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Abstract:Erbium-doped fiber amplifiers (EDFAs) have great importance in long-distance communication. It is required

to have equal gain for all signals that are transferred and to avoid loss in the receiver of long-distance communication

systems. However, temperature dependence changes the output spectrum of the designed gain-flattening systems. In this

study, each erbium-doped fiber (EDF) length of a two-stage L-band EDFA has been optimized using a genetic algorithm

method; because of the temperature dependence of EDFAs, there is no general rule. Thus, a simple, fast, dynamic, and

highly accurate model has been developed and obtained for different EDF lengths that will fix gain along the L-band.

The results have been shown to be very compatible with the previously obtained numerical values.
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1. Introduction

Optical amplifiers are widely used in long-haul communication systems. They do not require electrical con-

versation or amplification of light in their own environment. They have both high optical gain and optical

bandwidth [1–3]. In addition, optical amplifiers are among very important wavelength division multiplexing

(WDM) systems that provide large numbers of signal transmissions in a single fiber. In addition to that, these

systems are required for very fast and high-capacity optical communications [4,5]. However, the gain spectrum

of optical amplifiers is not flattened and therefore it limits the transmission capacity of WDM systems. Hence,

wide-band optical amplifiers with flat gain are being developed. Erbium-doped fiber amplifiers (EDFAs) are

among them; they are widely used and have high gain, low noise figure, wide bandwidth, and high efficiency

[6–10].

The output gain and the noise figure values of EDFAs have been defined with different methods. However,

environmental temperature variations change the stimulated emission and absorption cross-sections of EDFAs

and consequently the gain and noise figure values of EDFAs are altered [11–16]. The effect of temperature

variations can be addressed by different calculation methods, but there is no exact solution.

Artificial intelligence methods are commonly used in nonlinear systems with no exact solution [17–34].

Therefore, genetic algorithms (GAs) are widely used to solve optimization problems in these methods. In

previous studies, Riziotis and Vasilakos analyzed the numerical intelligence applications for the efficient use of
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the bandwidth of fiber optic lines [35]. In another study, Liu and Lee showed that in EDFA and Raman amplifier

pump optimization with a GA, higher gain and a higher bandwidth were accomplished [36]. Prudenzano et al.

designed EDFAs and lasers using a GA [37]. Cheng and Xiao used a GA for the optimization of EDFAs [38].

Zhang et al. proposed a GA structure for the gain flattening of EDFAs [39]. Kim et al. also used it for the gain

flattening of EDFAs [40].

In this study, first and second erbium-doped fiber (EDF) lengths are optimized with a GA to obtain the

fixed 25 dB gain output of the two-stage EDFA configuration. In addition, fixed output gain is the same for all

wavelengths and all signal powers. In Section 2, theoretical analysis is conducted; methods and materials are

described in Section 3 and then the results are discussed.

2. Theoretical analysis

A two-level system is taken into account for the 1480-nm pumped EDFA. Because erbium ions are pumped

directly from the ground level, it allows for the metastable level. In addition to analysis of the temperature of

each level, we should consider their separation occurring in Stark splitting. Figure 1 shows the separation of

these Stark splits [41].
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Figure 1. The diagram of energy level of two-level Stark splits.

For all of the energy values of the low and high energy levels, the relative intensities of the possible internal

passage vary with respect to the spectral cross-section that is homogeneous and nonhomogeneous. The cross-

section only can be found experimentally by measuring because of each level of the number of ions. Einstein

analysis that uses the traditional approach of two-level analysis gives the Füchtbauer–Ladenburg relationship:

σi(ν) =
(λ/n)2gi(ν)

8πτ
, (1)

where λ is wavelength, n is refractive index, τ is ion lifetime and g(ν) is the line shape function that is the

normalized value of the absorption or emission spectrum at frequency ν . Absorption and emission cross-sections

of the two-level model of the system must be equal to the upper and lower laser levels, but low Stark is not the

case for EDFAs in the lower level.

