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Abstract: This paper presents the results of a theoretical and numerical study on the analysis of bistable behavior of

the most studied gene regulatory network, the lac operon, in terms of the model parameters. The boundedness of the

state variables for the considered model are demonstrated, the parameter values providing the existence of the multiple

equilibria and thus the bistable behavior are determined, and a local stability analysis of the equilibria is performed. The

parameter region yielding the existence of multiple equilibria is determined in an algebraic way based on discriminants.

The model given in the state equation form is defined by the ordinary differential equations with the rational right-hand

sides constituted within Hill and Michaelis–Menten approaches based on enzyme kinetics. The presented method can

also be used in the parametric studies of other gene regulatory and metabolic networks given by state equations with

rational right hand sides.
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1. Introduction

The lactose operon, abbreviated as lac operon, of Escherichia coli (E. coli), which is responsible for controlling

the lactose metabolism, operates as a bistable hysteretic switch under glucose starvation [1]. This bistable

behavior of the lac operon has been investigated by many researchers in the literature [2–5]. These studies

on the lactose regulation system of E. coli do not only provide a description of the gene regulation in glucose

starvation in the existence of lactose, but also they are helpful to understand a variety of gene regulatory

mechanisms in other organisms.

Although many efforts have been attempted to analyze the bistability behavior of the lac operon, the entire

bistability ranges of the parameters related to the enzyme kinetics and also the reasons for the variations in the

appearance of bistability across different inducers, e.g., lactose, methyl β -D-thiogalactopyranoside (TMG), or

isopropyl-β -D-thiogalactopyranoside (IPTG), across the population of E. coli and across different experimental

settings are not completely determined yet [5–7]. The main aim of this paper is to derive the entire ranges of the
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model parameters ensuring the bistability for a TMG-induced lac operon. A TMG-induced lac operon model

is considered in the paper since this nonmetabolized lactose analog is usually preferred in most experimental

studies. The parametric conditions on the bistability of the considered TMG-induced lac operon model are

obtained in the presented work based on the discriminant of the (polynomial) equilibrium equation. The

identified bistability ranges confirm and further extend the results available in the literature [2–5,8]. It is also

shown that the condition K > 9 on the parameter K defining the basal activity in the considered model,

which is reported in the literature [3,8] as the bistability condition for a variety of lac operon models, is one of

the necessary condition only as opposed to the common consideration. For the sake of establishing a thorough

bistability analysis, the equilibrium analysis performed in the presented work by applying a discriminant-based

method to the polynomial equilibrium equation is supported by a complementary study on the boundedness of

the state variables together with the local stability of the equilibrium points.

In the literature, the behavior of the lac operon is generally modeled by using ordinary differential

equations (ODEs) derived from enzyme kinetics [3,4,7,8]. The delay-time ordinary differential equation systems

and stochastic models are also presented in the literature [4]. In the deterministic models, the reaction rates

are expressed as the time derivatives of molecule concentrations. The resulting systems of ODEs defining the

lac operon become nonlinear, or more precisely rational functions of molecule concentrations when Michaelis–

Menten and/or Hill approaches are used to model enzyme kinetics [3,4,6–9]. Although they are nonlinear, ODE

models are quite efficient for numerical and also theoretical analyses. The stochastic models that are introduced

for low molecule concentrations are derived usually either by choosing reaction rates as random variables in

terms of the numbers of molecules or by introducing a noise term to the ODE models [9]. The stochastic models

suffer from high computational costs; however, they can be preferred especially for modeling the interactions

involving small numbers of molecules and the spontaneous transitions between the induced and uninduced

states.

The TMG-induced lac operon model considered in this paper is derived from enzyme kinetics as a three-

dimensional nonlinear ODE system in the state equation form whose right-hand sides are rational functions

of the TMG, messenger ribonucleic acid (mRNA), and permease concentrations. The rational right-hand side

state equations yielding polynomial equilibrium equations provide the possibility of determining the parameter

values, ensuring the existence of triple equilibria required for the bistable behavior by using the discriminant of

the polynomial equilibrium equation.

