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Abstract: It is difficult for short circuits among the internal windings of one phase in electrical machines to be determined

in a reliable and speedy manner. The failure currents that occur, especially in short circuits with a few windings, are

at such low levels that they cannot be determined by relay systems. This results in growing faults and damage. In

this study, we designed a model that can define winding failures successfully at very small levels by using the PCA

and ANN algorithms. We tested the real-time faults and measured the system performance with the installed test rig.

The developed protection model determined fault determination in very small (2.5%) winding failures with acceptable

accuracy. The suggested model is a counter-speed, selective, flexible, and economical protection model that may be used

for internal failures of electrical machines. It has a structure that may be used in different systems or kinds of failure

with data receiving and software changes.
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1. Introduction

Protection systems are units that apply protection measures after defining a failure in any internal or external

fault event. The purpose of an effective protection system is to make a reliable determination within the first

few periods of the fault’s beginning. This short definition requires a comprehensive relay coordination study,

especially when the complexity and dynamic structure of the system are considered. The relay coordination must

be in a structure that ensures significant properties like selectivity, speed, economy, simplicity, and reliability.

Determination of an optimal structure in these parameters is difficult because of the limiting properties of relays

driven by conventional sensor systems [1].

The designs of protection systems for electrical machines are the subject matter of many studies. Recent

research has emphasized selective and speedy protection models for the synchronous and asynchronous genera-

tors used in renewable energy systems [2–5]. Experimental and simulation studies have focused on doubly fed

induction generators (DFIGs), sudden voltage fluctuations, parallel connection systems, symmetric/asymmetric

short circuits, and behavioral models in other mechanical and electrical faults [6–10]. In generator failures, var-

ious fault analysis systems have been developed for multiple machine models [11], stand-alone systems [12–14],

and self-excited generators [15,16]. Effective protection models have used intelligent electronic devices, motor

current signal analysis (MCSA), and artificial intelligence techniques [17–21].
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Gketsis et al. analyzed the short circuit situations of 2, 3, and 4 adjacent windings using wavelet analysis

and a feedback Levenberg–Marquardt trained ANN algorithm for a 660 kW, 690 V nominal voltage asynchronous

generator driven by a wind turbine to determine internal faults. The authors analyzed the maximum value and

corresponding frequency variations as a basic value in the fault determination. They determined how many

windings were short-circuited in a manner that required much less calculation [22]. Acosta et al. created a

failure definition for a short-circuited 12% winding in a 1-phase stator winding [23]. Another study performed

principal component analysis (PCA) using α − β vector particulates of a standard 4-pole asynchronous 3 HP

motor fed from a PWM power inverter. For the failure and steady-state situations, the researchers obtained the

eigenvalues of two different principal components and compared these values to decide whether the motor had

failures [24]. Shah et al. presented a new method for determination of internal failures in DFIGs by analyzing

the rotor phase currents tested with voltage dips on an additional winding wrapped on a rotor [25]. A similar

purpose study was realized by Emhemed et al. in 2010 using a superconductive limiter for the failure current

limitation and an analytic method that shortened the period to remain out of circuit in low-voltage induction

generators (IGs) [26]. A PCA- and ANN-based approach was presented by Kılıç et al. to protection against

transformer internal faults in 2011 [27]. Similarly an induction motor protection algorithm was developed to

determine stator winding faults, broken rotor bars, and bearing failures using PCA and ANN by Özgönenel et

al. [28]. Eftekhari et al. proposed an infrared thermal imaging method to detect stator winding short circuits

in an induction motor [29]. Further work was done by Kang and Kim in 2013 for classifying faults of induction

motors. In that work, singular value decomposition based feature extraction approaches are compared with the

other methods and higher classification accuracies than with conventional approaches are obtained [30]. One of

the latest studies about fault diagnostics in induction machines was done by Foito et al. in 2014. In their study

current trajectory mass center methodology was used for diagnosing the stator winding faults in a six-phase

induction motor [31].

