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Abstract: This research introduces an electromyogram (EMG) pattern classification of individual motor unit action

potentials (MUPs) from intramuscular electromyographic signals. The presented technique automatically classifies EMG

patterns into healthy, myopathic, or neurogenic categories. To extract a feature vector from the EMG signal, we use

different autoregressive (AR) parametric methods and subspace-based methods. The proposal was validated using EMG

recordings composed of 1200 EMG patterns obtained from 7 healthy, 7 myopathic, and 13 neurogenic-disordered people.

A feedforward error backpropagation artificial neural network (FEBANN) and combined neural network (CNN) were

used for classification, where the success rate was slightly higher in CNN. Among the different AR and subspace methods

used in this study, the highest performance was obtained with the eigenvector method. The following rates were the

results achieved by using the CNN. The correct classification rate for EMG patterns was 97% for healthy, 93% for

myopathic, and 92% for neurogenic patterns. The obtained accuracy for EMG signal classification is approximately 94%

for CNN. The rates for FEBANN were as follows: 97% for healthy patterns, 92% for myopathic patterns, and 91% for

neurogenic patterns. The obtained accuracy was 93.3%. By directly using raw EMG signals, EMG classifications of

healthy, myopathic, or neurogenic classes are automatically addressed.

Key words: Electromyography, motor unit potentials, autoregressive spectral estimation method, subspace-based

methods, combined neural network

1. Introduction

Electromyography (EMG) is a neurological study method that is performed by examining the electrical po-

tentials of nerves and muscles. Once pathologic conditions occur in the motor system, the properties of the

muscle’s electrical signals change. Therefore, accurate analysis of EMG signals can be beneficial for determining

abnormalities in the muscles, and better yet in the motor system. The rapid development of technology has

a direct impact on all aspects of life as well as on recording and analyzing EMG. Disposable concentric EMG

needle electrodes are widely used to diagnose neuromuscular disorders. In the last decade, EMG signals have

been digitized and recorded on mobile devices and presented as the researcher desires. [1]

EMG consists of discrete discharges known as motor unit action potentials (MUPs) .MUPs from different

motor units (MUs) have a tendency for different shapes. The resultant knowledge is used to label the source of
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deficiency, such as neurogenic or myopathic diseases [2–4]. Neurophysiologists commonly use an oscilloscope and

assess MUPs by carefully listening to their sounds. Thus, an experienced neurophysiologist is able to distinguish

irregularities with reasonable accuracy.

However, in the case of less noticeable or mixed pattern deviations, subjective MUP assessment may

not be enough. Therefore, for a valuable automated EMG signal classification, a methodical handling of EMG

signals must be made [5]. Nowadays, automated EMG analysis is possible owing to computer-based EMG

analysis algorithms. However, it has not obtained approval for routine clinical use. Some of the commercially

available algorithms are as follows: Pattichis and Elia classified EMG signals using time domain measures,

autoregressive (AR) spectral measures, AR coefficients, and cepstral coefficients with an artificial neural network

(ANN) [6]. Pattichis et al. performed sequential parametric pattern recognition classifier and used time-domain,

waveform-related MUP parameters as input. They also used a parametric pattern recognition algorithm that

facilitates automatic MUP feature extraction. ANN models are combined for providing an integrated system

for classification [7]. Loudon et al. studied the decomposition of EMG signals (composed of superimposed

MUPs) into their constituent MUPs, using both procedural and knowledge-based methods. They also studied

the statistical pattern recognition procedure for classification. Eight MUP features were used as input [8].

Hassoun et al. performed classification by using the time domain waveform as input into a 3-layer ANN with a

“pseudo-unsupervised” learning algorithm [9,10].

Christodoulou and Pattichis’s MUP classification techniques used 2 different pattern recognition methods:

the self-organizing feature maps algorithm and learning vector quantization [11].