The developed discriminant-based method provides a parametric equilibrium analysis of the rational

right-hand sided ODE models without having any information about the values of model parameters, thus

constituting a solution to the problem of analysis of the lac operon and also the other general gene regulatory

network models under parameter uncertainties. The determined bistability ranges for the lac operon model

parameters are also helpful for understanding the variations in the appearance of the bistable behavior of the

biological lac operon, which is observed to show differences from one species to another and even from one

experiment to another.

Section 2 of this paper presents the considered mathematical model for the TMG-induced lac operon

together with biological explanations for the modeled molecular interactions. The analysis results on the

boundedness of the trajectories and the local stability of the equilibrium points are given in Section 3. The

bistability ranges of the model parameters are determined in Section 4 by using the proposed discriminant-based

bistability analysis method. Section 4 also presents the graphical representations of the bistability region to

evaluate and compare with the results available in the literature.
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2. A model of the lac operon

The lac operon is the gene region of E. coli that synthesizes the enzymes to metabolize lactose as a carbon

source under glucose starvation [1]. It consists of three structural genes, namely LacZ, LacY, and LacA. LacZ,

LacY, and LacA produce permease, β -galactosidase, and transacetylase enzyme, respectively. The first one,

permease, provides the transportation of external lactose into the cell through the cell membrane. The second

one, β -galactosidase, is responsible for the cleavage of the internal lactose to the allolactose, while the third

one, transacetylase, is included in the sugar metabolism and the acetylation reaction [3]. The operation mode of

the lac operon is controlled by another gene, the regulatory gene LacI. In the presence of glucose, the repressor

protein LacI binds to the promoter part of the lac operon to prevent the expression of gene products, and so E.

coli does not use the lactose as a carbon source.

The basal activity of the cell always causes small amounts of permease and β -galactosidase enzymes

inside the cell [1–6]. The transfer of the lactose from the medium into the cell and the conversion of the

internal lactose to allolactose are provided by the small amounts of these two enzymes in the absence of glucose

and the existence of lactose in the extracellular medium. The allolactose binds to the LacI repressor protein,

thus causing a conformational change in the repressor and inhibiting the repressor by dissociating it from the

promoter region. The RNA polymerase enzyme then starts transcription of mRNA by binding the free promoter

site of the lac operon to synthesize the three structural genes. By this process, the gene products of the lac

operon, i.e. permease, β -galactosidase, and transacetylase, increase rapidly from the basal levels to much higher

levels.

The increase in the permease and β -galactosidase concentrations also elevates the concentrations of

the internal lactose and allolactose. The mutual amplification of the allolactose and mRNA concentrations

implies a positive feedback in the lactose metabolism [3,4]. In general, the positive feedback is known to be

a source of unstable dynamics in a system. In a living cell, the mRNA concentration is bounded below and

above, respectively, by the basal and saturation activities, which provide two stable equilibria: one at a low

concentration corresponding to the uninduced state for the lac operon and the other at a high concentration

corresponding to the induced state [3]. The coexistence of these induced and uninduced stable states, which

has been observed in experimental studies, provides a bistable behavior for the lac operon [3,4,6–9].

Two different suppression mechanisms are present in the cell when glucose exists. The first one in path

I is called catabolite repression, as given Figure 1. In catabolite repression mechanism, the presence of glucose

yields decreasing cAMP concentrations in the cell. The decrease in cAMP concentration leads to a lack of

binding cAMP to CRP, i.e. the cAMP receptor protein, to form CAP complex. Thus, mRNA transcription

cannot be induced due to the lack of CAP complex. This means that the glucose leads the lac operon into the

uninduced state. The other mechanism is path II, called inducer exclusion; the glucose inhibits the transport

of the external lactose into the cell by interfering with the permease activity, leading to the exclusion of the

inducer, i.e. lactose.

