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Abstract:Two fractional differential controllers, described and validated by using the fractional order stability theorem

and the Gershgorin circle theorem for a self-sustained electromechanical system consisting of a van der Pol–Duffing

coupled oscillator, were studied in this paper. Based on the idea of a nonlinear observer, a new method for generalized

synchronization (GS) of this system is proposed. Finally, the circuit simulation results demonstrate the correctness and

the effectiveness of the proposed control and GS strategy.
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1. Introduction

With the development of nonlinear system theory, the dynamics of coupled oscillators [1–3], which appeared in

various fields of natural science and engineering technology, have been researched by many scientists. Especially

for electromechanical systems (ESs) that are described by van der Pol oscillators and Duffing oscillators [4–6],

due to the fact that these coupled oscillators systems can exhibit various types of complex chaotic behaviors,

the dynamics of these ESs have been widely discussed. In [7–9], some authors considered the chaotic dynamics

for some self-sustained ESs (SSESs) consisting of Duffing oscillators and van der Pol oscillators. To avoid

unexpected behaviors arising from chaotic ESs, many chaos control methods based on different strategies have

been presented in experiments and applications, such as robust control [10], adaptive backstepping control [6],

passive control [11], and delay feedback control [12,13]. Meanwhile, different kinds of synchronization methods

such as complete synchronization (CS), phase synchronization (PS), and generalized synchronization (GS) [14–

16] have been described. However, reviewing these control and synchronization methods, most of them either

have cancelled out the nonlinear parts of coupled systems or have concentrated on studying CS. Furthermore,

we know that CS is difficult to achieve, and there always exist parameter mismatches and distortions in the

physical world. Therefore, the control and GS for ESs will become an important issue.

On the other hand, the applications of fractional calculus have attracted much attention in recent years

[17–20]. Many fractional order chaotic systems have been discussed and some fractional controllers have been

designed. It is verified that fractional controllers have a strong ability to eliminate chaotic oscillations compared

to traditional controllers [21,22]. Following these ideas, and motivated by previous works [21,22], this paper

presents a fractional controller for a SSES based on the fractional stability theories, and a GS method based

∗Correspondence: williamchristian@163.com
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on the idea of a nonlinear observer. The paper is organized as follows. Fractional calculus for the fractional

differential equation (FDE) and stability theorem in an incommensurate FDE system is presented in Section 2.

In Section 3, the fractional differential controller is designed and proved by using the Gershgorin circle theorem.

Based on the nonlinear observer and the pole assignment technique, a GS scheme of the chaotic system is also

proposed in this section. In Section 4, circuit simulations are provided to illustrate the performance of the

proposed control strategy together with GS. Finally, some concluding remarks are presented in the final section.

2. Fractional calculus

In the following, we introduce some definitions for the general fractional differentiation and integration. The

first is the Grünwald–Letnikov (GL) definition.

aD
q
t f(t) = lim

h→0

1

hq

[(t−q)/h]∑
j=0

(−1)j
(

q
j

)
f(t− jh) (1)

The second is the Riemann–Liouville (RL) definition.

aD
q
t f(t) =

1

Γ(n− q)

dn

dtn

t∫
a

f(τ)

(t− τ)q−n+1
dτ (2)

In this paper, we use the third definition of the differintegral introduced by Caputo.

aD
q
t f(t) =

1

Γ(q − n)

t∫
a

f (n)(τ)

(t− τ)q−n+1
dτ, n− 1 < q < n (3)

Consider the Cauchy problem:

Dq
tx(t) = f(t, x(t)), 0 < t ≤ T, x(i)(0) = x

(i)
0 , i = 0, 1, · · · ,m− 1, (4)

where m− 1 < q ≤ m ∈ N . The numerical calculation of a FDE is as follows.

