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Pawe lJAB LOŃSKI1, Dariusz KUSIAK1, Artur PASIERBEK2

1Environmental Engineering Institute, Czestochowa University of Technology, Czestochowa, Poland
2Institute of Theoretical and Industrial Electrical Engineering, Silesian University of Technology, Gliwice, Poland

Received: 20.10.2013 • Accepted/Published Online: 02.03.2014 • Final Version: 23.03.2016

Abstract:This paper presents a discrete numerical computation method for determining the magnetic field distributions

in finite-length high-current bus ducts of rectangular busbars. This method is based on the integral equation method

and the partial element equivalent circuit method. It takes into account the skin effect and proximity effects, as well

as the complete electromagnetic coupling between phase bars and the neutral bar. In particular, the magnetic fields in

busbars of unshielded three-phase systems with rectangular phase and neutral busbars and the use of the method are

described. Finally, two applications to three-phase unshielded systems busbars are presented.
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1. Introduction

High-current air-insulated bus duct systems with rectangular busbars are often used in power generation and

substations due to their easy installation and utilization. The increasing power level of these plants requires

an increase in the current-carrying capacity of the distribution lines (usually 1–10 kA). The medium voltage

level of the generator terminals is 10–30 kV. The construction of the busbar is usually carried out by putting

together several flat rectangular bars in parallel for each phase in order to reduce thermal stresses. The spacing

between the bars is made equal to their thickness for practical reasons, and this leads to skin and proximity

effects. The bus ducts usually consist of aluminum or copper busbars [1,2]. A typical cross-section of a shielded

three-phase high-current bus duct is depicted in Figure 1.

Power busbars generate extremely low-frequency magnetic fields, which can cause disturbances in nearby

computers and some other electrical, electronic, and digital devices. Power distribution three-phase busbar

systems are one of the main sources of magnetic fields at industrial frequency and can generate electromagnetic

interference by inductive coupling. Moreover, the presence of a low-frequency magnetic field generated by power

busbars may produce some undesirable effects on human health [3–6]. Thus, a correct prediction of the magnetic

field generated by high-current bus ducts is very important.

The distribution of AC magnetic fields in the region surrounding the busbars can be found exactly only

for simple geometries like round wires and tubes [7], or very long and thin rectangular busbars (tapes or strips)

[8–10]. For more complex cross-sections analytical-numerical and numerical methods must be used to find the

magnetic field distributions, which is further modified by the proximity of other conductors, i.e. the “proximity
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effect” [4–6,11–15]. Both the skin effect and proximity effect will generally cause the magnetic field distribution

to differ considerably from the expected one without taking into account both effects. The development of

efficient numerical methods for the solutions of these problems is therefore of interest.

2. Multiconductor model of the busbars

In this model, each phase, neutral busbars, and each plate of the enclosure are divided into several thin subbars

[2], as shown in Figure 2.

x

y ),( ki

xN  

horizontal subdivisions 

Δa 

b 

a 

Δb 

),( ki

yN   
vertical 

subdivisions 

)(

,

m

kiS  

Figure 1. Three-phase high-current bus duct of rectan-

gular cross-section with two busbars per phase and one

neutral busbar (PELPO-Version II, manufactured by Elek-

trobudowa S.A., Katowice, Poland).

Figure 2. The k th bar of the ith phase divided into

Ni,k = N
(i,k)
x N

(i,k)
y subbars.

This division of the k th bar of the ith phase or the neutral into subbars is carried out separately for the

horizontal (Ox axis) and vertical (Oy axis) direction of its cross-sectional area. Hence, subbars are generally

rectangular in cross-section with width ∆a and thickness ∆b , defined by the following relations:

∆a =
a

N
(i,k)
x

and ∆b =
b

N
(i,k)
y

, (1)

where a and bare the width and the thickness of the busbar, respectively, and N
(i,k)
x and N

(i,k)
y are the number

of divisions along the busbar width and thickness, respectively. Thus, the total number of subbars of the k th

bar of the ith phase is Ni,k = N
(i,k)
x N

(i,k)
y , and they are numbered by m = 1, 2, . . . , Ni,k . For the l th bar

of the j th phase or the neutral we have the total number of subbars N j,l = N
(j,l)
x N

(j,l)
y numbered by n = 1,

2, . . . , N j,l . All subbars have the same length l .