In experimental studies, it is generally preferred to use lactose analogs such as TMG and IPTG instead of

natural inducer lactose. These artificial inducers are not metabolized and do not interact with β -galactosidase

enzyme. Therefore, the β -galactosidase enzyme concentration becomes an irrelevant variable in the response

of the lac operon to artificial inducers. However, similar to allolactose, the artificial inducers inhibit the LacI

repressor, leading to the transcription of mRNA and consequently to the production of permease at higher

concentrations. These features make the artificial inducers efficient for experimental studies on the bistable

dynamics of the lac operon [3,4].
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Figure 1. Lac operon gene regulatory network.

The presented study considers a simple yet sufficient ODE model in which an artificial inducer, TMG, is

used. The mathematical model consists of three ODEs in the state equation form with the mRNA, permease,

and TMG concentrations as state variables. The considered model includes: i) the catabolite repression and

inducer exclusion of the extracellular glucose, ii) the transcription of mRNA by TMG, iii) the production of

permease, iv) the transportation of TMG via permease, and v) the degradations of TMG, mRNA, and permease.

It is assumed that there are no translational and transcriptional delays in the lac operon mechanism. As will

be seen, this model is very suitable for analyzing the hysteretic bistable behavior of the lac operon.

The model in the paper is described by the following state model, which is composed of three first-order

differential equations representing the reaction rates in terms of the mRNA, permease, and internal TMG

concentrations:

dM

dt
= αMfM,T (T ) fM,Ge (Ge)− γMM, (1)

dP

dt
= αPM − γPP, (2)

dT

dt
= αT fT,Te (Te) fT,Ge (Ge)P − γTT, (3)

where state variables M , P , and T stand for the mRNA, permease, and internal TMG concentrations,

respectively. The inputs Te and Ge stand respectively for external TMG and external glucose concentration.

The parameters γi with i ∈ {M,P, T} represent the loss constants for M , P , and T ; γi is indeed the

composition of the active degradation, γ̄i , and the dilution due to growth rate, µi . The parameters αi with

i ∈ {M,P, T} denote the production constants of the gene products. fM,T (T ) and fM,Ge(Ge) express the

positive effect of the internal TMG and the negative effect of the external glucose on the synthesis of mRNA,

respectively. Similarly, fT,Te (Te) and fT,Ge (Ge) express the positive effects of external TMG and negative

effects of external glucose on the TMG uptake into the cell. Here, fM,Ge(Ge) and fT,Ge (Ge) are decreasing

functions of external glucose; the former describes the catabolite repression while the latter describes the inducer

exclusion.
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In the model, the temporal change of the mRNA concentration is defined in Eq. (1) as the difference

between the production depending on the internal TMG concentration under the catabolite repression effect

of external glucose and the losses due to the active degradation and growth. Eq. (2) gives the change of the

permease concentration in terms of the synthesized permease and the losses. Similarly, the change of the internal

TMG concentration is expressed in Eq. (3), where the increase is due to the import of the external TMG under

the reduction effect of inducer exclusion and the decrease is due to the degradation and dilution.

Assuming the production of mRNA under TMG as an allosteric interaction, similar to the allolactose

case, fM,T (T ) can be chosen as the following modified Hill function [10].

fM,T (T ) =
1 +K1T

n

K +K1Tn
, (4)

where n is the number of TMG molecules required to inactivate a repressor protein, K1 is the equilibrium

constant of TMG-repressor protein interaction, and 1/K is the basal level of mRNA transcription in E. coli.

For the inhibition of repressor protein, at least two TMG molecules have to bind the repressor. n is taken as 2

in our analysis throughout the study [10].

