
Turk J Elec Eng & Comp Sci

(2016) 24: 1560 – 1570

c⃝ TÜBİTAK

doi:10.3906/elk-1311-128

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

Scalable sentiment analytics

Aslan BAKİROV, Kevser Nur ÇOĞALMIŞ∗, Ahmet BULUT

Department of Computer Science, İstanbul Şehir University, İstanbul, Turkey

Received: 15.11.2013 • Accepted/Published Online: 03.04.2014 • Final Version: 23.03.2016

Abstract: Spark has become a widely popular analytics framework that provides an implementation of the equally

popular MapReduce programming model. Hadoop is an Apache foundation framework that can be used for processing

large datasets on a cluster of computers using the MapReduce programming model. Mahout is an Apache foundation

project developed for building scalable machine learning libraries, which includes built-in machine learning classifiers. In

this paper, we show how to build a simple text classifier on Spark, Apache Hadoop, and Apache Mahout for extracting

out sentiments from a text collection containing millions of text documents. Using a collection of 7 million movie reviews

taken from IMDB, a Bayesian classifier was learned to predict sentiments for test reviews. Separate classifiers were

learned on both Spark and Hadoop, i.e. our contenders for scalable sentiment analytics. Our empirical results showed

that the sentiment learning task on Spark ran almost 10 times faster than the learning task on Hadoop.

Key words: Sentiment analysis, MapReduce, Spark, Hadoop, Apache Mahout

1. Introduction

With the advent of social networks, forums, and blogs, the amount of data on the Web has increased rapidly,

resulting in an information explosion. Internet users make purchases online, listen to music, or watch a movie,

and later on they make comments about their purchases, indicate their musical preferences, and write their

opinions about the movies they recently watched. Raw user data do not provide much information unless the

information is explicitly cultivated. Data mining broadly refers to the process of extracting information from

raw data. Data mining is used for a variety of information discovery tasks such as classification, clustering,

and regression. Since actual task implementations analyze the entire set of data in order to find a pattern,

the run time of these algorithms depends on the size of the dataset. Handling large amounts of data requires

the use of special-purpose compute clouds. The MapReduce (M/R) programming model provides one such

solution. Hadoop was one of the first platforms to provide an implementation of M/R on a compute cluster. A

relatively new implementation of M/R called Spark has been shown to offer performance benefits of up to ten

times compared to Hadoop on certain machine learning tasks except Bayesian classification [1]. In this paper,

we study the efficiency of naive Bayes classification on Spark compared to the alternative platforms. We chose

to study how to extract sentiment from review data, and we used a Bayesian classifier for this purpose.

The rest of the paper is organized as follows: the related work is discussed in Section 2. In Section 3, we

describe the methodology in multiple steps: preprocessing of the data and the basics of the classifier learned. In

Section 4, we provide the details of our Spark implementation and present our experimental results. In Section

5, we compare our Spark implementation with Hadoop and Mahout. Finally, we give avenues for future work

and emphasize key takeaways from our study in Sections 6 and 7, respectively.

∗Correspondence: nurcogalmis@std.sehir.edu.tr

1560

BAKİROV et al./Turk J Elec Eng & Comp Sci

2. Related work

Apache Mahout [2] is an open source library for performing classification, clustering, and recommendation

using Hadoop. MLbase is yet another alternative on the same front [3]. Pang et al. [4] used the IMDB movie

dataset for sentiment analysis. They used naive Bayes, maximum entropy, and support vector machine (SVM)

approaches for classification. However, their study was done on a single compute node and did not address how

to scale computation as the data themselves scale. The text features extracted included bag of words, bigrams,

and part of speech tags. Their study showed that SVM with unigram features had the best performance.

Elsayed et al. [5] proposed an M/R algorithm for finding pairwise document similarity for large document

collections. They used a cluster of 19 worker machines with a dual-core, 4 GB of memory, and 100 GB of disk

space each. Their algorithm was implemented as two M/R jobs: the first job was used to index documents for

finding out a list of document IDs that contain a given term and its associated term weight. The second job was

used to calculate pairwise similarity scores. The experiments showed that the running time of their approach

scaled linearly with the number of documents.