The most dangerous damage resulting from stator faults in electrical machines is the deformation of

the stator core or windings because of the heat that occurs at the point of failure. Depending on the damage

resulting from the failure, long-term and costly repairs may be needed, like remanufacturing deformed core parts

and rewrapping windings. In the case of stator-ground leakage failure, winding burning remains at minimum

levels, because the currents complete their circuits through the ground resistance. However, determination

and protection of short circuits among the windings of a phase winding is a difficult process, and in general,

it does not ensure effective protection. The failure currents that occur in that case may remain below the

nominal current. However, unless it is determined within a few periods, it may cause winding and core damage.

In machines used as generators, the periods remaining out of the circuit and the associated costs are very

important.

This study presents a new model that can provide effective, reliable, and selective protection to solve

these problems. The methods used in two studies [20,21] were able to identify short circuits involving 12% of the

windings. By contrast, the PCA-ANN base hybrid protection model suggested in this study shows a successful

performance in a situation where 2.5% of total windings are short circuited. We performed real-time tests of

the developed model on an IG and present the test results and ANN outputs in detail.

2. Materials and methods

In experimental studies, we operated a 6-pole induction machine with 0.75 kW as a generator connected to the

network. This machine was driven by a 6-pole asynchronous machine with 1.1 kW. For generator operation of
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an asynchronous machine, the rotational speed must be above the synchronous rotational speed. We used a

frequency convertor with a driver machine to control the rotational speed and the generator load across a wide

interval in this study. To investigate internal electrical faults of induction generators, we extracted the tips from

various points of the stator windings. A DAQ card transformed the three-phase current information from the

generator to the computer via current transformers. The components of the test rig are given in Figure 1 and

a wiring diagram of the experimental set is shown in Figure 2.

a b

Figure 1. a) Test rig; 1-induction generator, 2-driver motor, 3-frequency convertor of driver motor, 4-current trans-

formers, 5-connection board of DAQ card, 6-relay driver circuit, 7-relay card, 8-network connection switch. b) Induction

machine with extracted tips.

Figure 2. Wiring diagram of experimental set.

2.1. Principal component analysis

PCA is a conventional linear property determination method. It depends on the secondary statistical analysis

of data, especially on the eigenvalue analysis of the covariance matrix [32].
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The beginning point of PCA is the (X) data matrix, consisting of (m) observation rows and (n) variable

columns. PCA can use all kinds of analytic data obtained from various resources (variables) such as various

sensors, chemical treatment processes, or biological measurements for observational data [33]. Data that belong

to variables in the X (data matrix) can be brought to columns having a zero mean and be scaled. The scaling

process ensures the variables with different amplitudes have equal weights in the data matrix. The mean of

columns of the scaled X matrix is arranged according to Eq. (2.1) to equal zero.

XC = X − X̄ (1)

In the above equation, states mean values of the data matrix. Covariance of the arranged data matrix (XC) is

calculated with Eq. (2.2).

R =
1

m− 1
XCTXC (2)

The eigenvalues and eigenvectors are found from the calculated covariance matrix (R) by the singular value

decomposition method.

R = PλPT (3)

In (2.3), λ is a diagonal matrix that contains eigenvalues of the covariance matrix arranged from largest to

smallest value (λ1 ≥ λ2 ≥ ...λn ≥ 0). The P matrix is a square matrix with columns consisting of eigenvectors

of the covariance matrix (R). The last phase is determination of principal components, which are generally

eigenvectors with high eigenvalues. Eigenvectors are lined according to the amplitudes of their eigenvalues.

Eigenvectors having 80%–90% variance levels are principal components. As the number of principal components

increases, the amplitudes of the eigenvalues decrease [34–37].

As shown in Figure 3, among the thirteen eigenvectors seven of them are taken as principal components.

Table 1 shows that the first seven eigenvectors selected as PCs had over 84% variance levels in total.
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Figure 3. Eigenvectors and principal components.

