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Abstract: JPEG has played an important role in the image compression field for the past two decades. Quantization

tables in the JPEG scheme is a key factor that is responsible for compression/quality trade-off. Finding the optimal

quantization table is an open research problem. Studies recommend the genetic algorithm to generate the optimal

solution. Recent reports revealed optimal quantization table generation based on a classical genetic algorithm (CGA).

Although the CGA produces better results, it shows inefficiency in terms of convergence speed and productivity of feasible

solutions. This paper proposes a knowledge-based genetic algorithm (KBGA), which combines the image characteristics

and knowledge about image compressibility with CGA operators such as initialization, selection, crossover, and mutation

for searching for the optimal quantization table. The experimental results show that the optimal quantization table

generated using the proposed KBGA outperforms the default JPEG quantization table in terms of mean square error

(MSE) and peak signal-to-noise ratio (PSNR) for target bits per pixel. The KBGA was also tested on a variety of images

in three different bits values per pixel to show its strength. The proposed KBGA produces an average PSNR gain of

3.3% and average MSE gain of 20.6% over the default JPEG quantization table. The performance measures such as

average unfitness value, likelihood of evolution leap, and likelihood of optimality are used to validate the efficacy of the

proposed KBGA. The novelty of the KBGA lies in the number of generations used to attain an optimal solution as

compared to the CGA. The validation results show that this proposed KBGA guarantees feasible solutions with better

quality at faster convergence rates.

Key words: Image compression, JPEG, discrete cosine transform, image block clustering, k-means, quantization table,

knowledge-based genetic algorithm

1. Introduction

Due to advances in digital camera technology, the amount of data required to present an image of acceptable

quality is extremely large. Consequently, the storage and the transmission of digital images are major problems

[1]. The number of images handled by or transmitted through the Internet doubles every year. The availability

of and the demand for images continue to outpace increases in network capacity. Hence, the importance of

compression is attracting researchers’ attention. Image compression is a key technology that reduces the size

of the image data for storing and transmitting. Image transform coding is the most popular method used in

image-coding applications. It is a form of block coding done in the transform domain. The image is divided

into blocks or subimages and the transform is calculated for each block. The transform maps the original data

into other mathematical space to pack the information (or energy) into as few coefficients as possible. After the

transform has been calculated, the transform coefficients are quantized and coded.
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JPEG and JPEG2000, the image compression standards, are the primary form of transform coding.

Although JPEG2000 gives better quality than JPEG, the most preferable and famous standard is JPEG for

the following reasons. First, JPEG2000 is not backward compatible, i.e. JPEG2000 code could not be used to

read a JPEG image file. Second, many digital cameras have not supported JPEG2000 to date. JPEG2000 is

not widely supported in web browsers and it is not used on the Internet [2]. According to a survey by Ra et

al. [3] based on W3Techs web statistics, around 69.9% of images on the web are in JPEG format, and popular

websites like Google, Yahoo, Wikipedia, and Amazon use JPEG format.

The JPEG standard supports different modes such as sequential, progressive, hierarchical, and lossless.

The sequential mode is the default JPEG mode, where it uses discrete cosine transformation (DCT) and

8 × 8 pixel blocks as the basis for compression. DCT transforms the image data from the pixel value to the

coefficient value. Next, the DCT coefficients are quantized by the values in a quantization table. The process

of quantization greatly helps in the compression process by making many high frequency coefficient values

in transforming blocks be zero. Once the coefficients are quantized, they are coded using a Huffman code.

The quantization table is also packed along with Huffman codes to form a compressed file. The decompression

process is an exact reverse process of compression. The compressed file is decoded using inverse Huffman coding

and the resultant block is dequantized by the quantization table. Inverse DCT is computed for the dequantized

DCT block to get the pixel values. A detailed description of the baseline JPEG encoder/decoder is available in

[1,4,5].

The quantization table in the JPEG scheme affects the decoded image quality very significantly. After

many experiments, the JPEG Committee provided two default quantization tables, one for luminance and

another for chrominance components, and they are included in Annex K of the JPEG standard specifications.