Khuc et al. [6] provided a method for analyzing sentiment in Twitter data using Hadoop. The authors

created their own lexicon suitable for tweets, which included emoticons. They used the lexicon as the first

classifier and logistic regression as the second classifier. Their experiment was done on 5 nodes in the Amazon

EC2 cluster with 2 virtual cores and 1.7 GB of memory. An experiment to create the lexicon was carried out on

100K, 200K, and 300K tweets. For the 300K-scenario, it took 600 min to build a lexicon on 5 machines. Their

lexicon-and-learning-based classifier took 20 min to analyze the sentiment of 2.5 million tweets.

Hunter et al. [7] migrated their millennium traffic project from a single machine to multiple machines.

They used Spark as it allows M/R and iterative algorithms at the same time. A special-purpose data structure

called resilient distributed data is used to share large data items between cluster machines for collaboration.

The migration to Spark improved the run time of their system by 2.8 times.

3. Methodology

3.1. Preprocessing of the data

For downstream tasks that expect meaningful and cleaned-up data, our dataset is preprocessed as follows:

• All text is lowercased.

• Punctuation symbols are removed.

• Hyphenated word groups are separated.

• Stop-words such as “a, an, the, they, so, much” are removed using the natural language toolkit called

NLTK [8].

• HTML tags are removed.

• In the original dataset, the score information is numeric and is in the range of [1.0, 5.0]. As a preprocessing

step, a review is categorized as negative if its review score is less than 3.0; otherwise (if its review score is

greater than or equal to 3.0) it is categorized as positive.

1561

BAKİROV et al./Turk J Elec Eng & Comp Sci

3.2. Naive Bayes classifier

Naive Bayes is one of the simplest machine learning algorithms used for text classification. The Bayesian formula

[9] is:

P (C = ck|X = x) = P (C = ck)×
P (X = x |C = ck)

P (x)
, (1)

where C is a class, X is a feature, and P (C = ck|X = x) is the probability of the text that has feature value

of x for X being in class ck . For each text, two probability values are computed, i.e. one per class. Each text

consists of a set of words wi as shown in Table 1.

Table 1. The depiction of raw reviews in the IMDB dataset.

Review Words in review Score
R1 w1w2w27w4509w22w509 2.0
R2 w17765w112w2000w4509 5.0
. . . w15w112w3329w422w1 4.0

During the preprocessing, every review is assigned to a class. A review having a score of less than 3.0 is

tagged as negative; otherwise, it is assigned to the positive class. Therefore, the reviews are converted into new

structures as shown in Table 2.

Table 2. The depiction of reviews in the IMDB dataset with class assignment.

Review Words in review Sentiment
R1 w1w2w27w4509w22w509 Negative
R2 w17765w112w2000w4509 Positive
. . . w15w112w3329w422w1 Positive

The training set consists of 4 million texts. Out of this 4 million, there are 2.4 million reviews in the

positive class and 1.6 million reviews in the negative class. For each word, two counts are computed and stored:

the first count represents the number of positive reviews that contain the word, and the second count represents

the number of negative reviews that contain the word as in Table 3.

Table 3. Words and their occurrence numbers in each class.

Word Positive review count Negative review count
w1 45,600 120,000
w2 72,250 50,000
w3 22,500 69,900
w43 90,400 23,220

The formula in Eq. (1) is applied to each sentence in the test dataset in order to predict whether

the sentence belongs to the positive or to the negative class. Suppose that a reviewR in the test dataset

corresponds to “w1, w2, w43 ”. For R , the probability of being in the positive class or negative is computed as

follows respectively in Eqs. (2) and (3).

p (+|R) = p (C = +)× p (w1 |C = +)× p (w2 |C = +)× p(w43|C = +)

=
2, 400, 000

4, 000, 000
× 45, 600

2, 400, 000
× 72, 250

2, 400, 000
× 90, 400

2, 400, 000
= 0.00001288 (2)

1562

BAKİROV et al./Turk J Elec Eng & Comp Sci

p(−|R) = P (C = −)× P (w1 |C = −)× P (w2 |C = −)× p(w43|C = −)

=
1, 600, 000

4, 000, 000
× 120, 000

1, 600, 000
× 50, 000

1, 600, 000
× 23, 220

1, 600, 000
= 0.00002024 (3)

The text sentiment is classified as the class that has a greater probability value. In the above example, the text

sentiment for R is classified as negative.