The transport of Te into the cell by the permease can be modeled via Michaelis–Menten kinetics as

follows:

fT,Te (Te) =
Te

KTe
+ Te

, (5)

where KTe is the Michaelis constant [4]. The monotonically decreasing functions of Ge for describing the

catabolite repression and inducer exclusion are chosen as follows:

fM,Ge
(Ge) =

KM,Ge,1 +Gm
e

KM,Ge,2 +KM,Ge,3Ge
m , (6)

fT,Ge
(Ge) = 1− βT,Ge

Ge

KT,Ge
+Ge

, (7)

where KM,Ge,1 , KM,Ge,2 , KM,Ge,3 , and m are catabolite repression parameters and βT,Ge and KT,Ge are the

inducer exclusion parameters [11].

3. Boundedness of the state variables, existence of multiple equilibria, and local stability analysis

of the lac operon model

The bistable dynamics for a system can be defined by the existence of two (locally) asymptotically stable

equilibria such that any trajectory of the system tends toward one of these equilibria depending on the initial

condition if not starting at a possible unstable equilibrium. This implies the boundedness of the state variables

of the system dynamics and also excludes other kinds of dynamics such as limit cycle and chaos.

This section describes that the considered model in Eqs. (1)–(3) has bounded dynamics and multiple

equilibria, and it presents a local stability analysis of the equilibria of the model in Eqs. (1)–(3).

3.1. Boundedness of the state variables

The loss terms in Eqs. (1)–(3) are linear. Thus, considering the (nonlinear) production terms as inputs for

first-order linear differential equations, one can obtain an analytical expression for each of the state variables of
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the model in Eqs. (1)–(3):

M (t) = e−γM (t−t0)M (t0) +

t∫
t0

e−γM (t−τ)αMfM,T (T (τ)) fM,Ge
(Ge) dτ, (8)

P (t) = e−γP (t−t0)P (t0) +

t∫
t0

e−γP (t−τ)αPM (τ) dτ, (9)

T (t) = e−γT (t−t0)T (t0) +

t∫
t0

e−γT (t−τ)αT fT,T e
(Te) fT,Ge

(Ge)P (τ) dτ. (10)

As expressed in Eqs. (4)–(6), the production function of the mRNA and the catabolite repression effect of the

Ge are bounded above.

|fM,T (T )| =
∣∣∣∣ 1 +K1T

2

K +K1T 2

∣∣∣∣ < 1forK > 1 (11)

∣∣fM,Ge
(Ge)

∣∣ = ∣∣∣∣ KM,Ge,1 +Gm
e

KM,Ge,2 +KM,Ge,3Ge
m

∣∣∣∣ ≤ KM,Ge,1

KM,Ge,2
(12)

Note that K > 1 is always true, as observed from experimental studies [3]. An upper bound for the mRNA

concentration is then obtained as follows:

|M (t)| ≤ e−γM (t−t0)M (t0) +
αM

γM

KM,Ge,1

KM,Ge,2

[
1− e−γM (t−τ)

]
. (13)

The following upper bound for the permease concentration is found in a similar way.

|P (t)| ≤ e−γP (t−t0)P (t0) +
αP

γP
|M (t)|

[
1− e−γP (t−τ)

]
(14)

Considering the following bounds for fT,Te (Te) and fT,Ge (Ge)

∣∣fT,T e
(Te)

∣∣ = ∣∣∣∣ Te

KTe + Te

∣∣∣∣ ≤ 1 (15)

∣∣fT,Ge
(Ge)

∣∣ = ∣∣∣∣1− βT,Ge

Ge

KT,Ge
+Ge

∣∣∣∣ ≤ 1 (16)

an upper bound for the internal TMG concentration is derived as:

|T (t)| ≤ e−γT (t−t0)T (t0) +
αT

γT
|P (t)|

[
1− e−γT (t−τ)

]
(17)

The expressions given in Eqs. (13), (14), and (17) show the boundedness of the state variables M (t), P (t),

and T (t). As can be seen from the limits of the upper bounds given in Eqs. (18), (19), and (20), the model in

Eqs. (1)–(3) is indeed eventually uniformly bounded [12].