The Independent JPEG Group scaled the default quantization table for different compression ratio/quality

trade-offs. Default quantization tables cannot provide the best performance for all application domains [5].

Hence, the determination of an optimal quantization table for a specific application domain is an appealing

research topic. Many researchers have emphasized quantization to achieve a good balance between image

quality and compression ratio. Much research has been done on generating image-dependent/image-independent

quantization tables based on statistical analysis of DCT coefficients, the rate-distortion approach, and the human

visual system [6–13]. Since the generation of a quantization table is viewed as an optimization problem, several

researchers have concentrated on evolutionary techniques to select the optimum threshold value and for the

generation of quantization tables. Many evolutionary algorithms such as simulated annealing [14,15], genetic

algorithms [5,16–20], chaos evolutionary programming [21], and particle swarm optimization [22] are used to

optimize the quantization tables satisfying single or multiple objectives. Multiobjective evolutionary algorithms

are also used to generate a set of quantization tables where a decision-maker chooses an optimal solution for a

specific application at a particular time. Here the trade-off is fixed after performing optimization. Though the

computation of an optimal quantization table using the evolutionary approaches for each image consumes more

processing time, it is preferred at the cost of good decoded quality of an image [16,21]. Genetic algorithms are

often used to generate the quantization table irrespective of the number of objective functions because of their

global searching ability and for exploiting the characteristics of previous solutions.

The experimental results of genetic algorithms have some uncertainty and low convergence speed in

constrained optimization problems, because the search is domain-independent and hence does not always ensure

a feasible solution. To overcome this, several researchers have suggested the incorporation of domain knowledge

in genetic searches, which can improve the solution quality, efficiency in terms of convergence speed, and

1616



BALASUBRAMANIAN and MANAVALAN/Turk J Elec Eng & Comp Sci

productivity of feasible solutions. Although incorporating the domain knowledge in genetic searches is done for

many applications [23–27], to the best of our knowledge, it has never been used to generate the quantization table

for the JPEG baseline algorithm. Our objective is to generate an optimum quantization table using a genetic

algorithm, which gives better image quality for target bits per pixel, and to enhance the genetic search. With

this objective, we propose a knowledge-based genetic algorithm (KBGA), which uses the image characteristics

and knowledge about image compressibility in evolution of quantization tables. This can accelerate the search

for the optimal solution and also ensure the creditability of experimental results.

To achieve the above objective, knowledge-based genetic operators are used, namely knowledge-based

initialization (KBI), knowledge-based selection (KBS), knowledge-based crossover (KBC), and knowledge-based

selective mutation (KBSM). To demonstrate the effectiveness of the proposed KBGA algorithm, it has been

tested on benchmark images and we compare the results with default JPEG quantization tables and classical

genetic algorithm (CGA)-based quantization tables. The KBGA is also tested on the same images to show

its efficacy and computational superiority over the existing CGA on the basis of performance measures. The

results prove that the proposed approach guarantees better results within a smaller number of generations.

The remainder of this paper is organized as follows. In the next section, the CGA is explained. Section 3

presents the knowledge about image compressibility. Section 4 illustrates the proposed KBGA. The performance

measures for validation are given in Section 5. In Section 6, the experimental setup and performance analysis

are shown. Final concluding thoughts are summarized in the Section 7.

2. Classical genetic algorithm

Genetic algorithms inspired by Darwin’s theory are adaptive heuristic search algorithms based on the evolu-

tionary ideas of natural selection and genetics [28]. The genetic algorithm process starts with a population of

randomly generated chromosomes, which are considered as possible solutions for the given optimization prob-

lem. Each chromosome is made up of genes that are changed randomly in order to create new and better

chromosomes during evolution. Crossover and mutation operators are basic operators that simulate the natural

reproduction and performance of the genetic algorithm depending on them. Chromosome selection for survival

and reproduction is based on a fitness function that facilitates fast convergence.

An outline of the CGA is given below.

Step 1: Generate random population of n chromosomes and evaluate its fitness value.

Step 2: Perform crossover on selected chromosomes to form offspring and evaluate its fitness value.

