment C is a comprehensive test: it covers all of the prior experiments, and forms a composite

population. The transferred space is expected to answer for all possible input test vectors of single and

binary mixtures of the target gases.

5. Results and discussion

In this section, test results concerning the system performance are reported. The system was initially trained

separately using three experiments, as shown in Table 1. Then, the trained system was tested with random

measurements, as shown in Table 2.

Table 2. Test results of the approaches (R-PCR, FONI-PCR, and SONI-PCR) for each experiment in Table 1.

Real values Predictions (ppm) Error (%)

E. M. Conc. (ppm) R-PCR∗ FONI-PCR SONI-PCR R-PCR∗ FONI-PCR SONI-PCR
no. no. Tol. Eth. Tol. Eth. Tol. Eth. Tol. Eth. Tol. Eth. Tol. Eth. Tol. Eth.

A 1 - 2200 - 2216 - 2216 - 2216 - 0.73 - 0.73 - 0.73

B
1 - 3700 - 3713 - 3521 - 3777 - 0.35 - 4.84 - 2.08
2 1100 - 1095 - 1109 - 995 - 0.45 - 0.82 - 9.55 -

C

1 - 2200 - 2193 - 2517 - 1888 - 0.32 - 14.4 - 14.2
2 1100 - 1050 - 855 - 950 - 4.54 - 22.3 - 13.6 -
3 2900 910 3010 929 3217 505 3181 582 3.79 2.09 10.9 44.6 9.68 36.1
4 3400 1420 3500 1434 3607 1710 3630 1595 2.94 0.99 6.08 20.4 6.75 12.3
5 2440 2600 2520 2814 2767 1846 2587 2217 3.28 8.23 13.4 29.0 6.01 14.7
6 1540 3584 1540 3531 1697 3000 1440 3559 0.00 1.48 10.2 16.3 6.47 0.69
7 4060 3072 4060 2818 3844 3887 3954 3677 0.00 8.27 5.32 26.5 2.60 19.7

∗ Reduced-PCR (our approach).
Mean error 2.14 3.10 9.86 22.3 7.81 14.3
Max. error 4.54 8.27 22.3 44.6 13.6 36.1

Experiment A: The system was trained with 10 samples of ethanol with variable concentrations, and tested

with a random sample. PC-1 carries almost all informational data, so the training line lies on the PC-1 axis.

Therefore, only the PC-1 value of a test sample and the transition line were used for predictions. Images of the

training and test samples over the transition line for Experiment A are shown in Figure 9. The system predicted

the concentration amount with a very high success rate (99.29%).
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Figure 9. PC-1 versus concentration amounts for Experiment A.

Concentration amounts for this experiment could also be calculated from steady-state responses without

transferring samples to the PC domain. However, knowing which sensor(s) responses should be used for a

prediction is difficult. PCA provides a linear solution to this problem by reducing the dimension of all sensor

responses (i.e. using PC-1 alone is sufficient to find the ppm amounts).

Experiment B: The system was trained with 19 samples of toluene and ethanol, and tested with 2 random

samples of each species. There were two subpopulations (that form two different linear paths) in this experiment,

as shown in Figure 10a. First, it must be determined which linear path is closest to the test sample, and then

the steps of the approach must be followed to find out the concentration amounts, as was explained in detail in

Section 3.3.
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Figure 10. a) PC-1 versus PC-2; and b) PC-1 values in a) versus concentrations. The plus and star symbols represent

two subpopulations (ethanol and toluene respectively), and circles are used for the test samples.

Figure 3 shows that increasing gas concentrations are related linearly with steady-state sensor responses

(∆fs). More than 99% of the information that these responses contain relies on the first principal component

of the PC domain. Figure 10b shows the transition lines used to convert PC-1 values to concentrations in ppm

in this experiment. The transition lines shown in Figure 10b are associated with the training paths given in

Figure 10a.

At least two principal components must be used to predict concentration amounts in this experiment

since there are two different species. As presented in Table 2, the percent error rate of the system was less than

1% for both test samples.
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Experiment C: The system was trained with 100 samples and tested with seven samples. Training data for

this experiment create many discrete lines in the PC domain (see Figure 4). The test samples are selected as

follows: 1) the first group (two samples) is the same as in Experiment A and B, such that these points lies on

different lines, but do not lie on any training points; 2) the second group (three samples) is selected randomly

such that they all fall along lines at different locations; and 3) the last group (two samples) is selected from the

training samples in experiment C given in Table 1.