N2

N1
= exp

(
− ∆E

kBT

)
, (2)

where kB is Boltzmann’s constant and T is the temperature in Kelvin. In addition, the McCumber theory is

an alternative to analysis of the Einstein theory. This theory can be applied at any frequency, and giving a
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two-section rate uses the concept of the temperature dependence of the energy. Information about the energy

levels can be found in some of the assumptions and predictions. However, they cannot predict the previous

section because for the temperature dependence of EDFA there is no general rule [11,42–46].

In Figure 1, each energy is called level 1 and 2, wherein the total orbital momentum is J ; c = J + 1/2

are the energy sublevels of each separation in several layers, and c indicates the total energy interferences.

Maximum Stark separation shows with the main energy levels 1 and 2 a large part of the energy separation

between the energy levels [47].

The constant ion distribution continues in various decompositions by the constant temperature effect.

Levels 1 and 2 correspond to each of the many layers with a total ion concentration shown as N1 and N2 . k

shows the multilayer index of the lower level of the second energy level (k = 1, ..., c), wherein each of the lower

level populations is Nn,m . n shows the laser level of the subindex, and m shows the multilayer.

The thermalization process happening within each manifold is characterized by the nonradiative rates

A+
nr and A−

nr , which correspond to the excitation or deexcitation of the ions, with absorption or emission of a

phonon. The obtained formula below is under thermal equilibrium:

A−
nrNnm = A+

nrNn,m−1. (3)

The energy difference between (n,m) and (n,m− 1) sublevels is ∆Em = Em − Em−1 and the result of

Nnm/Nn,m−1 = A+
nr/A

−
nr = exp(−∆Em/kBT ) relation is obtained. Eq. (2.3) is recalculated, obtaining the

below relation [41]:

Nnm =
exp [−(Em − Em−1)/kBT ]
cm∑

m=1
exp [− (Em − E1)/kBT ]

Nn ≡ pnmNn, (4)

where pnm is the Boltzmann distribution. There are many sublevels in the system. However, we investigate

the relationship between the first two of these sublevels. Eq. (2.2) is rewritten:

β =
N22

N21
=

A+
nr

A−
nr

= exp

(
−∆E2

kBT

)
, (5)

where N21 and N22 are Stark splits of the second level (N2), if E22 and E21 define the upper and lower level

of the sublevels in the metastable level,∆E2 = E22 −E21 [48]. These two equations can be written as the ratio

of the lower level:

dN22

dt
= Ka

pN1 −Ke
pN22 +A−

nrN21 −A+
nrN22, (6)

dN21

dt
= M12N1 −M21N21 −N21 − 1/τ −A−

nrN21 +A+
nrN22, (7)

where the lifetime is τ = 1/γ , Ka,e
p is absorption and stimulated emission rates of the pump, and M12,21

is stimulated absorption and emission rates of the signal. The below formula is then obtained at stationary

conditions:

N22

N
=

Ip
bap

+
(Is+I±

ASE)

bas

(1 + β)
Ip
bap

+ β
Ip
bep

+ (1 + β + η)
(Is+I±

ASE)

bas
+ 1

. (8)
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In Eq. (2.8), ba,ep = hνp/τσ
a,e
p , ba,es = hνs/τσ

a,e
s , Ip and Is are pump and signal intensity, I±ASE is amplified

spontaneous emission (ASE) intensity in forward (+) and backward (-) directions, η is the rate between emission

and absorption cross-sections, and total concentration distribution of Er3+ ions is N,N = N1+N21+N22 [41–

51].

The equations for the propagation of signal, pump, and ASE powers are given as follows:

dPs

dz
= 2π

∫ ∞

0

Is[σ
e
sN21(r)− σa

sN1(r)]rdr, (9)

dPp

dz
= ±2π

∫ ∞

0

Ip[βσ
e
pN21(r)− σa

pN1(r)]rdr, (10)

dP±
ASE

dz
= ±2hνs

∫ ∞

0

2πσe
sN21f

±
ASE(r)rdr ± 2π

∫ ∞

0

[σe
sN21(r)− σa

sN1(r)]P
±
ASEf

±
ASErdr. (11)

f±
ASE is the normalized ASE profile, and P±

ASE is ASE power to direction z, which can be defined for both

directions (P±
ASE = P+

ASE + P−
ASE). fp(r) ≈ fs(r) ≈ f+

ASE(r) = f(r) and is assumed to spread in the +z

direction [43,47,49,50].