4. Experimental setup

In Spark, jobs are submitted for processing a large dataset. Each job first loads its working data into memory

for enabling rapid data access. The main component of Spark is the construction of a resilient distributed

dataset (RDD).

4.1. Resilient distributed dataset

The RDD provides granular fault tolerance and distribution of work. Input data are sliced into multiple chunks

so that parallel jobs can be executed on each chunk. Storing lineage information in the framework per RDD

provides fault tolerance. Each compute step in the compute flow can be reexecuted linearly to enable recovery

in case of failures.

Parallelized collections and Hadoop datasets are two ways to create an RDD. Parallelized collection is

a wrapper on the Scala programming language’s collection, which also supports parallel operations. It can be

created by calling the parallelize method of Spark context on an existing Scala collection.

val data = Array(1, 2, 3, 4, 5) // data is a Scala collection.

val distData = sc.parallelize(data) // distData is an RDD.

An input that resides in a Hadoop distributed file system (HDFS) can be used to create an RDD by

calling the textFile method of Spark context as follows:

val distFile = sc.textFile(“hdfs://. . . /data.txt”).

Two types of operations can be done on RDDs: transformations and actions. An RDD can be transformed

into another RDD by using a mapper. An action corresponds to an aggregation used during reduction.

Spark currently provides three APIs, one each for Scala, Java, and Python programming languages. We

used the Java API. We have a dictionary containing the number of occurrences of each word in each of the

positive and negative classes. These “read-only” data are used to compute the sentiment of a given review as

explained in Section 3.2. Since Spark is a distributed environment, each node must be able to do a lookup in this

read-only dictionary. Spark’s default behavior is to send the required data within the compute cluster before

each iteration. The default behavior results in a bottleneck in the master node and its available bandwidth,

and therefore limits scalability. Our solution to this problem is to use the broadcast variables of the Spark

framework.

4.2. Broadcast variables

Broadcast enables us to send a map to worker nodes only once at the beginning of the job execution. We can

share the maps that hold occurrence counts per category with the use of the broadcast feature in Spark. In

order to test this feature, we implemented two methods in order to perform data lookups:

1563

BAKİROV et al./Turk J Elec Eng & Comp Sci

1) When any worker needs data and if the data reside in another node in the cluster, the data owner

sends the requested data to the requestor. This operation consumes less random access memory (RAM), but

requires high IO and CPU operations.

2) We can store lookup tables in full in all workers. This approach requires more RAM for data storage,

but it needs less IO. This method can be accomplished by broadcasting lookup dictionaries to all worker nodes

as follows:

Broadcast<JavaPairRDD<String, Double> >

posMapBroadcast = sc.broadcast(positiveDataMapRDD).

Here, “positiveDataMapRDD” is the original data structure and “posMapBroadcast” is the new data

version that will be broadcasted to each node. By using broadcast variables, we optimized our computation

time by 1.15 times.

4.3. The movie review dataset

In experiments, Amazon movie reviews [10] were used. There were 7,911,684 reviews, which were extracted

from 889,176 reviews for 253,059 products. Some reviews contain a single sentence, while some others contain

more than 10 sentences. The median number of words per review is 101. All reviews have information about

product ID, user ID, time, score, summary, and text. An example review is given below:

product/productId: B00006HAXW

review/userId: A1RSDE90N6RSZF

review/profileName: Joseph M. Kotow

review/helpfulness: 9/9

review/score: 5.0

review/time: 1042502400

review/summary: “Pittsburgh - Home of the OLDIES”

review/text: “I have all of the doo wop DVD’s and this one is as good or better than the 1st ones.