Subasi et al. used time-frequency methods for fatigue detection with independent component analysis

(ICA) and ANNs [12]. Diab et al. received EMG signals’ AR model from uterine muscle and used it as input

to ANN for classification in order to calculate the risk of preterm birth in pregnancies [13]. Subasi used particle

swarm optimization jointly with a support vector machine to perform a study that increased the accuracy of

EMG classification [14]. Sueaseenak et al. used two-channeled EMG to control virtual hand prosthesis with

12 degrees of freedom. In particular, they took 2 channel EMG signals via surface electrodes and separated

them by ICA. Feature extraction and classification was conducted by using an eigenvector (EIG) [15]. A similar

prosthesis problem was solved by Young et al. using linear discriminant analysis [16]. Ibrahimy et al. used

single-channel surface electrodes to receive EMG signals. Five different ANNs were used for classification and

comparison of the results [17].

Recently developed techniques for spectrum estimation allow EMG signal classification. There are 2

spectrum estimation procedures: parametric and nonparametric. Of these, the AR method is used more often

because there are established techniques for estimating AR parameters. In addition, the approximations of the

system are calculated by solving linear equations. Estimation of the AR procedure parameters can be performed

with Yule–Walker, covariance, modified covariance, and Burg estimation methods [18,19].

Multiple signal classification (MUSIC) [20–25] and EIG [25–29] techniques are subspace−based techniques

that are utilized for acquiring power spectral density (PSD) signal estimations.

Until now, the estimation of the frequencies of different signals was conducted with subspace-based

techniques. However, there are still some dilemmas to be solved, even though the previous studies demonstrated

good performance. In general, there are not many available EMG patterns for classifier training. Therefore,

the generalization ability of a classifier directly affects the success of real-time EMG classification.

In this paper, the CNN model is adopted to obtain a more robust classifier. Furthermore, the method

in most previous studies used only one type of feature vector. However, due to a large variation in EMG
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pattern distribution, different feature extraction methods need to be used. Therefore, we used 6 different

feature extraction methods to obtain a better performance. The classification of real EMG signals is a common

supervised learning pattern classification problem. Since it will be used for clinical purposes, any computerized

method for EMG analysis must have certain quality and regulations such as high speed, sturdiness, and

dependableness, and the method must attain a high success rate.

The presented technique was successfully applied in the classification of EMG signals through records

from healthy (H), myopathic (M), and neurogenic-disordered (N) people. It consists of 2 stages. The first

stage involves preprocessing the EMG signal in order to extract EMG features. In this stage, model-based and

subspace-based methods were used. In the second stage, neural networks were used to classify an anonymous

EMG signal as H, M, or N. The intention of this study is to develop and test a methodology that is helpful

for the neurophysiologist to diagnose neuromuscular disorders. We describe how our findings may turn into an

advantageous tool when the neurophysiologist’s opinion is dependent on high-priced, invasive tests, as well as

by decreasing biomedical-based errors in the medical decision-making process.

Figure 1 illustrates how 6 different feature extraction methods affect a healthy human EMG. Similarly,

Figure 2 shows the effects of the same methods on myopathic EMG samples. Figure 3 shows the effects of the

same methods on neurogenic EMG samples.
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Figure 1. PSDs of EMG signal taken from a healthy

subject.

Figure 2. PSDs of EMG signal taken from a myopathic

subject.

2. Materials and methods

2.1. Test subjects and obtaining data

Measurements took place in the Neurology Department of Gaziantep University for all patient and control

groups. EMG was recorded from the biceps brachii muscle, which is a large muscle positioned at the front of

the upper arm. The test subjects were asked to make a slight voluntary contraction for 5 s. EMG was recorded

using a concentric needle electrode and an EMG measurement system. The signal was sampled with 12-bit

ADC resolution at 20 kHz.