If the diagonal [(∆a)2+(∆b)2 ]1/2 of the mth subbar is small in comparison to the skin depth, we can

neglect the skin effect and assume that the complex current density (A/m2) in the subbar can be considered

uniform, i.e.

J
(m)
i,k =

I
(m)
i,k

S
(m)
i,k

, (2)

where I
(m,k)
i is the complex current flowing through the mth subbar.

1280



SZCZEGIELNIAK et al./Turk J Elec Eng & Comp Sci

3. Current densities

For the mth subbar the integral equation can be written as follows [16]:

J
(m)
i,k (X)

σi
+

jωµ0

4π

Nc∑
j=1

Nj∑
l=1

Nj,l∑
n=1

∫
v
(n)
j,l

J
(n)
j,l (Y )

ρXY
dv

(n)
j,l = ui, (3)

where σi [S/m] is the electrical conductivity of ith phase bar, j is the imaginary unit, ω is the angular frequency

of the currents, µ0 [H/m] is the magnetic permeability of vacuum, ui [V/m] is the voltage drop on the ith

phase bar per unit of length, v
(n,l)
j is the volume of the nth subbar or plate of the l th bar or plate of the j th

phase or the neutral or the enclosure, and ρXY = |X – Y | is the distance between the observation point X =

(x1 , y1 , z1) and the source point Y = (x2 , y2 , z2).

Now we can divide Eq. (3) by the area S
(m,k)
i and integrate over the volume v

(m,k)
i of the mth subbar

or plate, obtaining the following equation:

R
(m)
i,k I

(m)
i,k + jω

Nc∑
j=1

Nj∑
l=1

Nj,l∑
n=1

M
(m,n)
(i,k)(j,l)I

(n)
j,l = U i, (4)

where U i is the voltage drop across of all subbars of the ith phase or the neutral or the shield (they are

connected in parallel), and the resistance of the mth subbar is defined by

R
(m)
i,k =

l

σiS
(m)
i,k

, (5)

and the self or the mutual inductance is expressed as

M
(m,n)
(i,k)(j,l) =

µ0

4π S
(m)
i,k S

(n)
j,l

∫
v
(m)
i,k

∫
v
(n)
j,l

dv
(m)
i,k dv

(n)
j,l

ρXY
. (6)

The exact closed formulae for the self and the mutual inductance of a rectangular conductor of any dimensions,

including any length, were given in [17] and [18], respectively. Not only do not we use the geometric mean

distance here, we do not use the formula for mutual inductance between two filament wires, as well.

The set of equations like Eq. (4), written for all subbars, forms the following general system of complex

linear algebraic equations:

Û = ẐÎ, (7)

where Û and Î are column vectors of the voltages and currents of all subbars, respectively, and Ẑ is the

symmetric matrix of self and mutual impedances (the impedance matrix) of all subbars, the elements of which
are

Z
(m.n)
(i,k)(j,l) =

 R
(m)
i,k + jωM

(m,n)
(i,k)(j,l) m = n, i = j, k = l,

jωM
(m,n)
(i,k)(j,l) otherwise.