With output signal gain for the z = L, the relationship between the amplifier gain and EDF length is:

Ps(L)
Ps(0)

= exp(−αsL).

exp
(

hνs

P int
s

[
Pp(0)−Pp(L)

hνp
+

(Ps(0)+P+
Y KY (0))−(Ps(L)+P+

ASE(L))

hνs

])
,

(12)

where P int
s is the intrinsic saturation power and its equation is shown below:

P int
s =

hνs (Aeff − 2τσe
sΓ)

τσa
sΓ(1 + β + η)

, (13)

νp
νs

Ps(0)

Pp(L)
(G− 1) +

σa
p

σa
s

ln(G) =
Pp(0)

Pp(L)
− 1− ln

(
Pp(0)

Pp(L)

)
. (14)

3. Materials and methods

In this study, each stage of EDF length of a two-stage L-band EDFA with fixed gain, corresponding to changes

in wavelength and temperature, is optimized with a GA. Using earlier L-band EDFAs data were analyzed

numerically [41]. Figure 2 shows the optimization of a two-stage L-band EDFA.

FI1 FI2
PC1 PC2

PL1 EDF2

PL2

EDF1

TLS OSA

Figure 2. Two-stage L-band EDFA [41].
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The input signals are received into a tunable laser source (TLS) that are between 1570 nm and 1610 nm

in wavelength and –20 dBm power and pass through port 1 to port 2 of FI1, and then the input and pump

signals (PL1) that have 50 mW and 1480 wavelength are combined in a pump coupler (PC1). Following that,

these signals are reached as inputs of the co-pumped EDF1, and after that, the amplified signals and second

pump signals (PL2) that have same properties as PL1 are combined in PC2, and these signals are given as

inputs of the co-pumped EDF2. Finally, two times the amplified signals passing through port 1 to port 2 of

FI2 reach the optical spectrum analyzer (OSA). The EDF1 and EDF2 lengths are optimized with a GA in this

configuration.

Then the EDF1 and EDF2 lengths optimized with a GA by the temperature of the system are changed

between –20 ◦C and 60 ◦C. EDF parameter values used in the system are given in the Table.

Table. The parameters of L-band EDFs.

Parameters Values
Loss at 1300 nm 4 dB/km
Life-time 10 ms
Core radius 1.45 µm
Erbium radius 1 µm

Er3+ intensity 9× 1024 m−3

Numerical aperture 0.24

In the terminology of genetic algorithms, each parameter to be optimized is randomly encoded into binary

sequences, which are called a gene, and a set of genes form a chromosome. The quality of an individual in the

population with respect to the two objective functions is represented by a scalar value, called fitness. After

generating the initial population, each individual is assigned a fitness value. The population is derived again

and again, generation by generation, using the crossover operation and the mutation operation. Both operations

procreate progeniture by manipulating the individuals in the current population that have good fitness values.

The crossover operation exchanges portions of the chromosomes. The mutation operation changes the value of

a gene. Individuals with a better fitness value are more likely to survive and to participate in the crossover

operation. After a number of generations, the population contains members with better fitness values [52,53].

The model is designed with a GA as shown in Figure 3. As can be seen in this model, the temperature and the

total length of the EDF are inputs, and the length of the first and second EDF sections is the output variable.

The fitness function is shown below:

First section EDF length = (T+C).0.1 for T = 26, C = –20 ◦C/+60 ◦C, where T is base value and C

is temperature.

Second section EDF length = (T+C).0.14 for T = 82.5 and C = –20 ◦C/+60 ◦C.

The model of GA 

Temperature

Total fiber length  

EDF lengths 

for each 

section

Figure 3. The designed GA model.

For the formulation of the GA model, first the structure of chromosomes must be specified for the first

population to be produced. Chromosome structure is composed of temperature and total fiber length. We have
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the –20 ◦C/+60 ◦C temperature range as mentioned for the model and a total fiber length of between 144.96

and 106.76 m for GA model inputs, and the output is the length of the EDFs.

Start

Establishment of the first population

Create the random mutation values

Establishment of  population

Make selection process

Make crossover

Mutation value>0.05?