Step 3: Append offspring with current population and choose superior chromosomes.

Step 4: Mutation is applied to chromosomes to form new offspring and evaluate its fitness value.

Step 5: Append offspring with current population and choose superior chromosomes.

Step 6: If the end condition is not satisfied, go to step 2. Else, return the best solution in the current

population.

3. Knowledge about image compressibility

Since our aim is to generate the optimum quantization table, it is essential to know the basis of image

transformation and the quantization process. The fundamental principle of transform coding is “divide and

conquer”: that is, breaking a big problem into a smaller problem that can be easily understood and solved [29].

By using this strategy, the operation for image transform coding is separated into a sequence of steps: applying

transforms, quantization, and entropy coding. The idea behind transform coding is to decrease the storage
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quantity by reducing the correlation between the pixels and taking advantage of the variable-length coding.

JPEG follows the principle of transform coding, which divides an image into 8 × 8 blocks and applies a DCT

for each block. DCT is a good decorrelation transform that concentrates the energy of the transformed signal

in the low frequency at the left top of the block [1]. Many visual experiments suggest that human eyes are less

sensitive to very high spatial frequency components than the lower frequency components. With low frequency

DCT coefficients, inverse DCT can rebuild the block that is close to the original block. The amount of removal

of the high frequency DCT coefficients decides the compression ratio and the quality of the image; that is,

more coefficients in a block gives good quality with a lower compression ratio, and vice versa. The quantization

process aims to reduce the high frequency DCT coefficients to zero, so the value of the quantization table at

the top left should be less when compared to the bottom right of the table. The same can be viewed in JPEG

recommended default quantization tables, which are obtained after many visual experiments. Having more

randomness in the top left of the quantization table will have a corresponding effect on the image quality. After

a brief discussion on the basis of DCT and quantization tables, the following points are extracted as knowledge

and incorporated in genetic operators to improve the search.

• DC and AC coefficients give the energy of an image block.

• The lower order DCT coefficients play a vital role in the quality of the image block.

• The value of the quantization table at the top left should be less than that at the bottom right of the

table.

• The values in the top left of the quantization table are more important to maintain image quality.

4. Quantization table discovery using KBGA

A genetic algorithm uses global search methods, which captures the global view of a problem. However, every

optimization problem has its own features, and hence the global genetic algorithm cannot be used to produce

optimal solutions. Therefore, knowledge about the problem domain can be incorporated in the global search

method in order to develop the overall search capability. Here knowledge is incorporated in all genetic operators,

such as initialization, selection, crossover, and mutation.

4.1. Knowledge-based initialization (KBI)

Here every quantization table, which is an 8 × 8 matrix, denotes a chromosome. Therefore, each chromosome

has 64 genes. Each 8 × 8 chromosome is divided into four 4 × 4 subtables (top left, top right, bottom left, and

bottom right), as shown in Figure 1. Based on the knowledge acquired from the previous section, gene values

are generated randomly and values in the top left subtable are less than in the bottom right subtable. Though

the genes are generated randomly, the ranges of values used in the subtable are derived from the standard JPEG

tables. Hence, knowledge is contributed towards a better initial population seed rather than a random seed.

Initial chromosomes are generated based on Algorithm 1.

Algorithm 1: Knowledge-based initialization algorithm

Input : N number of initial chromosomes, Output : N number of 8 × 8 chromosomes

i) Get the number of initial chromosomes.
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ii) Each 8 × 8 chromosome is divided into 4 × 4 subtables.

iii) Range for each subtable is derived from standard JPEG tables.

iv) Randomly generate the individuals of the initial population.

v) Find duplicates and replace new ones.

Top Left 

    

 Top 

Right 

 

  

    

        

 Bottom 

Left 

  Bottom 

Right 

 

    

        

Figure 1. Skeleton of quantization table (chromosome).

4.2. Evaluation

The fitness function is employed to calculate the survival probability of all the chromosomes in the evolution.