Remember once these performers are gone, we’ll never get to see them again. Rhino did an excellent job and if

you like or love doo wop and Rock n Roll you’ll LOVE this DVD !!” [10]

Only the score and summary information above were used in our system. After the preprocessing, the

sentiment label for each review was added to the end of each entry separated by a comma. The entire dataset

was separated into two parts as the training set and the test set. The training set consisted of 4 million reviews,

which had about 349,993,900 words. The rest of the dataset was used as the test set. Five different test

configurations were constructed with 100,000, 250,000, 500,000, 750,000, and 1 million reviews, respectively.

Table 4 gives detailed information about the test data.

Table 4. The description of the test data.

of reviews # of words size (MB)
100,000 100,000 8,880,070 62 MB
250,000 250,000 22,106,912 155 MB
500,000 500,000 44,566,580 313 MB
750,000 750,000 66,811,887 470 MB
1 million 1,000,000 88,930,249 625 MB

1564

BAKİROV et al./Turk J Elec Eng & Comp Sci

4.4. Cluster configuration

Two different clusters were used for performance comparison. The first cluster, called the Şehir cluster, has one

master and 8 workers with 4-core CPU, 8 GB of RAM, and 100 GB of disk space. The Şehir cluster is depicted

in Figure 1. The second cluster, called the Amazon cluster, is hosted in Amazon EC2 and has one master and

4 workers with 4-core CPU and 15 GB of RAM. The Java Development Kit version 1.7.0 03 was installed on

each node for a Java runtime environment in both clusters. Since the dataset is large, the HDFS was chosen to

store the data. HDFS version 1.0.4 was installed in the clusters. On top of the HDFS, we built Spark version

0.7.0. Figure 1 shows our cluster hierarchy.

Figure 1. The depiction of the Şehir cluster.

4.5. Model building

For training, two map jobs and two reduce jobs were created: one M/R job pair was created for the positive

class and the other M/R pair was created for the negative class. In the mapping stage, each review was mapped

to either the negative class or the positive class. For both classes, a separate word-count dictionary was created.

This action resulted in a positiveMap and a negativeMap. Each sentence of a review was split by whitespace

into individual words. Every word was mapped into a value of “1” keyed by the word itself. In the reduce step,

all values were summed up per key. After the job was completed, information as to how many positive and how

many negative reviews a given word occurred in was obtained.

In order to outline how our M/R works, let us demonstrate how to compute the positive class probability

for a given review R, which consists of words w1, w2, . . . , wn (note that the computation of the negative class

probability is very similar).

Map (M):

i. Each word is mapped to (R,1) as its value, i.e. (wi, (R, 1)) where i = 1, . . . , n .

ii. This (key, value) tuple is joined with a positive lookup map, which has words as keys and number

occurrences of those words in positive reviews as the corresponding values. In the positive lookup map,

an entry looks like(wi, X), where X is a positive integer that holds the total number of occurrences of

wi in positive reviews.

1565

BAKİROV et al./Turk J Elec Eng & Comp Sci

iii. After the join, the interim results map has the following (key, value) pairs: (wi, ((R, 1) , Xi)) where

i = 1, . . . , n .

iv. We swap the places of R and wi in each of these tuples to finally get(R, ((wi, 1) , Xi)) where i = 1, . . . , n .

Reduce (R):

i. Each entry is then reduced by using reduceByKey function as follows:

(R, X1

NumPos × X2

NumPos × . . .× Xi

NumPos) = Y

ii. The tuple (R, Y ×NumPos×NumTotalDocuments) represents the final result (K,V). The key K is

the review R itself, and value V corresponds to the probability of R belonging to the positive class.

5. Experimental evaluation

We compared our solution with two alternatives. Both of the alternative approaches were based on Hadoop:

1) a naive Bayes classifier built using Hadoop M/R and 2) another naive Bayes classifier built using Apache

Mahout. We describe these two frameworks next before presenting our empirical findings.

5.1. Apache Hadoop

Hadoop is an Apache foundation framework that can be used for processing large datasets on a cluster of

computers using the M/R programming model [11]. The two main projects of Hadoop are the HDFS and

Hadoop M/R. The HDFS is a fault-tolerant, scalable, and highly configurable distributed file system written in

Java. An HDFS cluster has a master name node that manages synchronization and coordination among data

nodes and stores metadata for the cluster. Multiple data nodes store the actual user data. An HDFS client

contacts the name node for file operations such as select, insert, and delete. The HDFS also has support for

failing over to a secondary name node to avoid the single master being the single point of failure.

