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Abstract: Recently, classifying different emotional content of speech signals automatically has become one of the

most important comprehensive inquiries. The main subject in this field is related to the improvement of the correct

classification rate (CCR) resulting from the proposed techniques. However, a literature review shows that there is no

notable research on finding appropriate parameters that are related to the intensity of emotions. In this article, we

investigate the proper features to be employed in the recognition of emotional speech utterances according to their

intensities. In this manner, 4 emotional classes of the Berlin Emotional Speech database, happiness, anger, fear, and

boredom, are evaluated in high and low intensity degrees. Utilizing different classifiers, a CCR of about 70% is obtained.

Moreover, a 10-fold cross-validation procedure is used to enhance the consistency of the results.
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1. Introduction

Nowadays, human emotion recognition plays a vital role in the field of human–computer interactions [1]. Dif-

ferent modalities can be used to identify affective moods of people, e.g., speech content, body language, facial

expressions, and biological parameters [2]. Because of the simplicity of speech-related techniques and instru-

ments, manifestation of emotional states via speech signals has become the most important topic among these

domains. Therefore, many researchers all over the world do research on techniques to introduce new approaches

in emotional speech recognition (ESR) methods. They have endeavored to improve the correct classification

rate (CCR) of such systems in 3 major parts: feature extraction, feature selection, and classification.

Bezooijen [3] extracted one of the initial acoustic features for the purpose of emotional speech recognition.

Using statistical properties of these features, he succeeded to classify emotions with low accuracies. Some

researchers such as Tolkmitt and Scherer [4] followed his studies, but they did not achieve any noticeable

success. Afterwards, McGilloway et al. extracted 32 prosodic features allied with pitch, tune, intensity, and

spectrum of speech signals [5]. With the base of these features, some researchers, e.g., Hammal et al. [6],

Ververidis et al. [7], Pao et al. [8], and Yang and Pu [9], extracted some additional features with respect to

those introduced by McGilloway et al. Using different filter methods such as mutual information, entropy, and

variation coefficient (VC)-based filters and some wrapper methods, e.g., sequential forward selection, sequential

backward selection, sequential floating forward selection (SFFS), and sequential floating backward selection,

they improved CCRs in normal situations.
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In addition to these efforts, in order to prepare appropriate systems for being used in more real phenomena,

some researchers worked on the topic of ESR in the presence of background noise [10–13]. The main purpose

of these efforts was related to the robustness-improvement of ESR systems. Employing different preprocessing

steps, they extracted suitable features to be applied for the classification of speech signals in accordance with

their emotional content.

Literature reviews show that not enough research exists about the relations between the features and the

intensity of emotional content of speech signals. The best reported work is that of Song et al. [14]. They only

employed log frequency power coefficients as the main features for the assessment of emotional intensities in

speech utterances.

In this paper we present a comprehensive study on the features that are related to the intensity of emotions

in speech signals. To gain a superior understanding about these relations, we have focused on 4 emotions: anger

and happiness, which are related to high arousal emotions, and fear and boredom as low arousal ones [15]. In

this way, all of the evaluations of this paper are executed on the utterances of the Berlin Emotional Speech

database (EmoDB), which were recorded in the room of the Technical Acoustics Department of the Technical

University of Berlin [16].

This article is organized as follows: the proposed method of this paper and its different aspects are

explained in Section 2. In Section 3, intensity-related features with respect to different emotions are extracted

from speech signals. Subsequently, Section 4 discusses speech signals classified in accordance with their emotional

contents, using the best selected features. In Section 5, by means of 2 classifiers and by using the best intensity-

related features, emotional speech signals are categorized into 2 groups: high intensity level and low intensity

level. Finally, conclusions are provided in Section 6.

2. Proposed method

Speech source and vocal tract are 2 factors that can be modified through the changes of human affects. Therefore,

their evaluation could help us to recognize the emotional class of speakers and their intensities correctly. The

cornerstone of the article is based on this fundamental concept.

The frameworks of the manuscript are illustrated in Figure 1. The first framework, illustrated in Figure

1a, is related to the process of classifying input speech signals to appropriate emotional categories. In the second

framework, Figure 1b, the silent sections and noisy components are first removed from the utterances using the

voice-activity detection (VAD) algorithm. Additionally, Figure 1c shows the total process of the paper.

Subsequently, in the feature extraction section, 284 features are extracted from high and low emotional

intensity signals. Comparison of these features shows the effects of emotional levels on the speech samples.

Afterwards, applying filter and wrapper methods, the best features are selected for use in the classification step

of intensity levels where 3 classifiers, i.e. Bayes [17,18], linear, and Gaussian radial basis function-based kernel

support vector machines (SVMs), are applied [19,20]. Those utterances of the EmoDB that have equal textual

content and are spoken by 1 speaker in 1 emotional state are then divided into 2 classes with respect to their

emotional-intensity level, high or low.

2.1. Preprocessing

Prior to the extraction of features, a VAD algorithm is applied to the utterances of the EmoDB as the

preprocessing step. The VAD is used to solve the problem of separating active parts of speech signals from

nonspeech sections [21].
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Figure 1. The frameworks utilized in the paper and sequential configuration of using them (ESR: emotional speech
recognition; EIC: emotional intensity classification).