The recording spots in the muscle were standardized; EMG segments were recorded from up to 5 different

needle insertions. Before recording, the electrode was inserted at least 3–5 mm into the muscle. In addition,
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between recordings, the electrode was maneuvered at least 3–5 mm to confirm that the recorded MUPs were in

fact different. Insertion of the electrode was performed until the medial or posterior border of the muscle was

attained. After the electrode was withdrawn to the fascial, it was inserted into a new radial direction. Usually,

1–2 MUPs were simultaneously active within the pick-up radius of the electrode. Recording more than 2 MUPs

simultaneously is more common in pathological cases.
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Figure 3. PSDs of EMG signal taken from a neurogenic subject.

In addition to the patient’s general examination and clinical history, expert clinicians diagnosed neuro-

muscular diseases, such as myopathy and neurogenic disorders, through EMG and nerve conduction tests.

This research uses EMG data obtained from 27 subjects. The data were recorded from 7 healthy subjects

(4 females, 3 males) between the ages of 10 and 43 years (mean age (MA): 30.2, standard deviation (SD): 10.8

years), 13 neurogenic subjects (5 females, 8 males) between the ages of 7 and 55 years (MA: 25.1, SD: 17.2

years), and 7 myopathic subjects (3 females, 4 males) between the ages of 7 and 46 years (MA: 21.5, SD: 13.3

years), as in [30,31].

2.2. Subspace-based spectral analysis

The model-based (parametric) techniques model the data sequence x(n) as the output of a linear system

described by a rational structure. In parametric techniques, spectrum approximation is composed of 2 steps.

The first step involves parameters of the parametric technique that are estimated from a given data sequence

x(n), 0 ≤ n ≤ N − 1. In the second step, the estimation of the PSD is performed using the estimated AR

model parameters. The AR technique is used more often, since approximation of AR parameters is accomplished

without difficulty by solving linear equations.

In the AR technique, white noise is the input, and data can be represented as the output of a causal,

all-pole, discrete filter. The AR model of order p is defined by the following equation:

x(n) = −
p∑

k=1

a(k)x(n− k) + w(n), (1)

where w(n) is white noise with variance equal to σ2 and a(k) are the AR model parameters.
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In order to obtain the most stable and proper AR method, selection of the model order, length of the

modeled signal, and stationary level of the data must be considered [18,19].

When we compare the 4 different AR methods used in this study, the difference between them is as

follows: the modified covariance technique minimizes the forward and backward prediction errors in the least

square sense. On the other hand, the Burg technique minimizes the forward and backward prediction errors

in the least square sense with the AR coefficients constrained to satisfy the L-D recursion. The Yule–Walker

and covariance techniques are very similar. They both minimize only the forward prediction error in the least

square sense. Their difference is that the Yule–Walker technique applies window to data; however, unlike the

other 2 techniques, the covariance technique does not apply window.

2.2.1. Yule–Walker technique

In the Yule–Walker technique, the AR parameters need to be estimated. The estimation process is performed

by minimizing an estimate of prediction error power. PSD estimation is constructed by the predictions of the

AR parameters, as shown in the formula below [25–28]:

P̂YW (f) =
σ̂2∣∣∣∣1 + p∑

k=1

â(k)e−j2πfk

∣∣∣∣2
. (2)

AR Yule–Walker PSDs of EMG signals are presented in Figures 1, 2, and 3. For more information about this

method, please see the references.

2.2.2. Covariance technique

If there are compound data, a resembling estimator can be formed by minimizing the forecast of the prediction

error power. Covariance and autocorrelation techniques are very similar. The range of summation in the

prediction error power estimate distinguishes them from one another. Based on the estimates of the AR

parameters, PSD estimation is formed as [25–28]:

P̂COV (f) =
σ̂2∣∣∣∣1 + p∑

k=1

â(k)e−j2πfk

∣∣∣∣2
. (3)

AR covariance PSDs of EMG signals are presented in Figures 1, 2, and 3. For more information about this

method, please see the references.

2.2.3. Modified covariance technique

In this technique, the averages of the estimated forward and backward prediction error powers are minimized

to estimate the AR parameters.