(8)
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We can then find the admittance matrix Ŷ , which is the inverse matrix of the impedance matrix Ẑ , and it is

expressed as

Ŷ =
[
Y

(m,n)
(i,k)(j,l)

]
= Ẑ

−1
(9)

and has a similar structure as Ẑ . It is then possible to determine the current of the mth subbar of the k th

bar of the ith phase or the neutral as

I
(m)
i,k =

Nc∑
j=1

Nj∑
l=1

Nj,l∑
n=1

Y
(m,n)
(i,k)(j,l)U j . (10)

The total current of the ith phase or the neutral is

Ii =

Ni∑
k=1

Ni,k∑
m=1

I
(m)
i,k . (11)

By inserting Eq. (12) into Eq. (13), we obtain

Ii =

Nc∑
j=1

Y U j , (12)

where

Y =

Ni∑
k=1

Ni,k∑
m=1

Nj∑
l=1

Nj,l∑
n=1

Y
(m,n)
(i,k)(j,l). (13)

From the admittance matrix with elements given by Eq. (13), we can determine the impedance matrix of

shielded three-phase system busbars with the neutral busbar as follows:

Z = [Z] = Y −1 = [Y ]
−1

. (14)

The impedances Z i,j in Eq. (14), which are obtained from Eqs. (5), (6), (8), (9), and (13), comprise information

related only to construction and material, whereas their values are not affected by the busbar currents but only

by their cross-sectional distribution. Therefore, the skin and proximity effects are taken into consideration.

If we assume all sinusoidal phase currents to be given, we can write that the neutral current I N = I 1 +

I 2 + I 3 and, from Eq. (12), find all voltages across phase and neutral busbars as

U i =

Nc∑
j=1

ZIj . (15)

From that and Eq. (12) it is possible to determine all currents in subbars and finally calculate, according to

Eq. (4), the current densities in them. These densities differ in the cross-sections of the busbars due to the skin

and proximity effects.
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4. Magnetic field

Knowing the current from Eq. (10) in each subbar, evaluation of the magnetic field can be performed. The

vector magnetic potential A
(m,k)
i (X), in Wb/m, induced by the mth subbar (Figure 3), is given by

A
(m)
i,k (X) =

µ0

4π

∫∫∫
v
(m)
i,k

J
(m)
i,k (Y )

ρXY
dv = azA

(m)
i,k (x, y, z), (16)

where X = (x , y , z), Y = (x1 , y1 , z1), and ρXY = |X − Y | .
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Figure 3. The mth subbar of the k th bar of the ith phase with the current I
(m,k)
i , which generates the vector magnetic

potential A
(m,k)
i at point X .

If l >> ∆x
(m,k)
i and l >> ∆y

(m,k)
i as well as |x − x1| >> ∆x

(m,k)
i and |y − y1| >> ∆y

(m,k)
i , the

integral of Eq. (16) can be rewritten as

A
(m)
i,k (x, y, z) =

µ0I
(m)
i,k

4π

l0+l∫
l0

dz1

ρ
(m)
XY

, (17)

where

ρ
(m)
XY =

√
(x− x

(m)
i,k − 1

2∆x
(m)
i,k )2+

+(y − y
(m)
i,k − 1

2∆y
(m)
i,k )2 + (z − z1)

2.

(18)

Hence, the complex magnetic field strength (in A/m) has two components only, which are given by

H
(m)
x,i,k(X) = −

I
(m)
i,k

4π

l0+l∫
l0

(y − y
(m)
i,k − 1

2∆y
(m)
i,k )

(ρ
(m)
XY )

3
dz1 (19)
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and

H
(m)
y,i,k(X) =

I
(m)
i,k

4π

l0+l∫
l0

(x− x
(m)
i,k − 1

2∆x
(m)
i,k )

(ρ
(m)
XY )

3
dz1. (20)

The integrals in Eqs. (19) and (20) are the standard integrals whose solutions are well known, i.e. we

have that

ℑ(z, a, b) =
∫

b dξ

[a2 + b2 + ξ2]3/2
=

b

a2 + b2
ξ√

a2 + b2 + ξ2
(21)

for ξ = z − z1 . Thus, assuming l0 = 0, the components of the magnetic field can be rewritten as

H
(m)
x,i,k(X) =

I
(m)
i,k

4π

 ℑ(z, x− x
(m)
i,k − 1

2∆x
(m)
i,k , y − y

(m)
i,k − 1

2∆y
(m)
i,k )