Literature reviews show that different VAD algorithms are available [22–24]. In this paper, a mixture of

the short-time energy method and the zero crossing rate of speech signals is applied to locate active and silent

parts of the utterances. In this way, a window with 15 ms length and 7.5 ms shift is employed to perform this

algorithm.

2.2. Feature extraction

As mentioned before, this paper evaluates the intensity of emotional contents in speech-related utterances for

the first time. In this way, we derived 284 features from the best known speech-related characteristics to improve

the accuracy of the classification processes. As presented in Table 1, these features are related to 7 groups:

formants, pitch, energy, spectrum, mel frequency cepstral coefficients (MFCCs), linear prediction coefficients

(LPCs), and perceptual linear prediction (PLP) coefficients. Moreover, different functions used to extract the

aforementioned features in this article are specified in Table 1. Most of them are obvious, except those related to
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plateaus at minima and maxima in which we set the required thresholds to 75% of the minimum and maximum,

respectively. The procedures of extracting these features are described as follows.

Table 1. Feature set.

Category (#) Operators
Formants (16) Mean, max, min, and variance of the first 4 formants.
Pitch (37) Max, min, mean, median, interquartile range of pitch values. Pitch existence in the utterance

expressed in percentage (0%–100%). Max, mean, median, interquartile of durations for the
plateaus at minima. Mean, median, interquartile range of pitch values for the plateaus at
minima. Max, mean, median, interquartile range, upper limit (90%) of durations for the
plateaus at maxima. Mean, median, interquartile of the pitch values within the plateaus at
maxima. Max, mean, median, interquartile range of durations of the rising slopes. Mean,
median, interquartile of the pitch values within the rising slopes. Max, mean, median,
interquartile duration of the falling slopes. Mean, median, interquartile of the pitch values
within the falling slopes.

Energy (34) Max, min, mean, median, interquartile range of energy values. Max, mean, median, in-
terquartile range of durations for the plateaus at minima. Mean, median, interquartile
range of energy values for the plateaus at minima. Max, mean, median, interquartile range,
upper limit (90%) of duration for the plateaus at maxima. Mean, median, interquartile
range of the energy values within the plateaus at maxima. Max, mean, median, interquar-
tile range of durations of the rising slopes of energy contours. Mean, median, interquartile
range of the energy values within the rising slopes of energy contours. Max, mean, median,
interquartile range of durations of the falling slopes of energy contours. Mean, median,
interquartile range of the energy values within the falling slopes of energy contours.

Spectral (43) Energy below 250, 600, 1000, 1500, 2100, 2800, 3500, 3950 Hz. Energy in the frequency
bands 250–600, 600–1000, 1000–1500, 1500–2100, 2100–2800, 2800–3500, 3500–3950 Hz.
Features (101– 106): energy in the frequency bands 250–1000, 600–1500, 1000–2100, 1500–
2800, 2100–3500, 2800–3950 Hz. Features (107–111): energy in the frequency bands 250–
1500, 600–2100, 1000–2800, 1500–3500, 2100–3950 Hz. Features (112–113): energy ratio
between the frequency bands (3950–2100) and (2100–0) and between the frequency bands
(2100–1000) and (1000–0). Energy in the frequency bands 250–2100, 600–2800, 1000–3500,
1500–3950, 250–2800, 600–3500, 1000–3950, 250–3500, 600–3950, and 250–3950 Hz. Energy
ratio between the frequency bands (3950–3500) and (3500–0), (3950–2800) and (2800–0),
(3950–1500) and (1500–0), (3950–600) and (600–0), (3950–250) and (250–0).

MFCCs (52) Mean, max, min, and variance.
LPCs (52) Mean, max, min, and variance.
PLPs (52) Mean, max, min and variance.

In the speech-related sciences, the resonances of the vocal tract are called formants, which are described

with 2 important parameters: formants’ locations and their bandwidths [25].

These parameters are calculated using a transformation from complex root pairs ζ = αe±Φ to formant

frequency F and 3 dB bandwidths B as follows [25–27]:

F =
fs
2π

Φ, (1)

B = −fs
π

lnα, (2)

where fs stands for the sampling frequency (SF). In order to approximate the time periods of different formants,

LPCs should be correctly calculated in accordance with the SF of sounds. Utterances of the EmoDB are recorded

with SF = 16 kHz, so, in order to improve the accuracy of the extracted 3rd and 4th formants, the order of
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LPCs is set to 18 [28]. Additionally, the first 4 formants are computed in consecutive 20 ms length frames, which

have 50% overlap with the previous ones. Four statistical parameters of these formants have been estimated

among all the active frames. The mathematical formulation of these parameters, which are mean, max, min,

and variance, are explained in Eqs. (3)–(6).

MEANF1 =

n∑
i=1

F1i

/
n (3)

MAXF1 =
n

max
i=1

(F1i) (4)

MINF1 =
n

min
i=1

(F1i) (5)

V ARF1 =
n∑

i=1

(F1i −MEANF1)
2

/
(n− 1) (6)

Here, F 1 i is the value of the first formant of the ith active frame of the speech signal and n is the number of

active frames in each utterance. Other formant-related features (FRFs) are extracted by similar rules as in the

above equations while F 2, F 3, and F 4 are employed instead of F 1. FRFs are located in the first 16 indices

of our feature set.