As with the covariance method, the sums of the observed data samples are more than the prediction
errors.

The difference between the modified covariance and covariance techniques is in the definition of the

autocorrelation estimator. Based on the estimates of the AR parameters, PSD prediction is expressed with the
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formula below [25–28]:

P̂MCOV (f) =
σ̂2∣∣∣∣1 + p∑

k=1

â(k)e−j2πfk

∣∣∣∣2
. (4)

AR modified covariance PSDs of EMG signals are presented in Figures 1, 2, and 3. For more information about

this method, please see the references.

2.2.4. Burg technique

The Burg technique performs the minimization of the forward and backward prediction errors and estimates

the reflection coefficient. From the estimations of the AR parameters, PSD estimation is expressed as [25–28]:

P̂BURG(f) =
êp∣∣∣∣1 + p∑

k=1

âp(k)e−j2πfk

∣∣∣∣2
, (5)

where êp = êf,p + êb,p is the total least squares error.

AR Burg PSDs of EMG signals are presented in Figures 1, 2, and 3. For more information about this

method, please see the references.

2.2.5. Selection of AR model orders

Selecting the model order is a fundamental issue for model-based techniques. Much work has been done and

experimental results have been given in the literature regarding this issue [25–28]. The Akaike information

criterion (AIC) is the most recognized criterion for selecting the model order [32]. In our research, the model

order of the AR technique was achieved by utilizing AIC.

2.3. Subspace-based spectral analysis

To estimate the frequencies and the power of signals from noise-corrupted measurements, subspace-based

techniques are used. These are characterized by eigendecomposition of the correlation matrix of the noise-

corrupted signal. The subspace-based techniques provide high resolution frequency spectra. Even if the signal-

to-noise ratio (SNR) is low, they can still provide good PSD estimations. The mentioned techniques are most

applicable to signals that might be assumed as the composition of some specific sinusoids buried in noise [20–29].

In this research, 2 subspace-based procedures (MUSIC and EIG) were chosen to generate the PSD estimates.

The polynomial A(f) was run through to predict the PSD.

A(f) =

m∑
k=0

ake
−j2πfk (6)

According to the formula, the desired polynomial is symbolized with A(f), ak stands for coefficients of the

desired polynomial, and mstands for the order of the eigenfilter, A(f) [24].

2.3.1. MUSIC technique

The MUSIC technique is a noise subspace frequency estimator that was designed by Schmidt [33]. Schmidt

intended to distinguish the desired zeros from the spurious ones and used the mean spectra of entire eigenvectors
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matching to the noise subspace. The PSD is obtained from the formula below:

PMUSIC(f) =
1

1/K
K−1∑
i=0

|Ai(f)|2
. (7)

According to the formula, K stands for the dimension of noise subspace and Ai(f) stands for the desired

polynomial that corresponds to all the eigenvectors of the noise subspace [21–24,33].

MUSIC PSDs of EMG signals are presented in Figures 1, 2, and 3. For more information about this

method, please see the references.

2.3.2. EIG technique

The process of distinguishing the desired zeros from the spurious ones is performed by using the EIG technique

[26–28]. This method brings down spurious zeros into the unit circle and calculates an acceptable noise subspace

vector a out of the noise or signal subspace EIGs.

Along with the MUSIC technique, the EIG technique was also explored [26–28]. It is possible to

distinguish between spurious zeros and real zeros. After the EIG technique forces spurious zeros inside the

unit circle, it calculates a desired noise subspace vector from either the noise or the signal subspace EIGs. The

formula from using the EIG for the PSD is shown below:

Pev(f) =
1(

K−1∑
i=0

|Ai(f)|2/λi

) . (8)

EIG PSDs of EMG signals are presented in Figures 1, 2, and 3. For more information about this method, please

see the references.

Before MUSIC and EIG PSD are calculated, a technique is used for finding the dimension of the noise

subspace K.The AIC or minimum description length (MDL) criteria are mostly used [25].