−ℑ(l − z, x− x
(m)
i,k − 1

2∆x
(m)
i,k , y − y

(m)
i,k − 1

2∆y
(m)
i,k )

 (22)

and

H
(m)
y,i,k(X) = −

I
(m)
i,k

4π

 ℑ(z, y − y
(m)
i,k − 1

2∆y
(m)
i,k , x− x

(m)
i,k − 1

2∆x
(m)
i,k )

−ℑ(l − z, y − y
(m)
i,k − 1

2∆y
(m)
i,k , x− x

(m)
i,k − 1

2∆x
(m)
i,k )

 . (23)

The total magnetic field is given by

Hx(X) =

Nc∑
i=1

Ni∑
k=1

Ni,k∑
m=1

H
(m)
x,i,k(X) (24)

and

Hy(X) =

Nc∑
i=1

Ni∑
k=1

Ni,k∑
m=1

H
(m)
y,i,k(X). (25)

In three-phase busbar systems, the magnetic field is elliptical [19]. Its instantaneous value equals

H(X, t) = ax
√
2Re(Hxe

jωt) + ay
√
2Re(Hye

jωt) (26)

and its major and minor RMS values, respectively, can be found as follows:

Hmax(X) = max
0≤t≤T

|H(X, t)|√
2

= |H1(X)|+ |H2(X)| , (27)

Hmin(X) = min
0≤t≤T

|H(X, t)|√
2

= ||H1(X)| − |H2(X)|| , (28)

where

H1(X) =
Hx(X) + j Hy(X)

2
, (29)

H1(X) =
H∗

x(X) + j H∗
y(X)

2
. (30)
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5. Numerical examples

The first numerical example selected for this paper features a three-phase system of rectangular busbars with

one neutral busbar, whose cross-section is depicted in Figure 4. According to the notations applied in this figure,

the following geometry of the busbars has been selected: the dimensions of the phase rectangular busbars and

the neutral busbars are a = 60 mm, b = b1 = 5 mm, d = d1 = 90 mm. The phase busbars and the neutral are

made of copper, which has the electric conductivity of σ = 56 MS m−1 . The frequency is 50 Hz. All phases

have two busbars per phase − N1 = N2 = N3 = 2, and the neutral has one busbar − N4 = 1. The length

of the busbar system is assumed to be l = 10 m. In the numerical procedure, each phase busbar is divided

into N
(i,k)
x = 30 and N

(i,k)
y = 5, which gives 150 subbars for each busbar. Hence, all three phases and the

neutral busbars have 1050 subbars in total. With the chosen division, each rectangular subbar has dimensions

of 2 × 1 mm. This allows for the fact that the current density is uniform on the surface of the subbars. During

the simulation, three balanced currents with busbar-rated values I1 = 1 kA are imposed in phases as shown:

b b1 

N 

a 

L1 L2 L3 

d d1 d 

x

y 

b2 
a1 

Figure 4. Three-phase high-current bus duct of rectangular cross-section with two busbars per phase and one neutral

busbar.

I2 = I1e
−j120o , I3 = I1e

j120o , and IN = I1 + I2 + I3 = 0. (31)

As a first result, the current density comparison along the x axis, practically the same along y axis at

x = const, in each busbar is shown in Figure 5.

Figure 5. Magnetic field Hmax (RMS value) against x at different heights in the high-current three-phase bus ducts

with two busbars per phase and one neutral bar in the case of three balanced currents (a1 = 35 mm, b2 = 45 mm; see

Figure 4).
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The case of three unbalanced currents,

I2 = 0.5I1e
−j120o , I3 = I1e

j120oand IN = I1 + I2 + I3 = 0.5 ej60
o

, (32)

has been also investigated (Figure 6).

Figure 6. Magnetic field Hmax (RMS value) against x at different heights in the high-current three-phase bus ducts

with two busbars per phase and one neutral bar in the case of three unbalanced currents (a1 = 35 mm, b2 = 45 mm;

see Figure 4).