The Hadoop M/R enables programmers to write applications in order to process large datasets in parallel

on a cluster of machines. An M/R job has two main components: 1) map and 2) reduce. The framework splits

input data into multiple chunks so that multiple map tasks can process these individual data partitions in

parallel. Outputs of the map tasks are collected and processed by the subsequent reduce tasks. The inputs and

the outputs of each job are stored in the HDFS. Since the map and the reduce tasks operate on <key, value>

pairs, the input and output format will also be <key, value> pairs.

5.2. Apache Mahout

Mahout is an Apache foundation project developed for building scalable machine learning libraries [2]. Mahout

has support for building classifiers, clustering items, genetic programming, constructing random forests, and

recommending items. All these end-user products are implemented on top of Hadoop.

Since Mahout has naive Bayes classifier support, we included it in our tests. During training, Mahout

created a handful of feature vector output files and built a final model from these interim output files. The

whole process took almost 3 h. During testing, the model built was used on the same test dataset that was

used in the other competing approaches.

1566

BAKİROV et al./Turk J Elec Eng & Comp Sci

5.3. Empirical results

5.3.1. Broadcasting vs. not broadcasting

In order to see the effect of broadcasting vs. relying on the framework to shuffle data when needed, we conducted

an experiment on five test scenarios. This test was done on the Amazon cluster. As shown in the results in

Table 5 and Figure 2, the broadcast method took less time to go through the testing phase. For one million

reviews, the broadcasting completed 1.3 min faster than the method without broadcasting. The reason for this

improvement is that the application driver did not waste time trying to share the required data among the

compute nodes as the alternative approach did. The gap in running time widened between the two methods as

the size of the data increased. This is because the increased data size led to the increased data delivery between

the compute nodes.

Table 5. The running time of the testing step on Spark (in minutes) hosted in the Amazon EC2 cluster.

100K 250K 500K 750K 1M
Spark without broadcast 1.5 2 3.3 5.4 9.6
Spark with broadcast 1.4 1.6 2.8 4.7 8.3

0

2

4

6

8

10

12

100000 250000 500000 750000 1000000

r
u

n
 t

im
e
 i

n
 m

in
u

te
s

number of lines in data

Test without Broadcast Test with Broadcast

Figure 2. The running time of the testing step for the case of with broadcast and without broadcast.

5.3.2. Time required for training

On the Şehir cluster, we conducted two tests: one using 4 workers and the other using 8 workers. Table 6 shows

how long it took to train on Spark vs. Hadoop with different numbers of workers. The training time in the case

of Hadoop was in the order of minutes, while training using Spark was in the order of seconds.

Table 6. The running time of the training step on the Şehir cluster.

4 workers 8 workers
Hadoop 12 min 10 min
Spark 73 s 62 s

5.3.3. Time required for testing

Table 7 and Figure 3 show the run time of the testing step on Hadoop and Spark on the Şehir cluster. Compared

to Hadoop on all test scenarios, Spark implementation was up to 10 times faster in crunching data. For example,

1567

BAKİROV et al./Turk J Elec Eng & Comp Sci

for 1 million reviews with 8 workers, Spark completed the testing in 7.9 min while Hadoop implementation

required 70 min to complete. The benefits of using the broadcast variables were even more apparent in the

Şehir cluster. Using 4 workers only, 750K reviews were digested in 8.6 min with broadcasting compared to 11

min without it.

Table 7. The runtime comparison of the testing step on Hadoop and Spark hosted in the Şehir cluster (in minutes).

4 workers 8 workers
Spark Hadoop Spark Hadoop
w/oB1 wB2 Dist.3 w/oB wB Dist.

100K 1.8 1.6 13.1 1.9 1.6 15.4
250K 2.6 2.2 22.5 2.4 2.1 24.2
500K 4.6 3.5 33.3 3.3 2.6 36
750K 11.0 8.6 58.3 5.3 4.0 50
1 million OoM4 OoM 78.5 8.9 7.9 70

1Without broadcasting.
2With broadcasting.
3Distributed cache.
4Out of memory exception: program runs out of memory. When a task starts running, the working data are loaded into

the cache. For 1M reviews, since join operation is costly due to the Cartesian product with lookup map, this test case

runs out of memory.