The MDL principle produces a coherent approximation of the quantity of signals. On the other hand,

the AIC principle does not produce a consistent approximation.

Because it gives coherent estimates, the MDL principle was used and the dimension of the noise subspace

K was calculated according to the MDL criterion in our study. The dimension of the noise subspace K is the

value that minimizes MDL (k), which was taken as 10 for all subjects [34].

2.4. Combined neural network models

ANNs are mostly used for classification problems in biomedical engineering. In particular, analyzing biomedical

signals requires a capacity of real-time parallel signal processing. The training of ANNs is not done with

rules; instead, they are trained by giving examples, and they are not interrupted by personal factors such as a

person’s emotional state, fatigue, or external factors. ANNs are very effective for the analysis of conditions, fast

recognition, and real-time diagnoses [35]. Even though there are many neural network algorithms for training

in the literature, the backpropagation (BP) algorithm is the most frequently used algorithm for training in

classification problems, and it is also employed in our study [36,37].

If we combine neural network models, we can obtain a better result in classification accuracy than that of

the single models. This development is known as a combined neural network (CNN) and it is based on a stacked
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generalization. Training data generally reveal high distribution in the search space due to the inefficiency of

the low-level measuring aspects in illustrating the model briefly. The learning process can be made easy by

converting the data into a more suitable model.

Therefore, for each feature set in the data model, it is essential to calculate approximately the difficulty

of learning the main ideas using those training data. As a next step, the learning system needs to transform

the models into a space that is easier for the learning objectives [38–40]. Wolpert’s stacked generalization idea

[41] runs ahead of the mentioned ideas and points to schemes for feeding data from one set of generalizers to

another. The referring process is performed prior to building the final predicted output value. The stacked

generalization scheme might be thought of as a more complex form of cross-validation. It was proved that the

stacked generalization scheme performs better than stand-alone neural networks and improves the generalization

skill of ANN models. Figure 4 shows the CNN model used in this study.
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Figure 4. A combined neural network topology used for EMG signal classification.

At the first level, the feedforward error backpropagation artificial neural network (FEBANN) was used,

and the second level was used for the implementation of the CNN [38]. In this study, the FEBANN and CNN

are used for designing classifiers.
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2.5. Development of neural network models

Classifying EMG signals into groups is a typical problem of pattern classification. In our study, the collected

EMG data were analyzed by different neural networks. Data were recorded from a total of 27 subjects. Among

these subjects, 7 were healthy (H), 7 were myopathic (M), and 13 were suffering from neurogenic disorder (N).

The AR and subspace-based methods were used for a particular EMG signal epoch (1024 samples). The model

order for AR was chosen as p = 15, and for subspace-based methods it was k = 10; the size of the window

was taken as 128. Neural network classifier inputs were the PSDs. The intention of the modeling phase in this

practice was to differentiate the 3 classes, H, M, and N. In order to build up the neural network classifiers, the

feature vectors were extracted by using AR parametric methods and subspace-based methods from each EMG

signal frame (1024 separate samples).

Our results yielded 1200 feature vectors for each feature extraction procedure. Among the 1200 distinct

EMG signal patterns, 900 were randomly chosen and used for training the networks. The remaining 300 were

utilized to confirm the validity of the developed models. The class distribution for each data set is shown in

Table 1.

Table 1. Class distribution of the samples in the training and test data sets.