Here an unfitness function [16,21] is used instead of a fitness function to exclude inferior chromosomes. The

unfitness function taken to evaluate the survival chance of each chromosome is the same as that in [16,21], which

is similar to the standard optimization formulation for rate distortion optimization. An unfitness function (ξ)

is defined as follows.

ξ = a

(
8

Br
− λ

)2

+ ε.(??) (1)

Here, Br is the bit rate of each chromosome (quantization table), λ is the desired compression ratio,ε ε denotes

the mean square error (MSE) of the decoded image generated by the chromosome, and parameter a is set to

10 as in [16]. The reason to choose the above unfitness function is because it is a linear combination of the

compression ratio deviation and the MSE of the decoded image. Algorithm 2 gives the steps to calculate the

unfitness value for each chromosome.

Algorithm 2: Evaluation algorithm

Input : 8 × 8 quantization tables; a = 10; λ = desired compression ratio=
(

8
target bits per pixel

)
Output : Unfitness value

i) Perform compression and decompression using each quantization table to find bit rate Br and MSE ε .

ii) Substitute the above values in the unfitness function to find the unfitness value.
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4.3. Knowledge-based selection (KBS)

Selection of parents for crossover is crucial in the genetic algorithm process. According to Darwin’s evolution

theory the best ones should survive and create new offspring. The selection of parents for crossover based

on only a good unfitness value leads to less population diversity and might cause premature convergence. To

overcome this, an intermediate deterministic approach is introduced in parent selection. It has been proven that

deterministic parent selection produces better results than probabilistic selection in a much smaller number of

generations [30].

In KBS, the chromosomes that have good unfitness values are selected based on crossover probability.

Among these, chromosomes that produce better decoded image quality are selected as parents for crossover.

However, finding the decoded quality of an image for all chromosomes will increase the computational complexity

and time. Hence, 8 × 8 blocks of an image are grouped into clusters and a decoded quality is calculated only for

representative blocks from each cluster. Though the deterministic approach increases the computational cost,

the usage of representative blocks can considerably reduce it. Here knowledge is contributed to the deterministic

approach, which avoids premature convergence. Clustering is about partitioning a given data set into groups

such that the data points in a cluster are more similar to each other than to points in different clusters. The

notion of what constitutes a good cluster depends on the application and there are many methods for finding

clusters subject to various criteria [31]. Here, the k-means algorithm is used to cluster the image blocks.

Figure 2 shows the conceptual view of the image blocks clustering process. Initially an image is partitioned

into 8 × 8 nonoverlapping blocks (step 1 in Figure 2) and the pixel values are level-shifted so that they are

centered at zero. After level-shifting, each block is transferred to the next stage (step 2 in Figure 2) where the

DCT is computed. Among all DCT coefficients in a block, the first one is called the DC coefficient and the

remaining are called AC coefficients. Our experiences in clustering reveal that these coefficients give the nature

of the block. The homogeneous blocks are identified by using the DC coefficient and the standard deviation of

AC coefficients of a block in the DCT domain. These features are extracted as a vector from each 8 × 8 DCT

block (step 3 in Figure 2). Feature vectors of all blocks of an image are then clustered into groups using the

k-means algorithm. Because of its simplicity and faster computation time, the k-means algorithm is chosen for

this work.
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Figure 2. Conceptual view of image blocks clustering process.
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Initially image blocks are grouped into main clusters using the DC coefficient (step 4 in Figure 2) and

each main cluster is again grouped into subclusters using the standard deviation of the AC coefficients (step

5 in Figure 2). The novelty of the clustering scheme lies in choosing the initial centroids based on a centroid

initialization algorithm, which is described in Algorithm 3. This algorithm overcomes the drawbacks of choosing

the initial centroids randomly in k-means clustering [32,33]. An image block that is nearest to the centroid of

a cluster is chosen as a representative. Algorithm 4 gives the knowledge-based selection algorithm.

Algorithm 3: Centroid initialization algorithm

Input : Set of N data vectors (data set), K (number of clusters)

Output : Initial cluster centroids

i) Sort the data vectors in ascending order.

ii) Split the ordered vectors into K bins randomly.

iii) Calculate the mode for each bin and consider as initial centroids.