Table 1 shows that the second group of features utilized in this article are related to pitch frequencies

[29]. Pitch periods (T ), which are formed with the fluctuations of vocal folds, are connected with 2 biological

parameters, barometric pressure in the subglottal cavity and the tension of the vocal cords. Having similar

characteristics to the studies of Sondhi and Ververidis and Kotropoulos [30,31], a technique established on the

autocorrelation of a center-clipped frames procedure is applied in this article. Thus, speech signals are passed

from a low-pass filter with a cut-off frequency of 900 Hz. In order to improve the precision of the results, a 20

ms Hanning window, which is expressed in Eq. (7), is used as a windowing procedure to segment speech signals

of the EmoDB such that their SF is 16 kHz.

ϑ (n) = 0.5

(
1− cos

(
2πn

320

))
, 0 ≤ n ≤ 319 (7)

Using this procedure, speech signals are segmented to SH (µ, ξ) units where µand ξ are the midpoint and

length of the segment, respectively. Now pitch frequencies can be estimated in these segments using Eq. (8).

F0 =
fs
Nw

argmax
β

(|Υ(β, ξ)|)
∣∣∣∣ β = Nw (fmax/fs)
β = Nw (fmin/fs)

(8)

In Eq. (8), fs is equal to 16 kHz, fmin and fmax are the lowest and highest audible frequencies, andΥ (β, ξ)is

the autocorrelation of speech segments and can be approximated as in Eq. (9).

Υ (β, ξ) =
1

Nw

ξ∑
c=ξ−Nw+1

SH (µ, ξ)SH (c− β, ξ) (9)
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In conformity with the segment number, extracted pitch values are concatenated in row vectors with respect to

the signal numbers. All of the functions stated in the pitch-related features in Table 1 are then executed on the

extracted contours.

The third section of the extracted features is related to the energy of speech signals. In this way, using Eq.

(10), short-term energy values are measured for the aforementioned 20 ms length segments of speech signals.

Ω (α) =

αξ∑
κ=(α−1)ξ+1

(SH (α, κ))
2
; α = 1, 2, ..., η (10)

Here, SH(α, κ) stands for the κth sample of the αth segment of the speech signal. Additionally, ξ and η are

related to the length and number of the frames, respectively. Then Ω, which can be nominated as the energy

vector of the speech signal, is utilized by the energy-related functions of Table 1, which are specified by indices

52–85 in our feature set.

Features indexed from 86 to 128 in the available feature set are related to the spectral content in certain

frequency bands. In order to extract suitable features for application in telephony applications, we extracted

these features from frequencies below 3950 Hz.

The next group of this feature set is related to MFCCs. Using MFCCs could enable researchers to classify

different linear and nonlinear properties of speech signals [32]. After windowing each of the signals, the first 13

MFCCs are extracted from each of the segments. The mean, max, min, and variance of each of the MFCCs

extracted from successive frames are then calculated to generate features indexed from 129 to 180.

LPC-related components make the other group of features indexed from 181 to 232. They supply precise

approximations of a variety of speech-related properties. These coefficients are calculated using an orthogonal

covariance method like that of Ning and Whiting [33]. In this way, the 1st to 13th LPCs are computed in all of

the 20 ms length segments of each speech signal. The mean, maximum, minimum, and variance of each order

of these coefficients are then computed between all windowed segments.

The last 52 features used in this article are related to the properties of PLPs [34]. In this way, the relative

spectral (RASTA) PLP [35], which has more robust factors against different spectral distortions, is utilized as

a substitute for pure PLP. Similar to MFCC- and LPC-related features, RASTA PLP-connected features have

been extracted from successive windowed segments of speech signals with 20 ms length and 10 ms shift. In this

manner, the mean, maximum, minimum, and variance of the first 13 PLP coefficients have been calculated and

made into features indexed from 233 to 284 in Table 1.

3. Intensity-related features

In this section we evaluate those utterances that are related to a sentence spoken by 1 speaker in 1 feeling but

with different intensities.

3.1. Anger-related utterances

Some of the statements of the EmoDB, e.g. “Das will sie am Mittwoch abgeben” (“She will hand it in on

Wednesday”) [16], have been expressed several times by 1 person in an angry mood, such as 03a02Wb and

03a02Wc. The differences of these utterances are related to the different intensity levels of expressed anger.

The variation percentage of each feature among such utterances that have equal textual and emotional content
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and are spoken by only 1 person is calculated as expressed in Eq. (11).

AFV =

∣∣∣Ψλ
m −Ψλ

n

∣∣∣
max (Ψλ

m −Ψλ
n)

;

{
λ = 1, ..., 7
m,n = 1, 2, ..., 535

(11)

Here, Ψ indicates the feature-matrix extracted from all of the utterances of the EmoDB such that its columns

and rows are related to features and utterances, respectively. Additionally, λ takes values from 1 to 7, which

are related to anger, neutral, fear, boredom, happiness, sadness, and disgust, respectively. Moreover, m and

n specify target rows of Ψ. For example, vectors Ψ1
2 and Ψ1

3 refer to the features of the second and third

anger-related (first emotion) utterances. In this equation, AFV stands for absolute feature variation. In order

to have a better understanding of the influences of emotional intensities on the behavior of the speech signals,

Figure 2 demonstrates differences of such signals.
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Figure 2. Pitch and energy contour illustration of the second statement of the EmoDB when it is spoken by the first

speaker in the angry mood: a, b) low intensity; c, d) high intensity.