Apply mutation

Entering the required information

 The transfer to next generation best individuals 

Provided stop condition for  
algorithm ?

Separation of the first and second stage fiber lengths

Draw figures

End

Yes

No

Yes

No

Figure 4. The flowchart of the designed GA model.

The flowchart of the designed GA model is shown in Figure 4. First, as mentioned before, information

(temperature, the signal wavelength) is fed into the flow chart as a GA. Then the first population, which consists

of the temperature and the EDF length to produce chromosome structure, is formed. Values of temperature

between –20 ◦C and 60 ◦C are assigned 2–7 bits and converted into the binary system. Values of total EDF

lengths between 102 and 112 m are assigned 8–14 bits and then converted to binary system. The selection

process among 40 data of the first population is chosen randomly to create the next population. In this study,

the “tournament selection rule” by applying the method of selecting the best 20 pairs was randomly selected.

It established 20 pairs with a population that was ready for crossover stage. In this study, as a crossing-over

method, “uniform crossover” is used for the most relevant results to the theoretical results. After the mutation

rate is created randomly, if the mutation value is greater than 0.05 it cannot transfer the next generation of

the best members, or else the mutation is applied and transfers to the next generation the best individuals.

Then stopping the GA is required. Twenty-two generations are generated, each with a population size of 40, to

compare the quality of the fitness functions in this study. The probability of crossover is 0.9 and the probability

of mutation is 0.05 in this paper. If EDF lengths for all individuals in the population are between 102 and 112

m, the algorithm is stopped. Thus, the first and second lengths of the EDF lengths are separated. Lastly, the

algorithm is terminated by plotting graphs.

4. Results and discussion

The first- and second-stage EDF lengths of a previous theoretical work [41] were optimized by a GA between

–20 ◦C and 60 ◦C temperature values and the first and second phases respectively are shown in Figures 5

and 6.
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Figure 5. The first-stage EDF length that is found with

theoretical work and GA according to changing tempera-

ture.

Figure 6. The second-stage EDF length that is found

with theoretical work and GA according to changing tem-

perature.

As can be seen in Figure 5, the theoretical and optimized-by-GA EDF length starts at 26 m and differs

very little. It is observed that the longer the fiber is, the greater the temperature is. The EDF length of the

first stage changes between 26 m and 37 m.

As can be seen in Figure 6, the theoretical and optimized-by-GA EDF length changes in harmony. EDF

length of the second stage as the temperature increases up to 40 ◦C is decreasing, but this is in direct proportion

to the slightly increasing temperature value. The output gain is approximate 25 dB for both figures.

In Figure 7, the change in the theoretical and optimized EDF length values depends on the temperature

and is drawn as a percentage error for the first stage. As can be seen from the graph, this value varies between

–3.5% and 3.5%.
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Figure 7. The percent error of theoretical results versus

GA results for first-stage fiber length.

Figure 8. The percent error of theoretical results versus

GA results for second-stage fiber length.

The second stage of the length of fiber length values for the theoretical and optimized-by-GA percentage

error varies between –3% and 0.5%, as shown in Figure 8. Thus, by using the GA, a rapid, dynamic, high-

accuracy model is developed. In addition, different EDFA parameters can be optimized using the GA with a

variety of different operating bands. In addition to the C band and the S band, the wavelength of the pump; the

first stage, the second stage, or more stages of lengths of fiber; and the gain flattening filters can be optimized

using the GA.
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5. Conclusions

In this study, the EDF length of the temperature-dependent two-stage L-band EDFA gain is analyzed with the

GA approach. EDF length is arranged to obtain accurate values in the range of –20/+60 ◦C for fixed EDFA

gain, which is obtained as 25 dB (±0.5 dB ripple) along the L-band. The users can quite easily define EDF

lengths of each stage for the design temperature using this design. The improved GA model shows excellent

harmony with the theoretical results for the full spectrum. Classical calculation techniques or experimental

setups require enormous computational time and efforts or expensive experimental setups. Contrariwise, the

proposed GA approach is very useful for the simple and quick design and simulation of optically related systems

under highly temperature-dependent conditions. In addition, this model can be used for different engineering

applications and simulations due to the generalization capabilities of GAs.
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