2.1.1. Fault determination with PCA

Determination and definition of faults in nonlinear systems is important. To determine and control faults in

industrial applications, it is obligatory to make different measurements related to each other and follow many

operation processes that are nonlinear, have high noise, and change in time. By applying PCA for the purpose

of failure analysis, nonlinear correlations between different processes can be eliminated, and effects of noise in

the failure process can be decreased. For this reason, PCA is practical for monitoring the condition of a process

or device.
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Table 1. Variances of eigenvectors and selected PC’s total variance.

Eigenvector Eigenvalue % Variance Eigenvector Eigenvalue % Variance
1 4.80 28.86 8 0.65 3.91
2 3.10 18.64 9 0.50 3.01
3 1.80 10.82 10 0.45 2.71
4 1.40 8.42 11 0.40 2.41
5 1.25 7.52 12 0.33 1.98
6 0.95 5.71 13 0.20 1.20
7 0.80 4.81
% Total variance 84.79 15.21

Hotelling T2 and SPE (Squared Prediction Error or Q) statistical methods introduce the general char-

acteristics of data in PCA and fault analysis. The Hotelling T2 approach used in this study scales the internal

variances of the PCA model by taking the secondary total of score vectors. With this method, monitoring the

bottom space of basic compounds in real time becomes easy. Hotelling T2 statistical variances indicate the

difference between each sampling point and model in respect to the direction and amplitude of variances. The

Hotelling T2 approach for X data matrix is

T 2 = XPλ−1PTXT (4)

Here, P refers to the eigenvector matrix obtained from the covariance matrix and λ represents a diagonal matrix

consisting of eigenvalues. Thus, T2 is a scalar amplitude that equals the total of numerous variances. For this

reason, it allows multivariant monitoring processes to be followed on a single variance. The T2 statistic method

expresses the variances in multivariant operation processes in terms of fluctuation in the basic compound vector

amplitudes [34,38].

2.2. ANN structure

As shown in the Results and discussion section, PCA and T2 statistic outputs are highly distinguishing. This

why the ANN structure we use is fairly simple. It is a feed-forward system that has 3 neurons at the entrance

of the network, 12 neurons in the hidden layer, and 1 neuron in the outlet layer (Figure 4).
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Figure 4. ANN structure.
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The network is created by the Matlab Neural Network Fitting Tool. It is a two-layer feed-forward network

that contains a sigmoid transfer function in the hidden layer and a linear function in the output layer. The

network is trained with the Levenberg–Marquardt backpropagation algorithm. The training data set consists of

T2 outputs obtained from real-time experiments for four load levels (1/4 load, 1/2 load, 3/4 load, and full load)

and four rates of in-turn winding short-circuits (2.5%, 4.3%, 9.5%, and 16.4%) and healthy working conditions.

From 840 samples randomly selected 70% were for training, 15% for validation, and 15% for testing. As a result

of PCA and T2 statistical success, this relatively simple network regression is over 0.99 (R = 0.999). Network

training performance is shown in Figure 5.

Figure 5. ANN training performance.

2.3. Other components of the experimental set

For data collecting and the establishment of the database for operating statutes with and without failure, this

study used a model that operated on-line. We took data related to phase currents of an asynchronous generator

that operated with the network by means of the model given in Figure 6, then processed that data with PCA,

and recorded the results for use in ANN training.

In the model, the three-phase current data first taken from the generator are kept in a variable called

“z,” to be used later. In the next phase, incoming current data are held in buffers to transform the data inputs

for PCA to matrix form. The model sample rate is 2000 and the grid frequency is 50 Hz; thus the data matrix

size is 40 × 3 consisting of 40 samples of all three phases of current data along one period. Data transformed

to a matrix form are processed in the PCA block and T2 statistics are recorded for each working status.

The failure and robust T2 data from the experiments were used to train the artificial neural network

used in the fault diagnosis phase.
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Figure 6. Real-time data acquisition model.

3. Results and discussion

The outline of the study can be summarized as follows:

• By the test rig, faulty and healthy working conditions current signals are collected and processed with

PCA and Hotelling T2 statistic.

• T2 outputs are used in ANN training and the trained network is embedded into the real-time block.

• The system is tested against various load and short circuit situations, some of which are not included in

the training data.