Additionally, using Eq. (11), Figure 3 illustrates the percentage of variations of each feature in the fifth

and sixth anger-related utterances of the EmoDB (03a05Wa.wav and 03a05Wa.wav), which are spoken by the

first speaker. We repeated this procedure for all the utterances expressed in an angry mood by 10 speakers of

the EmoDB altering their intensity of expressing anger. Summarized results of these evaluations are reported

in Table 2. As can be seen, in the 2nd column of this table, features that are changed by less than 3% are

mentioned while those features which are changed by more than 60% are shown in column 3. This table shows
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that, most of the time, features indexed by 25, 26, 29, 34, 41, 48, 64, 68, 71, 86, and 87 are altered by more

than 60% while the intensity of angry mood of speech sounds is changing.
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Figure 3. Indication of feature changes when speaker 1 in the EmoDB expresses second statement of this database in

an angry mode with high and low intensities.

Table 2. Features that are modified less than 3% or more than 60% when a speaker alters his intensity of expressing

anger in the EmoDB. NEDAA: Not enough data available for analysis.

Speaker
index

Most repeated features changed less than 3% Most repeated features changed more than
60%

1 32, 38, 45, 88, 96, 110, 118, 122, 124, 166, 213,
219, 255, 263

13, 25, 26, 29, 34, 41, 48, 63, 64, 68, 71, 87,
128, 198

2 - 23, 25, 26, 29, 34, 64, 48, 86, 87, 165, 166, 180
3 25, 45, 96, 103, 109, 110, 114, 115, 122, 124,

156, 166, 255
29, 39, 41, 48, 64, 68, 71, 86, 87, 94, 128, 163,
167, 180, 259, 263, 283

4 NEDAA NEDAA
5 NEDAA NEDAA
6 NEDAA NEDAA
7 - 24, 25, 26, 29, 34, 41, 48, 61, 62, 63, 64, 65, 68,

71, 86, 87, 179, 248
8 32, 38, 45, 50, 96, 103, 105, 106, 109, 110, 114,

115, 118, 122, 124, 127, 133, 162, 166, 176, 211,
224, 255, 264, 269

9, 23, 24, 25, 26, 27, 28, 29, 34, 38, 39, 41, 48,
53, 64, 67, 68, 71, 86, 87, 141, 148, 167, 175,
176, 180, 186, 229, 254

9 4, 5, 12, 16, 22, 32, 34, 38, 45, 57, 85, 96, 100,
103, 109, 114, 115, 118, 122, 124, 136, 166, 167,
183, 185, 191, 215, 217, 221, 247, 251, 255, 268

8, 18, 25, 26, 29, 34, 41, 48, 53, 59, 64, 68, 71,
86, 155, 197, 259

10 32, 38, 45, 103, 109, 110, 114, 115, 122, 124,
125, 135, 139, 145, 160, 168, 250, 255, 272, 282

9, 18, 23, 25, 26, 27, 28, 29, 34, 41, 48, 53, 54,
55, 56, 59, 61, 62, 63, 64, 68, 71, 76, 77, 78,
83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94,
95, 101, 102, 107, 112, 116, 119, 121, 130, 143,
166, 175, 234, 247, 254, 259, 260, 26

3.2. Happiness-related utterances

Some of the statements of the EmoDB, such as “An den Wochenenden bin ich jetzt immer nach Hause gefahren

und habe Agnes besucht” (“At the weekends I have always gone home and seen Agnes”), are spoken in different
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intensities of happiness by each of the speakers (e.g., 08b01Fd.wav and 08b01Fe.wav). Figure 4 shows some of

the results of different emotional intensities on the structure of speech parameters.
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Figure 4. Pitch and energy contour illustration of the sixth statement of the EmoDB when it is spoken by the second

speaker in a happy mood: a, b) low intensity; c, d) high intensity.

By means of Eq. (11), percentages of variations of each feature in those utterances that have equal

speaker and textual content and are spoken in a happy mood with different intensities are evaluated. Results

of these assessments are reported in the Table 3.

Evaluations of this table show that features represented by indices of 18, 24, 25, 26, 29, 34, 41, 48, 62, 64,

65, 68, 71, 86, 165, and 178 are the most repeated features changed by more than 60%. Comparison between

these features and those related to the intensity of angry mood shows a good match so that features indexed as

follows are changed by more than 60% in both of these feelings in accordance with different emotional intensities:

• Features 25 and 26: Median and interquartile range of pitch duration for the plateaus at minima,

respectively.

• Feature 29: Interquartile range of pitch value for the plateaus at minima.

• Feature 34: Upper limit (90%) of pitch duration for the plateaus at maxima.

• Feature 41: Interquartile range of pitch duration of the rising slopes of pitch contours.

• Feature 48: Interquartile range of pitch duration of the falling slopes of pitch contours.

• Features 64 and 68: Maximum and upper limit (90%) of energy duration for the plateaus at maxima.
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Table 3. Features with less than 3% change and those with more than 60% adjustment when a speaker alters his

intensity of expressing happiness in the EmoDB.