Transform Eq. (4) into an equivalent Volterra integral equation:

x(t) =
m−1∑
i=0

ti

i!
x
(i)
0 +

1

Γ(q)

∫ t

0

(t− τ)q−1f(τ, x(τ))dτ. (5)

Set h = T
N−1 , N ∈ N , tn = nh , n = 0, · · ·N − 1. Then Eq. (5) can be discretized as follows:

xh(tn+1) =
m−1∑
i=0

tin+1

i!
x
(i)
0 +

hq

Γ(q + 2)
[f(tn+1, x

p
h(tn+1)) +

n∑
j=0

aj,n+1f(tj , xh(tj))],

where

aj,n+1 =

{
nq+1 − (n− q)(n+ 1)q, if j = 0

(n− j + 2)q+1 + (n− j)q+1 − 2(n− j + 1)q+1, if1 ≤ j < n
,
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xp
h(tn+1) =

m−1∑
i=0

tin+1

i!
x
(i)
0 +

1

Γ(q)

n∑
j=0

bj,n+1f(tj , xh(tj)),

bj.n+1 =
hq

q
[(n+ 1− j)q − (n− j)q], 0 ≤ j ≤ n.

Lemma 1 [23] Linear incommensurate FDE system:

{
dαX
dtα = AX,X ∈ Rn, A ∈ Rn×n

dα

dtα =
[
dα1

dtα1
, dα2

dtα2
, · · · , dαn

dtαn

]T
, 0 < αi < 1

.

Let αi =
vi
ui

, (vi, ui) = 1 , vi, ui ∈ Z+ for i = 1, 2, · · · , n , and assume M to be the lowest common multiple of

all the denominators ui . Define

∆(λ) = diag(λMα1 , λMα2 , · · · , λMαn )−A.

Then the zero solution of the system is globally asymptotically stable in the Lyapunov sense if all roots λ of

equation det(∆(λ)) = 0 satisfy |arg(λ)| > π
2M or |arg(λ)| > Λπ

2 , where Λ = max{α1, α2, · · · , αn} .

3. Control and synchronization

3.1. Control chaos via fractional order derivative

The SSES consisting of a van der Pol–Duffing coupled oscillator [6,13] can be written as shown below.

{
ẍ− ε1(1− x2)ẋ+ ω2

1x+ pÿ = 0

ÿ + ε2ẏ + ω2
2y + cy3 − qx = 0

(6)

The dynamics of this system can be seen in [6]. In order to analyze this expediently, we rewrite the system of

Eq. (6) as

Ż = f(Z), (7)

where f(Z) =


z2
−(ω2

1 + pq)z1 + ε1(1− z21)z2 + pω2
2z3 + pcz33 + pε2z4

z4
qz1 − ε2z4 − ω2

2z3 − cz33

 . Let Z0be any point but not equi-

librium in the chaos attractor of the system of Eq. (7), and consider the following control system in order to

stabilize the point Z0 via fractional order derivative:

Ż = f(Z) + V (t), (8)

where V (t) = −f(Z0)− dαZ
dtα + Ż .

Theorem 1 Suppose the Jacobian matrix of the system of Eq. (7) on point Z0 does not have positive real

eigenvalues; then there exists 0 < α0 < 1 , and when 0 < α < α0 < 1 , the control system of Eq. (8) will be

asymptotically stable on point Z0 .
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Proof According to the system of Eq. (8), we can see that

dαZ

dtα
= f(Z)− f(Z0). (9)

The Jacobian matrix of this system on point Z0 equals the Jacobian matrix of the system of Eq. (7) on the

same point. Since the eigenvalues of the Jacobian matrix of this system on point Z0 do not have positive real

eigenvalues, then there exists 0 < α0 < 1 such that |arg(λ)| ≥ α0π
2 for all eigenvalues. Therefore, there exists

α that satisfies 0 < α < α0 < 1, and the zero solution of the system of Eq. (9) will be globally asymptotically

stable in the Lyapunov sense, i.e. the control system of Eq. (8) will be stable on point Z0 .

3.2. Control chaos via fractional differential controller

Lemma 2 (Gershgorin circle theorem) [24] Let A = (aij)n×n ∈ Cn×n , and then the eigenvalue λ lies in

one of the circles |t− aii| ≤
∑
j ̸=i

|aij | .

Let Ẑ = Z − Z0 and Z0 = (z10, z20, z30, z40)
T ; obviously, z20 = z40 = 0, and we rewrite the system of

Eq. (7) as shown below.



˙̂z1 = ẑ2

˙̂z2 = −(ω2
1 + pq)ẑ1 + ε1(1− (ẑ1 + z10)

2)ẑ2 − ε1(ẑ
2
1 + 2ẑ1z10)z20 + pω2

2 ẑ3

+pc(ẑ33 + 3ẑ23z30 + 3ẑ3z
2
30) + pε2ẑ4

˙̂z3 = ẑ4

˙̂z4 = qẑ1 − ε2ẑ4 − ω2
2 ẑ3 − c(ẑ33 + 3ẑ23z30 + 3ẑ3z

2
30)

(10)

Consider the following control system.