∃tM > 0 ∋ |M (t)| ≤ αM

γM

KM,Ge,1

KM,Ge,2
∀t ≥ tM (18)
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∃tP > 0 ∋ |P (t)| ≤ αP

γP

αM

γM

KM,Ge,1

KM,Ge,2
∀t ≥ tP (19)

∃tT > 0 ∋ |T (t)| ≤ αT

γT

αP

γP

αM

γM

KM,Ge,1

KM,Ge,2
∀t ≥ tT (20)

Since the functions in Eqs. (12), (15), and (16) are continuous functions of the lac operon inputs (i.e. external

glucose and external TMG), so are the upper bounds of the states, and then the lac operon defined by Eqs.

(1)–(3) is concluded to be bounded-input bounded-state (BIBS) stable [12].

3.2. Existence of multiple equilibria

In this subsection, it is shown that the considered model has either one or three equilibrium points depending on

the model parameters. Setting the state variables M , P , and T constant and then eliminating the equilibrium

concentrations M and P the equilibrium equation for T can be obtained as:

pfM,T (T )− T = p
1 +K1T

2

K +K1T 2
− T = 0, (21)

where

p =
αT

γT

αP

γP

αM

γM
fT,T e

(Te) fT,Ge
(Ge) fM,Ge

(Ge) . (22)

As illustrated in Figure 2, the production function fM,T (T ) of mRNA starts at 1/K and tends asymptotically

to 1 irrespective of the parameters K and K1 . 1/K > 0 and the continuity of fM,T (T ) together with the

saturation characteristic imply that the graph of pfM,T (T ) intersects the unity slope line corresponding to the

second term T in Eq. (21). This proves the existence of at least one equilibrium point. Furthermore, fM,T (T )

is a monotically increasing function, since its derivative,

d

dT
f
M,T

(T ) =
d

dT

{
1 +K1T

2

K +K1T 2

}
=

2K1T (K − 1)

(K +K1T 2)
2 (23)

is positive for K > 1 that is always true. However, the derivative of pfM,T (T ) is not monotonic and is less

than 1 for sufficiently small and large T values and greater than 1 for intermediate T values. Depending on

the value of the parameter p , the graphs of the first and second terms in Eq. (21) may have three intersection

points as shown in Figure 1, which means there are three equilibria for the considered model.

The below graphical analysis provides an insight into the appearance of bistability, which requires the

existence of three equilibria, two of them stable. However, determining the ranges of the parameters ensuring

the existence of multiple equilibria requires a rigorous analysis. Considering the availability of well-established

methods for the parametric studies of the roots of polynomial equations, it is convenient to rearrange the

equilibrium equation (Eq. (21)) into the following polynomial form.

K1T
3 − pK1T

2 +KT − p = 0. (24)

It is obvious that, irrespective of the values of the parameters, there is always a real root of Eq. (24), indicating

the existence of at least one equilibrium point. The remaining two roots of Eq. (24) are either a complex

conjugate pair or real. In the case of three real roots, there are three different possibilities: a triple root,
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two roots such that one of them is double, or three different roots. The bistable behavior occurs when three

equilibria that correspond to the three different real roots of Eq. (24) exist. To determine the ranges of the

parameters ensuring the existence of three real roots, the parameter values at which the complex roots turn to

the real ones could be identified. These turning points in the parameter space can be found by obtaining the

conditions for the presence of repeated roots.

  

p  fM,T(T) - T 

 

T 

 

p  fM,T(T) - T 

T 

 

  p fM,T (T) - T 

 

T 

p1 fM,T(T)

p2 fM,T(T)

p3 fM,T(T)

T 

p1 > p 2 > 
p

Figure 2. Geometric analysis of the equilibria.

As also exploited in the literature for different lac operon models [3–5,7–9,11,13], the conditions for a

triple root of the polynomial equation in Eq. (24) can be derived by considering the fact that the polynomial

itself and its first and second derivatives simultaneously vanish at a triple root:

K1T
3 − pK1T

2 +KT − p = 0, (25)

3K1T
2 − 2pK1T +K = 0, (26)

6K1T − 2pK1 = 0. (27)

The above equations show that a triple root appears at T = p/3 when K = 9 and K1 = 27/p2 . It is interesting

to note that K > 9 is derived in the literature [3,8] as the bistability condition for different lac operon models.