The first principal component holds 99.65% of the concentration data. The PC-1 and PC-2 components

together create a training surface, such that the points on each training line contain the ethanol concentration

data, and the location of each training line contains the concentration data for toluene in the mixture. Numerical

values for the training line are shown in Figure 4 as an example. Two principal components are found to be

sufficient to analyze a mixture that contains two species and their binary mixtures.

Concentration amounts for the test samples were predicted using three methods: R-PCR, FONI-PCR,

and SONI-PCR. The results are presented in Table 2. The R-PCR method performed better than the other

two for all tests, since PC-2 contained very low variance compared with PC-1. Hence, detailed explanations

about the R-PCR method are listed as follows:

• Experiment A-1 and Experiment C-1 were done with the same test sample of ethanol (2200 ppm). The

results are reasonable with a very low rate of error.

• Experiment B-2 and Experiment C-2 were done with the same test sample of toluene (1100 ppm). The

error rate of measurement in C-2 (4.54%) is greater than that in B-2 (0.45%). This occurs as a result of

merging the test sample to the nearest subpopulation (line).

• The rates of error for measurements C-2, C-3, and C-4 are within a reasonable range.

• The rates of error for toluene in measurements C-6 and C-7 are 0.00% because the points were selected

from the training samples. Thus, merging the test point to the closest line results in zero error.

However, ethanol predictions do not show similar behavior. In measurement C-6, the predicted ethanol

concentration deviated from the real value. This occurred because the line fit was applied to the steady-state

responses in the preprocessing stage. The training points on the line deviated from the original locations,

resulting in an error measurement of 1.48%.

For the same reason, ethanol prediction also deviated in measurement C-7. The deviation amount is

greater than that in the previous measurement. The previous sample fell in the almost pure linear region of the

steady-state response surface, as shown in Figure 2. However, the samples were selected from a spot where the

linearity of the surface was relatively low. Hence, the error rate was found to be 8.27%.

The outcomes of the test samples are predicted by approximating them to the closest line, and to the

closest point on the line. Additional training data create a better space with more lines, resulting in a lower

absolute prediction error.

Finally, test prediction deviations were calculated and put into Table 2. The maximum possible absolute

error is equal to half of a step for the R-PCR method. The maximum possible relative error in this case is 50%

for measurements near the lower concentrations (i.e. 500 ppm), and 5.6% near the last step (i.e. 4500 ppm) in

the R-PCR method.

The amount of possible maximum absolute error could be reduced by introducing more training data,

but again, the possible maximum relative error values above would stay the same. For example, instead of using
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steps of 500 ppm, steps of 100 ppm could be used, and the maximum absolute error would drop from 250 ppm

to 50 ppm. Moreover, instead of merging a point to a linear path, a virtual linear path could be formed using a

surface fit approach in the domain. This would lower the error rates for the toluene predictions (compare the

toluene percent errors in Experiment B-2 and in Experiment C-2).

Although the test points were selected from different locations in the space, the maximum error rate was

calculated as 8.27% in this study for the R-PCR method. These low rates of error are promising, and can be

lowered still by providing more data in the training stage.

• This approach presents a flexible gas measurement system that can be used for many different target gas

sets without changing the hardware. The system must be trained for a target gas set before it is ready

for use. No hardware changes are required if the sensor array holds a sufficient number of sensor types.

• Compared with nonlinear approaches (such as artificial neural networks), this approach makes it easier to

implement handy instruments for gas measurement, since only linear operators are used for calculations

(addition and multiplication, with no exponential operator required).

• Single and binary mixtures of two gases are used in this work. The study can be extended to include

more species in the mixture. In that case, the number of sensors in the array and the number of principal

components must be increased.

6. Conclusion

This paper presented a novel use of PCR for finding the concentration amounts of the constituent components of

a mixture. This approach provides three desired properties of quantitative gas evaluation systems: retrainability,

flexibility, and simplicity. With these properties, a system can be trained for different target gas sets and then

used for measurements without any hardware modification. The method is a linear approach; hence, it does

not require powerful computation resources as do nonlinear approaches. The system was tested with individual

and binary mixtures of toluene and ethanol, and promising results were obtained. This approach can easily be

implemented in micro-PC or microcontroller based embedded systems for portable gas measurement devices.
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