Speaker
index

Repeated features changed less than 3% Repeated features changed more than 60%

1 9, 22, 27, 28, 45, 46, 57, 110, 115, 130, 138, 143,
157, 158, 165, 166, 172, 177, 185, 188, 217, 243,
261, 268, 277, 281

18, 24, 25, 29, 34, 39, 41, 44, 48, 59, 62, 65, 68,
71, 75, 79, 86, 160, 165, 174, 178, 197, 199, 283

2 13, 22, 45, 110, 115, 136, 143, 144, 146, 159,
160, 170, 172, 184, 189, 217, 240, 282

9, 23, 24, 25, 26, 29, 32, 34, 46, 48, 58, 60, 64,
65, 67, 68, 71, 72, 86, 128, 165, 174, 178, 179,
180, 205, 228, 231, 251, 258, 263, 269, 278, 281,
284

3 3, 22, 32, 45, 57, 103, 104, 105, 109, 110, 111,
114, 115, 118, 136, 138, 160, 172, 179, 184, 196,
210, 217, 221, 223, 240

8, 14, 16, 18, 24, 25, 26, 29, 38, 39, 41, 48, 56,
61, 62, 64, 65, 67, 68, 71, 80, 84, 85, 86, 87, 88,
94, 101, 141, 154, 165, 178, 199, 241, 242, 251,
252, 254, 267, 270, 279

4 NEDAA NEDAA
5 15, 16, 22, 38, 41, 45, 57, 110, 112, 115, 119,

121, 136, 138, 139, 141, 159, 160, 165, 172, 184,
185, 209, 210, 217, 222, 234, 239, 240, 267, 275,
282

9, 18, 24, 25, 26, 27, 29, 34, 39, 41, 48, 62, 64,
65, 68, 71, 85, 86, 156, 160, 165, 174, 178, 201,
231

6 NEDAA NEDAA
7 32, 36, 45, 51, 57, 61, 99, 110, 115, 136, 137,

138, 144, 160, 162, 172, 173, 184, 192, 196, 197,
217, 240, 274, 278

9, 18, 23, 24, 25, 26, 29, 34, 39, 41, 44, 48, 51,
62, 64, 65, 66, 67, 68, 71, 79, 86, 164, 165, 166,
167, 178, 179, 180, 200, 201, 227, 266, 280, 281

8 4, 22, 26, 45, 57, 69, 75, 96, 97, 100, 110, 115,
129, 130, 133, 136, 138, 144, 155, 160, 162, 165,
169, 172, 176, 184, 205, 211, 214, 215, 217, 224,
233, 240, 246, 247, 273, 275

18, 23, 24, 25, 26, 27, 28, 29, 33, 34, 39, 41,
44, 48, 51, 60, 62, 63, 64, 65, 66, 67, 68, 68, 71,
86, 128, 165, 167, 173, 175, 178, 179, 180, 189,
189, 199, 202, 202, 252, 271, 283

9 3, 4, 5, 22, 45, 49, 57, 110, 115, 126, 136, 138,
157, 160, 164, 172, 211, 213, 214, 217, 222, 240,
261, 263, 264

18, 24, 25, 29, 34, 38, 39, 41, 46, 48, 56, 59, 62,
63, 64, 65, 67, 68, 71, 72, 78, 88, 89, 90, 91, 92,
93, 95, 101, 102, 107, 108, 112, 113, 116, 117,
119, 121, 128, 165, 175, 178, 252

10 11, 20, 22, 35, 37, 45, 50, 57, 60, 67, 68, 82,
98, 103, 105, 109, 110, 111, 115, 123, 124, 126,
127, 128, 136, 138, 153, 160, 163, 172, 183, 185,
192, 193, 206, 217, 225, 232, 239, 240, 253, 270,
279, 280

18, 25, 26, 27, 29, 34, 41, 44, 46, 48, 51, 52,
53, 54, 56, 62, 63, 64, 65, 68, 71, 72, 73, 76,
78, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94,
95, 119, 121, 139, 140, 165, 166, 177, 178, 179,
190, 255, 260, 261, 265, 280

• Feature 71: Interquartile range of the energy value within the plateaus at maxima.

• Feature 86: Energy below 250 Hz respectively.

As illustrated in Figure 5, according to the Geneva emotional wheel [15], anger and happiness are related

to high control emotions. In order to extend the results of the obtained intensity-related features to a wider

range of emotions, evaluations are also implemented on the extracted features of fear and boredom moods,

which are related to low control ones.

3.3. Fear-related utterances

Compared to angry and joyful utterances, the EmoDB contains a number of fear-related sounds with similar

textual and emotional content spoken by a speaker with different intensities. In order to have a better

understanding of the differences of these signals, energy and pitch contours of such signals are illustrated

in Figure 6. Additionally, Table 4 reports the variations of features through the use of Eq. (11).

Based on Table 4, features described by indices 9, 18, 23, 26, 29, 39, 48, 57, 58, 64, 71, and 204 are the

most repeated features changed by more than 60%.
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Figure 5. Geneva emotional wheel.
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Figure 6. Pitch and energy contour figures of the fifth statement of the EmoDB when it is spoken by the second speaker

in fear: a, b) low intensity; c, d) high intensity.
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Table 4. Indices of features that are altered less than 3% or more than 60% when a speaker alters his intensity of

expressing fear in the EmoDB.