Algorithm 4: Knowledge-based selection algorithm

Input : Cluster-representative blocks and superior chromosomes

Output : Chromosomes for crossover

i) Perform quantization and dequantization for the cluster representatives using superior chromosomes and

calculate peak signal-to-noise ratio (PSNR) value.

ii) Select the chromosomes that give a high PSNR value for each cluster representative.

4.4. Knowledge-based crossover (KBC)

KBC operates on two chromosomes, which are chosen randomly, and swaps the genes between these two

chromosomes in order to generate two offspring. Generally crossover refers to an exploitation operation, which

cannot generate quite different offspring from the parents because it uses only acquired information. Here the

single-point crossover operator is employed and knowledge is used to select the crossover point. A crossover

point is selected randomly between positions 2 and 25 in a chromosome. The position of genes in a chromosome

is shown in Figure 3. The reason for choosing the crossover points in the top left subtable of a chromosome

is because this subtable interacts with lower order DCT coefficients during quantization, which mainly plays

an important role in the quality of a block. Other subtables have less impact on the quality of a block, so

having more randomness in the top left subtable gives more space to search for the optimal solution. If the

crossover point is selected in any other subtable, then crossover produces infeasible solutions and hence wastes

search time. Here knowledge is contributed to exploring new feasible solutions. The knowledge-based crossover

algorithm is given in Algorithm 5.
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1 3 4 10 11 21 22 36 

2 5 9 12 20 23 35 37 

6 8 13 19 24 34 38 49 

7 14 18 25 33 39 48 50 

15 17 26 32 40 47 51 58 

16 27 31 41 46 52 57 59 

28 30 42 45 53 56 60 63 

29 43 44 54 55 61 62 64 

Figure 3. Gene positions in a chromosome.

Algorithm 5: Knowledge-based crossover algorithm

Input : Superior chromosomes

Output : Offspring

i) Make random pairs of parents without repetition of any chromosome.

ii) Choose the crossover point between gene positions 2 and 25 randomly.

iii) Swap the genes between those two chromosomes.

iv) Find duplicates and replace new ones

4.5. Knowledge-based selective mutation (KBSM)

Mutation is an exploration operation that can search new possible solutions by changing the gene values in the

chromosome randomly. Because the exploratory power of mutation is low, it takes more time to get out of local

optima. Therefore, knowledge-based selective mutation is used to quickly escape from local optima.

KBSM is a process of changing the gene values randomly based on their ranks [34]. Initially rank is

assigned for all superior chromosomes according to their unfitness value, i.e. the superior chromosomes from

the crossover pool are sorted and divided into 6 groups where the group with the lowest unfitness values is

considered as rank one (high rank) and the group with high unfitness values is considered as rank six (low

rank). Chromosomes with high rank are assumed to be nearer to global optima and vice versa. Chromosomes

having high rank will have less genetic change and vice versa. This implies that chromosomes with high unfitness

values are changed very much. Here knowledge is incorporated in this operator to select the mutation point and

value. KBSM is done only in three subtables (top left, top right, and bottom left) of the chromosomes based on

their rank. The reason for choosing these subtables for mutation is because the genes in these positions have

an impact on the quality of the 8 × 8 pixel block. The choosing of genes in each subtable is purely random

and mutation values should be in the ranges of corresponding subtables. Hence, knowledge is contributed the

chromosome to escape from local optima quickly. KBSM is performed based on Algorithm 6.

Algorithm 6: Knowledge-based selective mutation algorithm

Input : Superior chromosomes

Output : Offspring
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i) All superior chromosomes from the crossover pool are sorted and divided into 6 groups.

ii) The group with the lowest unfitness values is considered as rank one and the group with high unfitness

values is considered as rank six.

If (rank = 1); mutate one gene in top left subtable.

If (rank = 2); mutate two genes in top left subtable.

If (rank = 3); mutate two genes in top left subtable and one gene in the first two columns of top right

subtable.

If (rank = 4); mutate two genes in top left subtable, one gene in the first two columns of top right

subtable, and one gene in the first two columns of bottom left subtable.