The second configuration of a three-phase busbar system, the current density of which is investigated, is

shown in Figure 7. It has only one busbar per phase and neutral – N1 = N2 = N3 = N4 = 1. The length of

the busbar system and the busbar division are as in the previous example (150 subbars for each busbar). Hence,

all three-phase and neutral busbars have 600 total subbars. With the chosen division, each rectangular subbar

still has dimensions of 2 × 1 mm. During the simulation, three balanced – Eq. (31) − and three unbalanced

– Eq. (32) − currents with busbar-rated values Ieff = 1 kA are imposed in phases, and the comparison of

current densities along the x axis, practically the same along the y axis at x = const., in each busbar is shown

in Figure 8 and Figure 9, respectively.

b 

N 

a 

L1 L2 L3 

d d1 d 

x 

y 

a1 b2 

Figure 7. Three-phase high-current bus duct of rectangular cross-section with one busbar per phase and one neutral

busbar.
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Figure 8. Magnetic field Hmax (RMS value) against x at different heights in the high-current three-phase bus ducts

with one busbar per phase and one neutral bar in the case of three balanced currents (a1 = 35 mm, b2 = 45 mm; see

Figure 7).

Figure 9. Magnetic field Hmax (RMS value) against x at different heights in the high-current three-phase bus ducts

with one busbar per phase and one neutral bar in the case of three unbalanced currents (a1 = 35 mm, b2 = 45 mm;

see Figure 7).

6. Comparison of results

To verify the computed magnetic field, we also carried out suitable measurements. Magnetic fields of the busbars

systems were measured in the laboratory on an experimental setup (Figure 10). In the measurements, a three-

phase current of 1000 A was injected into a test system by a special AC current source. The experiments were
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performed under a 50 Hz sinusoidal supply. The busbars systems under test were 3.9 m long and terminated at

one end by a short connector. The results of the measurements and calculations are shown in Tables 1 and 2.

Figure 10. Laboratory stand for magnetic field measurements in three-phase busbar system, 1 – busbars, 2 – enclosure

(open top cover), 3 – supply, 4 – Rogowski coil, 5 – digital voltmeter, 6 – digital phase meter, 7 – oscilloscope.

Table 1. Magnetic field in kA/m of three-phase high-current bus ducts of rectangular cross-section with a neutral busbar

depicted in Figure 13.

Method
Points
1 2 3 4 5 6 7 8 9 10 11 12

*

IEM 0.385 0.950 6.450 7.850 6.650 0.985 0.450 0.855 1.860 2.145 1.885 0.750
FEM 0.504 1.288 8.034 8.100 7.791 1.213 0.441 1.013 2.106 2.487 2.091 0.898
MM 0.449 1.113 5.927 6.366 5.918 1.097 0.457 0.934 1.792 2.321 1.800 0.793

**

IEM 0.565 1.645 6.450 3.565 6.255 0.995 0.450 0.985 1.865 2.065 1.960 0.785
FEM 0.457 1.812 7.985 4.761 7.910 1.306 0.416 1.004 2.050 2.318 2.151 0.961
MM 0.416 1.463 6.157 3.621 6.278 1.128 0.384 0.913 1.694 2.179 1.850 0.766

* - Balanced currents.

** - Unbalanced currents.

IEM - Integral equation method.

FEM - FEMM computations.

MM - Measurements.

The measurement system is presented in Figure 11. The fundamental element of the measurement system

is the magnetic field sensor (Figure 12), which is connected with a computer by means of optical fiber and a

converter. Output voltages of the sensor are functions of the measured magnetic field components. The magnetic

field in the three-phase high-current bus ducts was measured at the points shown in Figures 13 and 14.

Apart from numerical calculation, computer simulations for the three-phase unshielded busbars system

were also performed with the aid of the commercial FEMM software [20], using two-dimensional finite elements.

Figure 15 shows the computational finite element mesh for three-phase busbars.