˙̂z1 = ẑ2 + u1 − k1ẑ1
˙̂z2 = −(ω2

1 + pq)ẑ1 + ε1(1− (ẑ1 + z10)
2)ẑ2 − ε1(ẑ

2
1 + 2ẑ1z10)z20 + pω2

2 ẑ3

+pc(ẑ33 + 3ẑ23z30 + 3ẑ3z
2
30) + pε2ẑ4 + u2 − k2ẑ2

˙̂z3 = ẑ4 + u3 − k3ẑ3

˙̂z4 = qẑ1 − ε2ẑ4 − ω2
2 ẑ3 − c(ẑ33 + 3ẑ23z30 + 3ẑ3z

2
30) + u4 − k4ẑ4

dαu1

dtα = −u1 − k5ẑ1

dβu2

dtβ
= −u2 − k6ẑ2

dγu3

dtγ = −u3 − k7ẑ3
dru4

dtr = −u4 − k8ẑ4

(11)

Here, ui(0) = 0, ki > 0, and 0 < α, β, γ, r < 1. Obviously, the system of Eq. (11) can be transformed to Eq.
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(7), and the coefficient matrix is

A(Z) =



−k1 1 0 0 1 0 0 0
A21 A22 A23 pε2 0 1 0 0
0 0 −k3 1 0 0 1 0
q 0 A43 −ε2 − k4 0 0 0 1
−k5 0 0 0 −1 0 0 0
0 −k6 0 0 0 −1 0 0
0 0 −k7 0 0 0 −1 0
0 0 0 −k8 0 0 0 −1


,

where A21 = −ω2
1−pq−2ε1(ẑ1+z10)(ẑ2+z20), A22 = −[ε1((ẑ1+z10)

2−1)+k2] , A23 = p(ω2
2+3c(ẑ3+z30)

2), and

A43 = −ω2
2−3c(ẑ3+z30)

2 . Because the variable of the chaotic system is bounded, we can let M2 = |A21|+|A23| ,
M4 = |A43| , and we have the following theorem.

Theorem 2 The zero solution of the incommensurate fractional system of Eq. (11) is asymptotically stable if

k1 > 2 , k2 > M2 + pε2 + ε1 + 1 > 0 , k3 > 2 , k4 > 1 +M4 − ε2 > 0 , and 0 < k5,6,7,8 < 1 .

Proof By Lemma 2, the eigenvalue of A(Z) lies in the circles

|λ1 + k1| ≤ 2,
∣∣λ2 + [ε1((ẑ1 + z10)

2 − 1) + k2]
∣∣ ≤ M2 + pε2 + 1, |λ3 + k3| ≤ 2, |λ4 + ε2 + k4| ≤ 1 +

M4, |λi + 1| ≤ ki(i = 5, 6, 7, 8).

According to the condition, when k1 > 2, k2 > M2 + pε2 + ε1 + 1 > 0, k3 > 2, k4 > 1 +M4 − ε2 > 0,

and 0 < k5,6,7,8 < 1, we can see that all the circles lie in the left of the imaginary axis, and the real value of all

the eigenvalues of A(Z) is less than zero, i.e. all λ satisfy |arg(λ)| > π
2 . By Lemma 1, we know that the zero

solution of the control system of Eq. (11) is asymptotically stable.

3.3. GS with observer

Rewrite the system as

dZ

dt
= AZ +BH(Z), (12)

where A =


0 1 0 0
−(ω2

1 + pq) ε1 pω2
2 pε2

0 0 0 1
q 0 −ω2

2 −ε2

 , B =


0 0
−ε1 pc
0 0
0 −c

 , H(Z) =

(
z21z2
z33

)
.

Consider the observer

dY

dt
= P−1APY + P−1B(KZ +H(Z)−KPY ), (13)

where Rank(P ) = 4.

Theorem 3 If (A,B) is controllable, and λi(A − BK) < 0 , i = 1, 2, 3, 4 , then lim
t→∞

∥PY −X∥ = 0 , i.e. the

systems of Eqs. (12) and (13) will approach GS with the observer of Eq. (13).
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Proof Let e = PY −X , and then

de

dt
= P

dY

dt
− dX

dt
= (A−BK)e. (14)

By [25], the system of Eq. (14) is globally asymptotically stable under the condition λi(A − BK) < 0,

i = 1, 2, 3, 4, i.e. lim
t→∞

∥e∥ = 0.