Speaker
index

Repeated features changed less than 3% Repeated features changed more than 60%

2 19, 20, 30, 36, 37, 45, 60, 96, 100, 110, 115, 136,
158, 191, 193, 211, 217, 219, 222, 237, 251, 271

9, 18, 23, 25, 26, 29, 34, 38, 39, 48, 56, 57, 58,
59, 64, 65, 66, 67, 68, 71, 84, 85, 88, 89, 90,
91, 102, 107, 108, 112, 117, 119, 120, 121, 123,
157, 173, 175, 178, 204, 206

4 11, 32, 45, 53, 96, 110, 115, 130, 136, 157, 166,
189, 212, 215, 217, 235, 236, 237, 248, 265, 267,
282

8, 9, 18, 22, 23, 26, 29, 34, 38, 39, 42, 43, 48,
49, 57, 58, 64, 70, 71, 73, 82, 130, 143, 150, 168,
174, 180, 190, 199, 202, 203, 204, 245, 247, 251,
276, 277

5 12, 27, 45, 54, 55, 73, 74, 96, 97, 99, 105, 110,
115, 125, 130, 136, 138, 139, 144, 150, 155, 157,
160, 171, 175, 180, 182, 183, 184, 209, 214, 215,
217, 224, 226, 236, 237, 240, 243, 252, 281

9, 18, 26, 28, 29, 30, 33, 39, 41, 44, 45, 46, 46,
48, 57, 58, 60, 71, 81, 153, 178, 197, 201, 204,
206, 252

8 6, 10, 23, 25, 34, 34, 39, 41, 45, 51, 61, 65, 75,
76, 89, 96, 100, 110, 117, 134, 135, 136, 138,
142, 143, 153, 160, 164, 172, 196, 213, 217, 236,
237, 246, 249, 269

2, 3, 5, 9, 18, 21, 23, 25, 26, 29, 37, 38, 39, 45,
46, 48, 57, 58, 59, 60, 63, 64, 68, 71, 72, 86, 86,
97, 102, 108, 113, 117, 120, 126, 128, 150, 168,
175, 179, 201, 202, 204, 236, 243, 244, 258, 272,
283, 284

9 3, 12, 43, 45, 50, 96, 110, 115, 136, 140, 141,
166, 184, 195, 217, 236, 237, 246, 253, 278

9, 23, 29, 39, 46, 48, 49, 57, 58, 63, 64, 67, 71,
108, 113, 120, 153, 201, 204, 230, 257

3.4. Boredom-related utterances

According to the 3 aforementioned emotional categories, intensity-related features of boredom speech signals

have been studied among the utterances of the EmoDB. In this way, some of the effects of these intensity

differences on the pitch and energy parameters of speech signals are illustrated in Figure 7. Table 5 shows the

most repeated features that are modified by less than 3% and more than 60%. Features explained in the third

column of this table are highly connected with the boredom intensity of signals.

Table 5. Indices of those features that are modified less than 3% or more than 60% when the tenth speaker of the

EmoDB changes her intensity of expressing boredom.

Indices of boredom-related Most repeated features that are Most repeated features that are
signals; (related to 10th speaker) changed less than 3% changed more than 60%
70, 71 12, 45, 131, 140, 167, 235, 250, 9, 23, 24, 25, 26, 29, 32, 48, 55, 58,
73, 74 262, 263, 264 59, 61, 64, 71, 77, 84, 96, 148, 198,
75, 76 201, 204, 242, 279
79, 80

Comparison between the most sensitive features related to the intensity of fear and boredom in speech

sounds shows that those indexed by 9, 23, 26, 29, 48, 58, 64, 71, 201, and 204 are common in both of these

emotions. These features are as follows:

• Feature 9: Minimum value of the first formant in the utterance.

• Feature 23: Maximum, mean, median, and interquartile range of duration for the plateaus at minima.

• Feature 26: Median and interquartile range of pitch duration for the plateaus at minima, respectively.

• Feature 29: Interquartile range of pitch value for the plateaus at minima.

• Feature 48: Interquartile of the duration range of the falling slopes of pitch contours.
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Figure 7. Pitch and energy contour figures of the fifth statement of the EmoDB when it is spoken by the tenth speaker

in boredom: a, b) low intensity; c, d) high intensity.

• Feature 58: Mean of the energy duration for the plateaus at minima.

• Feature 64: Maximum of energy duration for the plateaus at maxima.

• Feature 71: Interquartile range of the energy value within the plateaus at maxima.

• Features 201 and 204: Maximum values of the 8th and 11th LPCs, respectively.

As mentioned in the previous section, some of the features reported in Table 1 are very sensitive to the

changes of emotional intensities. In Section 4, using different filters and wrappers, appropriate features for

application in the 2 frameworks of this manuscript, which are illustrated in Figure 1, are selected.

4. Selecting the best features and classifying utterances for ESR

As expressed in Table 1, 284 features are proposed to be extracted from speech signals. Primary evaluations of

the extracted features show that those features indexed by 181, 194, 207, and 220, which were explained before,

have zero VC. According to Eq. (12), VC expresses the ratio between variance and mean values.

V C =
σ

µ
∗ 100% (12)

When VC becomes 0 for a feature, it means that the feature has no information about the emotional contents

(or other parameters) of speech signals. Therefore, we delete the aforementioned features from our useful feature

set.
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Another assessment of the extracted features shows that some of the features related to the variance-

related statistical parameters, e.g., 13, 14, 15, and 16, are in the range of 105 while some of the rest, for example

spectral-related features, are in the order of 10−1 . In this way, in order to preserve our classifiers from being

misled by large values of features, a linear transformation is applied according to Eq. (13) on the features (ξ),

which could fix feature values between 0 and 1.