By this derivation, one can conclude that K = 9 is a boundary of the bistability interval for K only when the

parameters K1 and p satisfy K1 = 27/p2 . As will be seen in the discriminant, a bistability condition other

than K > 9 becomes valid when K1 > 27/p2 . For these cases, the boundary for the bistability region is derived

by considering the two real roots such that one of them is double. This derivation will be performed in Section

4 by calculating the discriminant of the polynomial in Eq. (24).

3.3. Local stability analysis

Local stability analysis of the state model in Eqs. (1)–(3) for constant Ge and Te inputs can be realized by

determining the location of the eigenvalues of the Jacobian matrix in the framework of Lyapunov’s first method
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[12]. For the sake of simplicity, one can transform Eqs. (1)–(3) into the following form:

1

γM

dM

dt
=

αM

γM
fM,T (T ) fM,Ge (Ge)−M (28)

1

γP

dP

dt
=

αP

γP
M − P, (29)

1

γT

dT

dt
=

αT

γT
fT,Te (Te) fT,Ge (Ge)P − T. (30)

By this transformation, the locations of the eigenvalues of the Jacobian matrix remain in the same half-plane

of the complex plane. This fact can be seen from Eq. (31), showing that the eigenvalues λ of the Jacobian

matrix related to the transformed model in Eqs. (28)–(30) are just the scaled versions of the eigenvalues λ̂ for

the original model of Eqs. (1)–(3), namely λ = λ̂
γi

with γi > 0.

det
(
λ̂I − Ĵ

)
= det

(
λ̂I − diag(γM , γP , γT )J

)
= γMγP γT det (λI − J) = 0 (31)

Here, Ĵ and J are the Jacobian matrix at a certain equilibrium point T ∗ for the original and the transformed

model, respectively. The eigenvalues of the transformed model are determined by finding the roots of the

characteristic equation given in Eq. (32).

det (λI − J) =

∣∣∣∣∣∣∣
λ+ 1 0 −αM

γM
fM,Ge

(Ge)
d
dT fM,T (T ∗)

−αP

γP
λ+ 1 0

0 −αT

γT
fT,T e

(Te) fT,Ge
(Ge) λ+ 1

∣∣∣∣∣∣∣
= λ3 + 3λ2 + 3λ+ 1− p

d

dT
fM,T (T ∗) (32)

To apply the Routh–Hurwitz test for deciding if there exists any eigenvalue in the right-half plane for the

equilibrium point T ∗ , the Routh array is constructed in the Table. Since fM,T (T ) is monotonically increasing,

then the third term in the first column is always strictly positive. Therefore, the sign change in the first column

can occur only when p d
dT fM,T (T ∗) > 1. It can be seen from the equilibrium equation pfM,T (T ) − T = 0

together with the positiveness of the initial value 1/K of the monotonically increasing function fM,T (T )

that, for the case of the three different equilibria, the smallest and the largest equilibrium points both arise

when p d
dT fM,T (T ∗) < 1 and the middle equilibrium point arises when p d

dT fM,T (T
∗
) > 1. Thus, the middle

equilibrium point is seen to be unstable while the other two are stable. It can be concluded that the parameter

region ensuring the existence of three different equilibria is indeed the bistability region of the lac operon

model in Eqs. (1)–(3). This bistability region in the p − K − K1 parameter space will be characterized by

discriminant-based bistability analysis method in Section 4.

Table. Routh array for the characteristic equation of the transformed model.