Class Training set Test set Total
Healthy 300 (5 subjects) 100 (2 subjects) 400 (7 subjects)
Myopathic 300 (4 subjects) 100 (3 subjects) 400 (7 subjects)
Neurogenic 300 (9 subjects) 100 (4 subjects) 400 (13 subjects)
Total 900 (18 subjects) 300 (9 subjects) 1200 (27 subjects)

In the input layer, the neural network models were designed with features composed of various EMG

signal patterns. The number of hidden neurons was 80, and the output layer contained 3 nodes representing

H, M, or N. In our experiment, [0 0 1] values for H, [0 1 0] values for M, and [1 0 0] values for N were used as

indicators. In order to merge the assumptions of the first-level networks, we trained second-level neural networks

in the CNN. There were 9 inputs in the second-level network. This corresponds to the outputs of the 3 groups

in the first-level networks. The targets for the second-level network and the original data were identical. The

numbers of outputs and hidden neurons were chosen as 3 and 20, respectively. We also implemented the same

classification issues with the FEBANN. Hence, we were able to compare the performance of the 2 classifiers.

3. Results and discussion

The classifiers suggested for the classification of the EMG signals were applied using MATLAB. In order to

appraise classifier performance, all classifiers introduced in our research were trained with the identical data set.

All classifiers were also tested with the evaluation data set. Pattern classification problems were solved through

ANN, employing the backpropagation training algorithm. As an advantage, this type of neural network allows

a better comprehension of system behavior and efficiency in the training algorithm. It must be said that when

using a neural network, the division of the data into 2 sets (training and test) must be decided. In our research,

18 of 27 subjects were used for training and the others were used for testing. As a practical way of enhancing

the common capability of the neural network, data from different subjects were used to form the training and

test sets.

PSD was computed for each EMG signal frame from the 1024 samples. After training with 900 data,

300 testing data were used to confirm the accuracy of ANN models for EMG signal classification. The aim of

the classification was to appoint the input patterns to one of the different classes. This representation of the
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probability of class membership was done by restricting the outputs to a range of 0 to 1. Classification was

carried out by the classification features selected for a specific class, and a specific pattern was appointed for

that class. This application consisted of 3 classes: H, M, and N.

The performance of our approach was calculated by dividing all the EMG data into 2 sets. The training

set and the test set were used to create a classification model and to verify it, respectively. Subsequently, k -fold

cross-validation was used. We chose k -fold cross-validation since it is a widely recognized evaluation method

that many researchers use in order to reduce the bias related to random sampling. k -fold cross-validation is

done by randomly splitting the whole data set into kmutually exclusive subsets (folds) that are of almost the

same size. After the classification model is trained, it is tested k times. Videlicet, the classification model, is

trained on whole folds except for a single fold. That single fold is used for tests. The cross-validation accuracy

(CVA) is the average of the k individual accuracy measures.

CV A =
1

k

k∑
j=1

Ai (9)

The number of folds used is denoted by k (10 in this case), and Ai is the accuracy measure of each fold,

i = 1, . . . , k [42]. In this research, all EMG data were stratified into 3 classes: H, M, and N. As with those

in the whole data set, each of the 10 folds contains equivalent proportions of H, M, and N.

By computing the following statistical parameters, the test performances of the ANNs were determined:

Specificity : number of correctly classified healthy subjects / total healthy subjects.

Sensitivity (myopathy): number of correctly classified myopathic subjects / total myopathic subjects.

Sensitivity (neurogenic): number of correctly classified neurogenic subjects / total neurogenic subjects.

Total classification accuracy : number of correctly classified subjects / total subjects.

The comparisons of the different feature extraction methods for FEBANN and CNN are given in Tables

2 and 3, respectively.

Table 2. Comparison of different feature extraction methods using FEBANN for EMG signal classification.

Statistical parameters AR Yule AR Burg AR COV AR MCOV MUSIC EIG
Specificity (%) 94 95 96 97 90 97
Sensitivity (%) (myopathic) 88 88 89 90 80 92
Sensitivity (%) (neurogenic) 80 81 85 86 83 91
Total classification accuracy (%) 87.3 88 90 91 84.3 93.3

Table 3. Comparison of different feature extraction methods using CNN for EMG signal classification.