If (rank = 5); mutate two genes in top left subtable, two genes in the first two columns of top right

subtable, and one gene in the first two columns of bottom left subtable.

If (rank = 6); mutate two genes in top left subtable, two genes in the first two columns of top right

subtable, and two genes in the first two columns of bottom left subtable.

iii) Find duplicates and replace new ones.

4.6. Procedure

Initially chromosomes are generated randomly based on KBI. Each chromosome in the initial population is

evaluated by the unfitness function. All the chromosomes are sorted according to their unfitness value. Superior

chromosomes are selected based on low unfitness value. Quantization and dequantization are performed for the

obtained image block cluster representatives by using the superior chromosomes and the PSNR values are

calculated. The chromosome that yields a higher PSNR value for each cluster representative is chosen to

perform the KBC operation and the offspring are produced. Each individual offspring is evaluated by the

unfitness function. These offsprings and parents are sorted and superior chromosomes are identified based on

unfitness value. These superior chromosomes are further processed during KBSM and offspring are produced.

Again the unfitness value is evaluated for each individual offspring. The parent and offspring of KBSM are

considered as the current population and sorted based on their unfitness value. The abovementioned procedure

is repeated until the number of generations is satisfied. The chromosome with the lowest unfitness value after

the required number of generations is finished is the optimal chromosome. Figure 4 shows the flow diagram of

the KBGA process.

4.7. Performance measures

The main objective of the proposed KBGA is to achieve better image quality, to enhance search capabilities,

and to guarantee feasible solutions. To analyze the quality of the decompressed image, the following statistical

measures [1] are used.
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Figure 4. Flowchart of knowledge-based genetic algorithm process.

i) Mean square error (MSE): gives the average of the square of the difference between the original image

and reconstructed image.

MSE =
1

xy

x∑
i=1

y∑
j=1

∥O (i, j)−R(i, j)∥2 (2)

Here, O (i, j) = original image; R (i, j) = reconstructed image.

ii) Peak-signal-to-noise-ratio (PSNR): defined as the ratio of the squared useful signal peak over the mean

square error in decibels.

PSNR = 10log10

(
MAX2

O

MSE

)
(3)
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Here, MAXO= maximum possible pixel value of the image.

To analyze the enhancement of search capability, the following measures [35,36] are used.

iii) Average unfitness value fa(k): gives the average of the best unfitness values obtained within k generations

in n runs.

fa (k) =
fb(k)

n
(4)

Here, fb(k) = best unfitness values obtained within k generations; n = number of independent runs.

iv) Likelihood of evolution leap Lel(k): gives the probability of average leaps within k generations among n

independent runs. When a solution of one generation is better than the solution of the previous generation,

then it is said to be a leap. Lel(k) at the k th generation is given in Eq. (??).

Lel (k) =
l

n
(5)

Here, l = average number of leaps within k generations.

To analyze the production of feasible solutions, the following measure is used.

v) Likelihood of optimality Lopt(k): gives the probability of getting optimal solutions within k generations

among n independent runs. Lopt(k) at the k th generation is given in Eq. (??).

Lopt (k) =
m

n
(6)

Here, m = number of runs that produced optimal solutions within k generations.

5. Performance analysis

Although the CGA is a powerful tool for the generation of the optimum quantization table, more effort is

needed to minimize the number of generations for optimal results. The proposed KBGA uses knowledge-based

operators such as KBI, KBS, KBC, and KBSM to achieve optimal solutions within a few generations. The

proposed KBGA is implemented on a dual core processor of 2.20 GHz each, with 3 GB of RAM. The algorithm

is realized using MATLAB with test images taken from the USC-SIPI image database with different complexity

levels, which is of size 256 × 256 and digitized to 256 gray levels.

The image block clustering process is incorporated in the selection operator of KBGA to select the

parents for crossover. Experimental results of the image block clustering process are shown for a test image,

Lena, with the target bits per pixel set as 1.0. Figure 5a shows the uncompressed 256 × 256 Lena image.