From Tables 1 and 2 it follows that the measured values of the magnetic field are very close to the

computed ones with the use of the integral equation method. In general, the relative error does not exceed

10% for balanced and unbalanced currents. It is noticeable that the measured values are slightly larger than

the computed ones, especially for the high-current bus duct with one busbar per phase. The increased values
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probably come from uncertainty of some parameter values that are included in the computational model, such

as the conductivity of copper. The laboratory high-current bus duct probably has slightly different physical

parameters than those given by the producer.

Table 2. Magnetic field in kA/m of three-phase high-current bus ducts of rectangular cross-section with a neutral busbar

depicted in Figure 14.

Method
Points
1 2 3 4 5 6 7 8 9 10 11 12

*

IEM 0.375 0.915 5.120 6.265 6.250 0.955 0.365 0.750 1.890 1.980 1.650 0.665
FEM 0.518 1.323 7.409 7.813 7.293 1.251 0.449 1.009 2.020 2.417 2.014 0.903
MM 0.460 1.078 5.765 5.955 6.154 0.991 0.346 0.843 1.701 2.137 1.902 0.716

**

IEM 0.525 1.655 6.885 4.785 6.825 0.985 0.385 0.950 1.780 2.155 2.000 0.750
FEM 0.460 1.888 7.293 5.116 7.317 1.332 0.413 0.975 1.937 2.264 2.055 0.956
MM 0.486 1.476 5.528 3.921 6.129 0.987 0.320 0.885 1.636 1.922 1.930 0.727

* - Balanced currents.

** - Unbalanced currents.

IEM - Integral equation method.

FEM - FEMM computations.

MM - Measurements.

Converter 

Magnetic field sensor 

USB 

Optical fiber 

Figure 11. Block diagram of the measurement system. Figure 12. Magnetic field sensor.

1 2 3 4 5 6 

7 8 9 10 11 12 

100 90 90 90 

60 30 

1
1
 

5
 

5
 

6
3
 

N L1 L2 L3 

Figure 13. Measurement points for the three-phase high-current bus duct with two busbars per phase.
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1 2 3 4 5 6 

7 8 9 10 11 12 

100 90 90 90 

60 30 

1
6
 

5
 

6
3
 

L1 L2 L3 N 

Figure 14. Measurement points for the three-phase high-current bus duct with one busbar per phase.

Figure 15. The finite element mesh used in FEMM computations.

The discrepancies between measured values and FEMM computations are caused by the calculation

methods. In the integral equation method, the authors used Eq. (27) to obtain the maximum value of the

magnetic field, but FEMM software uses the following formula:

∥H∥ =
√
HxH

∗
x +HyH

∗
y. (33)

Besides, FEMM performs 2D field computations, whereas our method uses the formulae for finite-length

conductors.

7. Conclusions

A finite-length approach to the solution of the magnetic field distribution in the high-current bus ducts of a

rectangular cross-section has been presented in this paper. The proposed approached combines the partial

element equivalent circuit method with the exact closed formulae for AC self and mutual inductances of

rectangular conductors of any dimensions, which allows precise accounting for the skin and proximity effects.

Complete electromagnetic coupling between the phase busbars and the neutral busbar is taken into account, as

well.

As Figures 5 and 6 as well as 8 and 9 show, both the skin effect and the proximity effect will generally cause

the magnetic field distribution to differ considerably from the expected one without taking into account both

effects, especially very near the busbars. Knowing the magnetic field and current distribution, the evaluation

of the electrodynamic force on each busbar can be performed.

The proposed method allows us to calculate the magnetic field intensity distribution in a set of parallel

rectangular busbars of any dimensions, including any length. The model is strikingly simple, and from a

logical standpoint it can be applied in general to conductors of any cross-section, whereas many conventional

methods, being much more complicated, often require a greater or lesser degree of symmetry. From the practical
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standpoint of the calculations involved, the model requires the solution of a rather large set of linear simultaneous

equations. However, this solution is well within the range of the ability of existing computers, even those that

are somewhat older.
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