Statistical parameters AR Yule AR Burg AR COV AR MCOV MUSIC EIG
Specificity (%) 94 95 97 97 93 97
Sensitivity (%) (myopathic) 89 89 90 90 81 93
Sensitivity (%) (neurogenic) 82 83 85 87 85 92
Total classification accuracy (%) 88.3 89 90.6 91.3 86.3 94

As seen from the tables, the average success rate for CNN with EIG was the highest (94%). However, the

FEBANN with MUSIC technique had the lowest success rate (84.3%). Our examination of the classification

performance of each class yields that the highest performance was acquired for the H group using AR covariance,
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AR modified covariance, and EIG. However, the lowest performance was acquired for the H group using MUSIC.

The complex and variable waveform shapes are attributed to the low performance of the N group. Thus, the

CNN model obtained higher accuracy rates compared to the FEBANN model.

By referring to the results contained in the present paper as well as to our awareness of EMG signal

classification problems, we draw attention to the following points:

i) Due to the high classification accuracy of the CNN classifier, we obtained insight into the features used

to define the EMG signals. The conclusions demonstrate that the EIG PSDs are the features that best

represent the EMG signals. Moreover, a good distinction between classes was obtained by using these

features.

ii) To diagnose myopathic and neurogenic disorders, the first-level networks were applied in the CNN. The

different features were used as inputs. Diagnostic accuracy was improved by training the second-level

networks through implementing the input data as the outputs of the first-level networks. The CNN

models reached a slightly higher performance compared to the FEBANN.

iii) EMG is a useful method for diagnosing different diseases in muscles. In order to test this hypothesis, CNN

and FEBANN were trained to identify 3 groups of MUPs derived from EMG spectrums; these were the

healthy, myopathic, and neurogenic disorder groups. The classification accuracy that was demonstrated

by the ANN was 97% for healthy, 93% for myopathic, and 92% for neurogenic disorders. After the ANN

was trained adequately and the values of the biases were stored, testing and succeeding realization was

rapid. This is an advantage of ANN over existing methods of EMG signal analysis. In addition, the

EMG waveform is interpreted through pattern recognition, whereas feature vectors are created from the

EMG PSDs to distinguish the data to be classified. The features of the classifier inputs determine the

performance of the classifier. Six different feature extraction methods were utilized to obtain the features

that most accurately represented EMG signals. Our research suggests that determining the best classifier

for EMG signals is feasible through the AR and EIG methods.

iv) In a previous study [30], the FEBANN employing a backpropagation training algorithm was used to

identify the myopathic and neurogenic disorders. Spectral analysis of EMG signals was performed by AR

method to determine the FEBANN inputs. The total classification accuracy was 88%. For our experiment,

we used different features in the CNN, and slightly higher classification accuracies were obtained. This

result shows that CNN classification accuracy is slightly improved with the usage of EIG feature.

The results obtained from our experiments are encouraging, in that they suggest that the CNN approach

is feasible for EMG signal classification. The ANN diagnostic system has a satisfactory success rate in testing,

and the evaluation of EMG signals is performed objectively. Its automated functions bring rapidness as well as

efficiency. All these features make the system eligible for use in clinical practice.

4. Conclusion

A CNN was used in the present study. In the first layer, the ensemble neural networks were used for the

classification and decomposition of EMG signals. In order to combine the decisions of these networks, another

neural network was used. An ANN that classifies people as suffering or not suffering from neuromuscular diseases

ensures a useful tool for physicians to perform diagnostic decisions. To classify EMG signals, 2 types of neural

networks were trained: FEBANN and CNN. Identical data sets and targets were used to train networks within
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each group. By training new neural networks to merge with the original network predictions, an improvement

in the accuracy of the classification of EMG signals was observed. This merged neural network was trained

and tested with features using parametric and subspace-based methods. Compared to the stand-alone neural

network model, the merged neural network model achieved higher performance for the classification of EMG

signals. Therefore, the diagnostic decision support system is a very valuable tool that allows the physician to

make a better judgment without relying on other expensive tests. Most importantly, diagnostic decision support

systems permit higher decision accuracy.
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