0

10

20

30

40

50

60

70

80

90

100000 250000 500000 750000 1000000

ru
n

 t
im

e
in

 m
in

u
te

s

number of lines in data

Spark without Broadcast 4W Spark with Broadcast 4W

Hadoop Distributed Cache 4W Spark without Broadcast 8W

Spark with Broadcast 8W Hadoop Distributed Cache 8W

Figure 3. The running time of the testing step with broadcast and without broadcast.

Results for Mahout are shown in Table 8. For a small size dataset, e.g., 100K reviews, when the cluster

was upsized from 4 workers to 8 workers, the computation time increased by 3 s due to the coordination overhead

in the cluster. The advantage of a high number of compute nodes in a cluster did not justify itself, because the

dataset size was not large enough. For larger data sizes, the benefit of using a higher number of workers was

more apparent. For example, it took 112 s to digest 1 million reviews with 8 workers, while it took 150 s with

4 workers.

1568

BAKİROV et al./Turk J Elec Eng & Comp Sci

Table 8. The running time of the testing step for Mahout’s naive Bayes classifier on the Şehir cluster (in seconds).

Number of reviews 4 workers 8 workers
100K 63 66
250K 75 69
500K 101 77
750K 112 82
1 million 150 112

6. Future work

In this paper, we showed how to build a scalable sentiment analyzer on Spark. We used HDFS to store the

movie reviews data. Tachyon [12] is an in-memory distributed file system, which enables rapid file sharing

across cluster frameworks. We can use Tachyon as an intermediate data storage layer between HDFS and Spark

to speed up the sentiment learning and testing. Since we have used the same cluster for multiple frameworks

(Spark, Hadoop, and Apache Mahout), we can increase physical resource utilization by using Apache Mesos [13].

Mesos is a cluster manager for efficient resource sharing between different frameworks. Alternatively, Hadoop

Yarn [14] can also be used. Yarn manages resources and provides an efficient scheduling through a global

resource manager (RM) and many local application managers (AM). Finally, we are planning to synthesize our

implementation such that it can easily be deployed to a host cluster.

7. Conclusions

Machine learning algorithms are time-consuming when the dataset to analyze is large. In this paper, we

showed how to build a naive Bayes classifier for millions of movie reviews in a matter of seconds using Spark.

We compared our implementation to that of the state-of-the-art competitors: 1) a custom Hadoop-based

implementation and 2) Apache Mahout-based implementation. The results showed that the classifier built

on Spark ran almost 10 times faster compared to the Hadoop implementation. The classifier built on Apache

Mahout took almost 3 h to build the classifier, while it took 73 s to build the model on Spark, and 12 min on

Hadoop. The digestion of the test dataset showed that the performance of Mahout was comparable to that of

Spark.

Acknowledgment

This work was supported by Türk Telekom Argela under Grant Number 6401-01.

References

[1] Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I. Spark: cluster computing with working sets. In:

Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing; June 2010; Berkeley, CA, USA.

p. 10.

[2] Team AM. Apache Mahout: Scalable Machine-Learning and Data-Mining Library. Forest Hill, MD, USA: Apache

Software Foundation, 2011.

[3] Kraska T, Talwalkar A, Duchi JC, Griffith R, Franklin MJ, Jordan MI. MLbase: A distributed machine-learning

system. In: CIDR; 6–9 January 2013; Asilomar, CA, USA.

[4] Pang B, Lee L, Vaithyanathan S. Thumbs up?: sentiment classification using machine learning techniques. In:

Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing, Vol. 10; 2002.

Stroudsburg, PA, USA: Association for Computational Linguistics. pp. 79–86.

1569

http://dx.doi.org/10.3115/1118693.1118704
http://dx.doi.org/10.3115/1118693.1118704
http://dx.doi.org/10.3115/1118693.1118704

BAKİROV et al./Turk J Elec Eng & Comp Sci

[5] Elsayed T, Lin J, Oard DW. Pairwise document similarity in large collections with MapReduce. In: Proceedings

of the 46th Annual Meeting of the Association for Computational Linguistics on Human Language Technologies:

Short Papers; 2008. Stroudsburg, PA, USA: Association for Computational Linguistics. pp. 265–268.