ξα,βNormalized =
ξα,β −Min

(
ξβ
)

Max (ξβ)−Min (ξβ)
,

{
α = 1, . . . , 535

β = 1, . . . , 280
(13)

In this equation, αdenotes the index of the studied speech signal in the EmoDB dataset while β shows the

feature’s index in the feature set.

Afterwards, the best features for the classification of speech signals in accordance with their emotional

contents should be selected. As mentioned before, VC, as a filter method, is employed to eliminate inappropriate

features. In the next step, in order to find suitable features, a wrapper method, e.g., SFFS, is applied. This

process has 2 sections: a forward manner, which is correlated with the inclusion of new features to the selected

ones, and a backward procedure, which deletes incompatible features [17]. As reported in Table 6, using the

SFFS method, the best features for being used in the process of emotional speech classification (ESC) are

selected.

Table 6. Selected features for being used for the ESC of EmoDB speech signals to 4 emotional classes, which are anger,

happiness, fear, and boredom.

Best features for ESC to 4 classes: angry, happy (joy), fear, and boredom
16, 32, 42, 50, 58, 59, 62, 69, 73, 100, 135, 166, 175, 179, 183, 192, 193, 197, 209, 222, 227, 231,
234, 237–239, 244, 273

Table 7. Confusion matrix resulting from Bayes classifier when 60% of anger, happiness, fear, and boredom-related

utterances of the EmoDB are applied for training.

Input speech signal
Classification responses (%)
Anger Happiness Fear Boredom

Anger 88.53 4.48 6.99 0
Happiness 9.42 79.21 6.52 4.85
Fear 4.85 3.43 84.40 7.32
Boredom 4.48 2.32 10.41 82.79
Average CCR 83.73

As illustrated in Figure 1a, after the selection of the best features for being employed for the ESR

process, input utterances are classified in accordance with their emotional contents. In this way, Bayes and

SVM classifiers are applied in multiclass and binary classification manners, respectively.

Tables 7 and 8 express the consequences of using aforementioned classifiers using the selected features

reported in Table 6. CCRs expressed in these tables are attained after using a mathematical averaging on the

CCRs that resulted from a 10-fold cross-validation procedure. Figure 8 illustrates the uncertainties observed in

these classifications.

5. Classification of the utterances in accordance with their emotional intensities

In the previous section, using the best selected features proposed by the SFFS method and by means of Bayes

and SVM classifiers in multiclass and binary classifications, respectively, a framework was applied to classify

input utterances with anger, happiness, fear, or boredom emotions to their appropriate emotional classes.
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Table 8. CCRs resulting from applying SVM classifier on the 12 possible pairs of emotional classes using selected

features when 40% of EmoDB utterances are utilized for testing.

First class
Second class
Anger Happiness Fear Boredom vs. the rest

Anger - 90.54 95.20 97.28 93.65
Happiness 90.54 - 88.41 97.77 91.10
Fear 95.20 88.41 - 89.39 90.95
Boredom 97.28 97.77 89.39 - 91.73
Average CCR 93.10 91.86
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Figure 8. Uncertainties resulting from 10-fold cross-validation processes implemented on the EmoDB utterances when:

a) a Bayes classifier is applied to classify anger, happiness, fear, and boredom related utterances in a multiclass

classification procedure; (b) a SVM classifier is used to categorize the aforementioned emotional speech signals in a

binary manner such that each of these classes is classified against the set of other related utterances.

After this, as displayed in Figure 1, each of the input utterances is classified in conformity with their

emotional intensities to high and low levels. As mentioned before, the best features that can be employed to

categorize each of the emotional speech signals in accordance with their intensities are mentioned in Table 9.

Table 9. Appropriate features for applying the process of emotional intensity classification. In this table, those features

that are appropriate in all of the 4 emotional classes, in (anger and happiness) classes, and in (fear and boredom) classes

are illustrated with bold, underlined, and italic notations, respectively.

Emotion Appropriate features for EIC
Anger 25, 26, 29, 34, 41, 48, 64, 68, 71, 86, 87
Joy 18, 24, 25, 26, 29, 34, 41, 48, 62, 64, 65, 68, 71, 86, 165, 178
Fear 9 , 18, 23 , 26, 29, 39, 48, 57, 58 , 64, 71, 204

Boredom 9 , 23 , 26, 29, 48, 58 , 64, 71, 201, 204

According to the emotional labels assigned to the input speech signals, appropriate features in agreement

with Table 9 are extracted from the utterances. In this way, Bayes, linear, and Gaussian radial basis function

(GRBF)-SVM classifiers are applied. In order to improve the fidelity of the results, a 10-fold cross-validation

algorithm is used and the average of the obtained CCRs is expressed as the output of that classifier. Additionally,

60% of the data is employed for training and the rest for testing.

Most of the classifiers categorize input utterances with extracted feature vectors (f1 , f2 ,..., fn) to a class

indexed by Ξ when their probability model p (Ξ|f1, f2, ..., fn)is maximized. Using Bayes’ theorem, this model
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can be written as in Eq. (14).

p (Ξ|f1, f2, ..., fn) =
p (Ξ) p (f1, f2, ..., fn|Ξ)

p (f1, f2, ..., fn)
(14)

By means of the maximum a posteriori decision rule, extracted feature vectors of (f1 , f2 ,..., fn) are connected

to class Ξ in agreement with Eq. (15).