Remark 1 When P = I , where I is an identical matrix, the systems of Eqs. (12) and (13) are in CS. When

P = −I , the two systems are antisynchronized. When P = kI and k ̸= ±1 is constant, the two systems are in

GS.

4. Simulation experiments

4.1. Control chaos via fractional order derivative

Taking ε2 = 0.00987, ε1 = 2.466, ω1 = ω2 = 1, c = 0, p = 3.518, and q = 0.808, we can see that the

system of Eq. (7) has a chaotic attractor from [13]. Letting Z0 = (0, 1, 2, 1)T , we can calculate that all the

eigenvalues of the Jacobian matrix of the system of Eq. (9) on the point Z0 are λ1,2 = 0.954339± 1.604902i ,

λ3,4 = 0.273726± 0.460323i , and then there exists 0 < α0 < 1 such that |arg(λ)| ≥ α0π
2 for all eigenvalues, so

we can select α0 =̇ 0.658473 and also take α = 0.5 as satisfying 0 < α < α0 < 1. By Theorem 1, we know that

the system of Eq. (9) will be stable on point Z0 .

Generally, since the calculations of fractional calculus are very difficult in the time domain, people

will transform the time domain into the complex frequency domain. Upon considering the initial conditions

to be zero, the Laplace transform of the Caputo fractional derivative is L{aDα
t f(t)} = sαL{f(t)} , so the

fractional integral operator of order “α” can be represented by the transfer function H(s) = 1/sα , and we

can use the approximations for 1/sα with α from 0.1 to 0.9 in steps of 0.1 with errors of approximately 2

dB [26]. The fractional 1
s0.5 circuit unit is designed in Figure 1, and the corresponding circuit equation is

1
s0.5 =̇ R1

sR1C1+1 +
R2

sR2C2+1 +
R3

sR3C3+1 +
R4

sR4C4+1 +
R5

sR5C5+1 +
R6

sR6C6+1 . Figure 2 shows the circuit of the control

system of Eq. (9), and the corresponding circuit equation is as given below.



d0.5U1

d0.5t = R13

R12R10
U2 − 5 R13

R11R10

d0.5U2

d0.5t = − R29R24

R27R22R20
U2
1U2 − R29R24

R27R23R20
U1 +

R29

R25R20
U2

+ R29

R26R20
U3 +

R29

R28R20
U4 − 5 R29R24

R27R21R20

d0.5U3

d0.5t = R33

R32R30
U4 − 5 R33

R31R30

d0.5U4

d0.5t = − R43R37

R41R45R40
U3 − R43R37

R42R45R40
U4 + 5 R37

R44R40
+ R37

R46R40
U1

(15)

By Theorem 1, we can see that the state of the system of Eq. (9) is stable, i.e. the chaotic ES (7) is stable by

the controller V (t) = −F (Z0)− dαZ
dtα + Ż . Figure 3 shows the stable waveform by circuit simulation.
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Figure 1. The 1
s0.5

circuit unit.

U1

741

3

2

4

7

6

51

X1

0.5

I1I1 O2 O2

R12

10kΩ

R13

10kΩ

R10

1kΩ

VDD

-12V

2

U2

741

3

2

4

7

6

51

3

VDD

Z2
Z2

Z1

Z1

VEE

-5V

R11

50kΩ

5%

1

VEE

A3

0.1 V/V 0 V 

Y

X

A1

0.1 V/V 0 V 

Y

X1
R22

4.055kΩ

R23

2.602kΩ

3

R21

5.242891kΩ

R27

10kΩ

R24

10kΩ

R25

4.055kΩ

R26

2.843kΩ

R28

287.9969kΩ

Z1 Z2
R29

10kΩ

R20

1kΩ

X1

0.5

I1I1 O2 O2

Z2

Z3

Z4

U3

741

3

2

4

7

6

51

2

U4

741

3

2

4

7

6

51

5

6
U5

741

3

2

4

7

6

51

VSS

5V
VSS

VDD

-12V

VDD

VDD

-12V

VDD

VDD

-12V

VDD

Z1
Z1

Z2

4

Z3

Z3

Z4
Z4

Z21

Z21

8

Z2

U6

741

3

2

4

7

6

51

X1

0.5

I1
I1

O2
O2

R31

50kΩ

R32

10kΩ

R33

10kΩ

R30

1kΩ

VDD

-12V

U7

741

3

2

4

7

6

51

Z4

Z3

VEE

-5V

VEE

Z3

Z4

VDD

3

2
1

Figure 2. Circuit schematic for the control system of Eq. (9): a) circuit schematic for state z1 of Eq. (9), b) circuit