λ3 1 3

λ2 3 1− p d
dT fM,T (T )

λ1 1
3

(
8 + p d

dT fM,T (T )
)

λ0 1− p d
dT fM,T (T )
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4. Discriminant-based bistability analysis of the lac operon model

The discriminant ∆ of Eq. (24) is given by:

∆ = −4K3
1p

4 +
(
18K2

1K − 27K2
1 +K2

1K
2
)
p2 − 4K1K

3. (33)

Since the discriminant of a polynomial is proportional to the product of the squares of pairwise differences

between its roots, ∆ becomes zero when a double or a triple root exists. Positive values of ∆ correspond to

the case of three different real roots of the equilibrium equation in Eq. (24). To obtain the conditions on the

parameters, the discriminant equation, i.e .∆ = 0, can be solved in terms of one of the parameters while holding

the others fixed. In order to determine the range of p , one can find the p values satisfying ∆ = 0 as follows:

p(1,2) =

√
a±

√
b

8K1
, (34)

p(3,4) = −

√
a±

√
b

8K1
, (35)

where,

a = K2 + 18K − 27, (36)

b = K4 − 28K3 + 270K2 − 972K + 729. (37)

To identify the interval of p where ∆ > 0, one can first find the real p roots of ∆ = 0. When the inequality in

Eq. (38) is not satisfied, ∆ = 0 has 4 complex roots, and hence there is no any p value yielding ∆ > 0 since

−4K3 , which is the greatest power of p in Eq. (33), is always negative due to the positiveness of the biological

parameter K1 .

K4 − 28K3 + 270K2 − 972K + 729 = (K − 1) (K − 9)
3 ≥ 0 (38)

Therefore, it can be concluded that K values with 1 < K < 9 do not provide the bistability. One can observe

the following relation.

a2 − b2 =
(
K2 + 18K − 27

)2 − (K4 − 28K3 + 270K2 − 972K + 729
)2

= 64K3 > 0 (39)

The relation in Eq. (39) implies that a is, in magnitude, greater than
√
b Then a > 0 becomes a necessary

condition for the bistability since its violation leads all of p(i) ’s roots in Eqs. (34) and (35) to be complex, and

so there is no p value yielding ∆ > 0. Observing a < 0 for K values with 0 < K < 1, all p(i) values in Eqs.

(34) and (35) become real only when K > 9. In the case of realp(1) , p(2) , p(3) , and p(4) , ∆ > 0 is obtained for

the p values lying in the intervals of
(
p(1), p(2)

)
and

(
p(3), p(4)

)
, where the latter interval is not valid due to the

positiveness of the biological parameterp . Hence, the above analysis considering the discriminant ∆ (p,K,K1)

as a function of p provides p(1) < p < p(2) , K > 9, and K1 > 0 constraints as necessary conditions defining

the following region Rp
bi .

Rp
bi =

{
(p,K,K1) ∈ R3

∣∣ p(1) < p < p(2),K > 9,K1 > 0
}

(40)
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The whole set of bistability conditions is obtained in the sequel by repeating the above derivations now

considering the dependence of ∆ (p,K,K1) on K1 and K . The roots of ∆ (p,K,K1) = 0 in terms of K1 , which

are obtained as K
(1)
1 = 0 and K

(2,3)
1 = a±

√
b

8p2 , define the region RK1

bi where K > 9 and p > 0 are required for

having real K
(2,3)
1 roots.

RK1

bi =
{
(p,K,K1) ∈ R3

∣∣K(2)
1 < K1 < K

(3)
1 ,K > 9, p > 0

}
(41)

Similarly, the roots of ∆ (p,K,K1) = 0 by taking K as the variable are obtained as:

K(1) =
Kp2

12
+

c

12d
+

1

12
d, (42)

K(2,3) =
1

24

(
2K1p

2 −
(
1∓ i

√
3
)
c

d
−
(
1∓ i

√
3
)
d

)
, (43)

where c and d are given below.

c = K1p
2
(
216 +K1p

2
)

(44)

d =

(
5832K1p

2 − 540
(
K1p

2
)2

+
(
K1p

2
)3

+ 24
√
3

√
− (−27 +K1p2)

3
(K1p2)

2

) 1
3

(45)

Note that K(1) , K(2) , and K(3) are functions of K1p
2 and their highly nonlinear dependency on K1p

2 can be

visualized as in Figure 3.
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Figure 3. The K(1,2,3) values for differentp2K1

The region RK
bi is then defined with the positive and real roots K(1) and K(3) under the condition of

K1p
2 > 27 since K2 is always a negative real number independent from K1 and p .