Ξ (f1, f2, ..., fn) = argmax
ξ

(
p (Ξ = ξ)

n∏
i=1

p (fi|ξ)

)
(15)

The results of using the Bayes classifier to categorize input speech signals to high/low emotional intensities are

illustrated in Table 10. Afterwards, a linear SVM is applied. In this way, a set of training data (∆) can be

written as in Eq. (16).

∆ = {(xi, yi) |xi ∈ Rm, yi ∈ {−1, 1}}ni=1 (16)

Here, x i shows the feature vector extracted from the ith input utterance.

Table 10. CCRs obtained from categorizing input utterances using Bayes classifier in accordance with the emotional

intensity content.

Input utterances

Classification responses (%)
Anger Happiness Fear Boredom
High Low High Low High Low High Low

Anger
High 63.34 36.66 - - - - - -
Low 39.44 60.56 - - - - - -

Happiness
High - - 66.47 33.53 - - - -
Low - - 38.11 61.89 - - - -

Fear
High - - - - 61.34 38.66 - -
Low - - - - 37.47 62.53 - -

Boredom
High - - - - - - 59.33 40.67
Low - - - - - - 38.35 61.65

Average CCR(%) 62.14

In this paper, we assign (+1) to speech signals with high intensity emotions and (–1) for low ones. The

consequences of using this classifier are reported in Table 11. As stated in Eq. (17), a GRBF-SVM classifier is

utilized to classify emotional speech signals into appropriate intensity levels. Classification results can be found

in Table 12.

κ (xi, xj) = e−250∥xi−xj∥2

(17)

6. Conclusion

In this paper, we proposed appropriate features for use in the classification of emotional speech signals in

accordance with their intensity levels for the first time. Because of the lack of a professional dataset in this

field, we focused on finding available datasets with suitable properties that could be applied for this task. We

proposed that those datasets that contain utterances related to a sentence spoken with 1 emotional tune by 1

speaker in different intensities could be suitable in this research. Among the available datasets, the EmoDB

has the most compatibility with the desired qualifications. In this database, 10 common German sentences are
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Table 11. Results of classifying input speech signals using a linear SVM classifier into high and low intensities.

Input utterances

Classification responses (%)
Anger Happiness Fear Boredom
High Low High Low High Low High Low

Anger
High 68.45 31.55 - - - - - -
Low 36.72 63.28 - - - - - -

Happiness
High - - 68.15 31.85 - - - -
Low - - 36.15 63.85 - - - -

Fear
High - - - - 62.66 37.34 - -
Low - - - - 37.67 62.33 - -

Boredom
High - - - - - - 65.24 34.76
Low - - - - - - 35.62 64.38

Average CCR(%) 64.79

Table 12. CCRs resulting from classification of input utterances using RBF-SVM classifier in accordance with the

emotional intensity content.

Input utterances

Classification responses (%)
Anger Happiness Fear Boredom
High Low High Low High Low High Low

Anger
High 74.35 25.65 - - - - - -
Low 28.72 71.28 - - - - - -

Happiness
High - - 78.45 21.55 - - - -
Low - - 26.26 73.74 - - - -

Fear
High - - - - 70.21 29.79 - -
Low - - - - 31.67 68.33 - -

Boredom
High - - - - - - 69.84 30.16
Low - - - - - - 32.52 67.48

Average CCR(%) 71.71

used. Each of them is spoken by 10 actors including 5 men and 5 women in 7 emotions, which are anger (An),

neutral (Nu), fear (Fe), boredom (Bo), happiness (Hp), sadness (Sd), and disgust (Di) [16]. This paper just

utilizes An, Hp, Fe, and Bo utterances. In this way, those utterances of the EmoDB that have equal textual

content and are expressed by 1 speaker in 1 emotional mood but with different intensity levels (high/low) were

studied.

As for the first step, we extracted 284 features from speech signals. After normalizing the values of these

features between 0 and 1, features indexed by 16, 32, 42, 50, 58, 59, 62, 69, 73, 100, 135, 166, 175, 179, 183, 192,

193, 197, 209, 222, 227, 231, 234, 237-239, 244, and 273 were selected as the best features for employing for the

process of ESR, by using VC and SFFS methods. In this procedure Bayes and SVM classifiers were utilized for

multiclass and binary classification of anger, happiness, fear, and boredom emotions, respectively. By means

of a 10-fold cross-validation method, these classifiers categorized input utterances to correct emotional classes

with CCRs equal to 83.73% and 93.10%, respectively.

Afterwards, in the second framework, which is the main novelty of this paper, the best features for being

applied for the categorization of speech signals with 1 emotional type and different intensity levels were studied.

These features are reported in Table 9. In order to evaluate the capabilities of these features in the process of

EIC, Bayes, linear, and GRBF-SVM classifiers were applied to classify input utterances into the appropriate

intensity level (high or low) using these features. In order to improve the fidelity of the results, CCRs were
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reported after implementing a mathematical averaging on the outcomes of a 10-fold cross-validation procedure.

Thus, the average CCRs that resulted from Bayes, linear, and GRBF-SVM classifiers were reported to be

62.14%, 64.79%, and 71.71%, respectively.
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