schematic for state z2 of Eq. (9), c) circuit schematic for state z3 of Eq. (9), d) circuit schematic for the state z4 of

Eq. (9).
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Figure 2. Continued.

0 0.5 1 1.5 2

x 10 −3

−1

0

1

2

3
x 10

−3

t

z 1

0 2 4 6

x 10 −3

0

0.5

1

x 10
−3

t

z 2

(a) State z 1 of system (9) (b) State z 2 of system (9)

0 2 4 6

x 10
−3

10
−3

t

z
3

0 0.005 0.01 0.015 0.02 0.025

10−4

10−3

t

z
4

(c) State z3 of system (9)
(d) State z 4 of system (9)

Figure 3. Stable states of the system of Eq. (9): a) state z1 of Eq. (9), b) state z2 of Eq. (9), c) state z3 of Eq. (9),

d) state z4 of Eq. (9).

4.2. Control chaos via fractional differential controller

Since the fractional differential controller is suitable for arbitrary alpha order systems, in order to facilitate the

circuit simulation, we take α = β = γ = r = 0.9. Figure 4 shows the fractional 1
s0.9 circuit unit [27], and its

circuit equation is 1
s0.9 =̇ R1

sR1C1+1 + R2

sR2C2+1 + R3

sR3C3+1 . The circuit schematic for every state of the control

system of Eq. (11) is shown in Figure 5, and the circuit equation is described by the system given in Eq. (16).
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By Theorem 2, we can see that the states of the system of Eq. (11) are stable, and the stable waveform by

circuit simulation is given in Figure 6.
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Figure 5. Circuit schematic for the control system of Eq. (11): a) circuit schematic for state ẑ1 of Eq. (11), b) circuit

schematic for state ẑ2 of Eq. (11), c) circuit schematic for state ẑ3 of Eq. (11), d) circuit schematic for state ẑ4 of Eq.

(11), e) circuit schematic for state u1 of Eq. (11), f) circuit schematic for state u2 of Eq. (11), g) circuit schematic for

state u3 of Eq. (11), h) circuit schematic for state u4 of Eq. (11).
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Figure 5. Continued.
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Figure 6. Stable states of the system of Eq. (11): a) state ẑ1 of Eq. (11), b) state ẑ2 of Eq. (11), c) state ẑ3 of Eq.

(11), d) state ẑ4 of system (11).
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4.3. GS with observer

Supposing the closed-loop poles at [−2,−1,−4,−3], we can obtain the feedback gain matrix

K =

(
−12.1751 −5.0511 3.4819 −19.6827
0 0 0 0

)
by the pole assignment algorithm, and we letP = 0.3I .

From Figures 7–9, we can see that by the observer of Eq. (13) and the original system of Eq. (12) we have GS.
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Figure 7. GS of the system of Eq. (12) and the observer of Eq. (13) (X: real line, Y: dotted line).
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Figure 9. State diagram of the error system of Eq. (14).

5. Conclusion

In this paper, based on fractional calculus and the Gershgorin circle theorem, we construct two control laws for

chaos suppression in a SSES consisting of a van der Pol–Duffing coupled oscillator. Any desired point in the

chaos attractor of the ES can be stabilized via the proposed controller. Meanwhile, we offer an observer for

GS of the ES. Circuit simulations confirm the efficiency of the proposed controller. The main contribution of

this paper is selecting the order of the fractional order control system (see Eq. (9)) to control the integer order

electromechanical chaotic system. It is a novel technique compared with the other control methods such as

robust control [12], adaptive backstepping control [6], passive control [13], and delay feedback control [14–16].

The traditional control technique does not change the order of the control system, but this new control method

(the first controller) is not the same. Other topics such as the influences of the noise in the parameters and the

structure of the controlled system can be investigated for future research.
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