[6] Khuc VN, Shivade C, Ramnath R, Ramanathan J. Towards building large-scale distributed systems for twitter

sentiment analysis. In: Proceedings of the 27th Annual ACM Symposium on Applied Computing; 26–30 March

2012; Riva, Italy. New York, NY, USA: ACM. pp. 459–464.

[7] Hunter T, Moldovan T, Zaharia M, Merzgui S, Ma J, Franklin MJ, Abbeel P, Bayen AM. Scaling the mobile

millennium system in the cloud. In: Proceedings of the 2nd ACM Symposium on Cloud Computing; 26–28 October

2011; Cascais, Portugal. New York, NY, USA: ACM. p. 28.

[8] Bird S. Nltk: the natural language toolkit. In: Proceedings of the COLING/ACL on Interactive Presentation

Sessions; 2006. Stroudsburg, PA, USA: Association for Computational Linguistics. pp. 69–72.

[9] Lewis DD. Naive (Bayes) at forty: The independence assumption in information retrieval. In: Machine Learning:

ECML-98; 1998. Berlin, Germany: Springer. pp. 4–15.

[10] McAuley J, Leskovec J. From amateurs to connoisseurs: modeling the evolution of user expertise through online

reviews. In: Proceedings of the 22nd International Conference on World Wide Web; 13–17 May 2013; Rio de Janeiro,

Brazil. pp. 897–908.

[11] Lam CK. Hadoop in Action. 1st ed. Greenwich, CT, USA: Manning Publications Co., 2010.

[12] Li H, Ghodsi A, Zaharia M, Baldeschwieler E, Shenker S, Stoica I. Tachyon: memory throughput I/O for cluster

computing frameworks. In: SOSP 2013 Workshop LADIS; 2013.

[13] Hindman B, Konwinski A, Zaharia M, Ghodsi A, Joseph AD, Katz R, Shener S, Stoica I. Mesos: A platform for

fine-grained resource sharing in the data center. In: Proceedings of the 8th USENIX Conference on Networked

Systems Design and Implementation; 30 March–1 April 2011; Boston, MA, USA. p. 22.

[14] Vavilapalli VK, Murthy AC, Douglas C, Agarwal S, Konar M, Evans R, Graves T, Lowe J, Shah H, Seth S et al.

Apache Hadoop yarn: Yet another resource negotiator. In: Proceedings of the Fourth ACM Symposium on Cloud

Computing; 1–3 October 2013; Santa Clara, CA, USA. p. 5.

1570

http://dx.doi.org/10.3115/1557690.1557767
http://dx.doi.org/10.3115/1557690.1557767
http://dx.doi.org/10.3115/1557690.1557767
http://dx.doi.org/10.1145/2245276.2245364
http://dx.doi.org/10.1145/2245276.2245364
http://dx.doi.org/10.1145/2245276.2245364
http://dx.doi.org/10.1145/2038916.2038944
http://dx.doi.org/10.1145/2038916.2038944
http://dx.doi.org/10.1145/2038916.2038944
http://dx.doi.org/10.1007/BFb0026666
http://dx.doi.org/10.1007/BFb0026666
http://dx.doi.org/10.1145/2488388.2488466
http://dx.doi.org/10.1145/2488388.2488466
http://dx.doi.org/10.1145/2488388.2488466
http://dx.doi.org/10.1145/2523616.2523633
http://dx.doi.org/10.1145/2523616.2523633
http://dx.doi.org/10.1145/2523616.2523633

	Introduction
	Related work
	Methodology
	Preprocessing of the data
	Naive Bayes classifier

	Experimental setup
	Resilient distributed dataset
	Broadcast variables
	The movie review dataset
	Cluster configuration
	Model building

	Experimental evaluation
	Apache Hadoop
	Apache Mahout
	Empirical results
	Broadcasting vs. not broadcasting
	Time required for training
	Time required for testing

	Future work
	Conclusions