RK
bi =

{
(p,K,K1) ∈ R3

∣∣K(1) < K < K(3),K1p
2 > 27

}
(46)
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The above discriminant-based analysis is concluded by defining the bistability region Rbi in the p − K − K1

parameter space as the intersection of the derived Rp
bi , R

K
bi , and RK1

bi .

Rbi = {(p,K,K1) ∈ R3
∣∣ p(1) < p < p(2),K(1) < K < K(3),K

(2)
1 < K1 < K

(3)
1 ,

K1p
2 > 27, p > 0,K > 9, K1 > 0} (47)

Note that K > 9 is reported in the literature [3,8] as the bistability condition. However, the above analysis

shows that not all K values greater than 9 imply the existence of triple equilibria, but for K values larger

than 9 there is always a p value in the interval of
(
p(1), p(2)

)
ensuring the existence of triple equilibria. Further

note that the
(
p(1), p(2)

)
interval actually depends on K and K1 parameters such that small K1 and large K

values result in a large
(
p(1), p(2)

)
interval shifted to the right-hand side; on the contrary, large K1 and small

K values result in a small
(
p(1), p(2)

)
interval shifted to the left-hand side.

The bistability conditions derived by discriminant-based analyses are obtained for one of the parameters

only, i.e. for q ∈ {p,K,K1} . The three-dimensional bistability region in p−K −K1 space can be constructed

by calculating the real roots of the characteristic equation in Eq. (24) for different combinations of the model

parameters. The entire bistability region is given graphically in Figure 4. The obtained bistability condition

for the K parameter from discriminant-based analysis can be observed from Figure 4. The common result of

the literature [3,8], K > 9, is determined in this paper as a necessary condition, not only a sufficient one. The

K parameter has a lower and an upper limit as obtained from the above discriminant-based analysis.

0 20 40 60 80 100 120 140 160 180 200

00.010.020.030.040.050.060.070.080.090.1
0

100

200

300

400

500

600

p

KK1

Figure 4. Bistability region in p−K −K1 space.

The two-dimensional intersection of the bistability region Rbi with a certain plane defined by keeping

K as constant is given in Figure 5. As is observed from Figure 5, the K1p
2 > 27 condition should also be

taken into account to determine the bistability region for the K parameter. When the K1 parameter value

gets larger, the p parameter values that provide a bistability region for the K parameter get smaller.

The 3D and 2D graphical representations of the bistability region depict the bistability region Rbi found

in Eq. (47).
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Figure 5. 2D intersection of bistability region in p−K −K1 space.

5. Conclusion

The bistable behavior of a TMG-induced lac operon model was theoretically investigated in this paper. It was

shown that the state variables of the mathematical model, mRNA, permease, and internal TMG, are bounded,

and that bistable behavior appears when there exist three equilibria, two of which are stable and one of which is

unstable. The main contribution of the paper is the determination of the entire ranges of the model parameters

ensuring the bistable behavior of the considered TMG-induced lac operon model by using a discriminant-based

analysis.

The proposed discriminant-based method, which defines a parametric equilibrium analysis of the lac

operon model, provides a solution to the problem of analysis of the lac operon and other gene regulatory

network models under parameter uncertainties. The determined bistability ranges may give an explanation of

the variations in the appearance of the bistable behavior of the E. coli lac operon observed in experimental

studies. The bistability ranges may also lead to derive new efficient feedback and/or optimal control methods

for the regulation of the behavior of the lac operon while optimizing some performance measures.
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