We created faults in a phase winding of a generator by short circuiting ends taken from the stator winding.

We then used the data obtained as a result of short circuiting of a phase winding at rates of 2.5%, 4.3%, 9.5%,

and 16.4% in the ANN training to determine and estimate the level of the system failures.

The current and PCA residues belonging to the smallest (2.5%) and largest (16.4%) failure modes

established artificially in the phase winding are given in Figures 7 and 8. The machine operated at full load

in both failure modes. The amplitude variance in phase currents, especially in 2.5% level failure, remained

at very low levels, as seen in Figure 7a; 16.4% failure mode established current fluctuations that were easily

recognizable.
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Figure 7. a) Current. b) T2 statistical amplitude changing graphics with time at 2.5% rate of in-turn failure situation.
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Figure 8. a) Current. b) T2 statistical amplitude changing graphics with time at 16.4% rate of in-turn failure situation.

Three elements of the residue matrix calculated as a result of PCA were the input data for the ANN.

Accuracy levels provided to obtain the target levels given in Table 2 were analyzed for four different load levels

of the generator. Deviations between ANN outputs and target values obtained for 8 different winding failures

in 1/4 load, half-load, 3/4 load, and full-load levels were given respectively. To measure the success of system

output, 3.4%, 5.1%, 6.9%, and 12.9% faults, which are not included in the ANN training data, were included

in the real-time trials.

Table 2. Real-time experimental results.

Interturn short Target Generator load rate Average
circuit rate (%) value 1/4 1/2 3/4 4/4 (Rated) deviation (%)
2.5 1.025 1.023 1.0235 1.0264 1.0258 0.033
3.4 1.034 1.0408 1.0375 1.0373 1.0326 –0.29
4.3 1.043 1.0416 1.0416 1.0452 1.0456 –0.05
5.1 1.051 1.0651 1.0555 1.0567 1.0476 –0.496
6.9 1.069 1.0675 1.0617 1.0651 1.0675 0.332
9.5 1.095 1.097 1.0926 1.0978 1.0974 –0.108
12.9 1.129 1.1439 1.137 1.1426 1.1467 –1.2
16.3 1.163 1.1644 1.164 1.1667 1.1607 –0.08

The failure mode that was the most difficult to determine in respect to amplitude and current fluctuations

occurred at 1/4 workload. The machine gives current values very close to unloaded working values under this

load level. In this small current, amplitude fluctuations occurring in the smallest failure mode will also remain

in the smallest levels. For these conditions, failure determination was realized with ANN 0.2% fault. This failure

rate reflects the difference between the estimation and the real value of short-circuited winding rates; it does

not mean the failure was not recognized. For instance, in this case, 2.5% of the winding was short circuited, but

ANN estimated the short-circuited winding rate as 2.3%. Determination of a very small rated failure sensitively

under these conditions indicates availability of the suggested model.

The proposed system is independent of the generator’s load conditions. To show that, the generator’s

load increased from 1/4 to full load in 10 s and ANN outputs are given in Figure 9. The generator’s one phase

effective current is shown on the left side and the ANN output is on the right side of the figure. As expected

from a reliable protection system, load variances are recognized by the system as a normal working condition.
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Figure 9. The ANN output corresponding with load fluctuations.

4. Conclusions

This study suggests a selective and flexible model using PCA and ANN algorithms to determine the internal

winding faults of electric machines. The results obtained from experimental applications made on an IG indicate

the suggested model gives reliable results also for very small amplitude winding faults that are otherwise difficult

to determine. By this study, the successfully determined smallest short circuit rate in one phase windings is

revealed as 2.5%, which is ahead of similar studies in the literature [12,22,23]. As the load mode and short circuit

level of the machine increase, determination of winding faults becomes easier. The protection model realized in

this study can be used in protection systems of small power synchronous generators, DFIGs, and other electric

machines. In machines that are used as generators, if a fault is determined early, damage that requires changing

of important compounds like a core can be prevented. Thus, this model can provide important technical and

economic gains, mainly by reducing electrical equipment downtime.
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