Figures 6–8 illustrate the result of image block clustering, in which Figure 6 shows all the 1024 DCT blocks

represented by their DC coefficient and standard deviations of AC coefficients. These blocks are clustered into

10 main clusters based on the DC coefficient, as shown in Figure 7. Each main cluster block is then grouped

into 10 subclusters based on the standard deviation of AC coefficients of the corresponding cluster. One of the

subclusters is shown in Figure 8 for a clear view. Different shapes and colors are used to represent different

clusters for better understanding. An empirical analysis based on the brute force method was done for different

numbers of clusters: 50, 75, 100, 125, 150. . . etc. Experimentation with cluster size 100 ≤ cluster size ≥ 200
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was carried out in which 100 yielded the same result as 150, 175. . . 200, while the computation time for above

100 was costlier with no fruitful results. Therefore, the total number of clusters was set at 100 (main clusters =

10, subclusters = 10). An image block that is nearest to the centroid of a cluster is chosen as a representative.

Figure 9 shows the representative blocks of the Lena image.

 

(a)                                 (b)                             (c)                                (d)                           (e)                

 

(f)                                  (g)                              (h)                               (i)                              (j)               

Figure 5. Uncompressed test images: (a) Lena, (b) camera man, (c) Barbara, (d) couple, (e) crowd, (f) bridge, (g)

clock, (h) baboon, (i) pattern, (j) montage.
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Figure 6. DCT blocks. Figure 7. Main clusters.

Table 1 shows an example for searching for an optimal solution through the proposed KBGA. In this

example, the initial population is 10 chromosomes, crossover probability is 0.6, and mutation probability is 0.015

to 0.093 for ranks 1 to 6, respectively. The unfitness values for the initial 10 chromosomes are {37.26, 88.68,
164.18, 253.05, 338.40, 483.62, 562.04, 728.95, 867.33, and 953.67} . Here the first six chromosomes are selected

as superior chromosomes based on crossover probability. Among these six chromosomes, only four are selected

as parents for crossover because only these chromosomes give better PSNR values for cluster representatives.

This satisfies Darwin’s evolution theory and also shows the performance effect of representative block usage in
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the selection step. KBC and KBSM are applied accordingly to generate offspring. After the first generation,

the unfitness values become {37.26, 40.50, 72.19, 88.68, 164.18, 175.96, 197.02, 229.98, 237.32, and 253.03} . In

the second generation, all superior chromosomes are selected as parents for crossover because all chromosomes

give better PSNR values for cluster representatives. After the second generation, the unfitness values become

{37.26, 39.68, 40.50, 43.41, 47.14, 53.27, 57.72, 72.19, 85.04, and 88.68} . The progression of the unfitness value

is clearly shown for two generations.
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Table 1. Knowledge-based genetic algorithm process.

First generation Second generation

Initial
Population

KBS KBC Sort KBSM

Population

population
KBS KBC Sort KBSM for next for next

generation generation
37.26 164.2 37.26 40.50 37.26 37.26 37.26 39.68 37.26
88.68 253.1 88.68 72.19 40.50 40.50 40.50 43.41 39.68
164.2 338.4 164.2 230.0 72.19 72.19 47.14 57.72 40.50
253.1 483.6 197.0 176.0 88.68 88.68 72.19 53.27 43.41
338.4 391.0 237.3 256.9 164.2 164.2 85.04 102.8 47.14
483.6 592.1 253.1 268.9 176.0 176.0 88.68 110.0 53.27
562.0 197.0 197.0 47.14 57.72
729.0 237.3 230.0 105.6 72.19
867.3 237.3 93.63 85.04
953.7 253.1 85.04 88.68

152.9
290.7

To evaluate the performance of the KBGA-based quantization table, it is compared with the default JPEG

quantization table and CGA-based quantization table. The parameters for both genetic algorithm simulations

are set as shown in Table 2 and the unfitness function for both the algorithms is same. Figure 10 shows

the number of chromosomes chosen as parents for crossover in each generation for the CGA and KBGA. It

shows the variable selection pressure given by the deterministic approach in KBS. Figure 11 shows the unfitness
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progression of the best chromosome for both the CGA and KBGA processes. Each point indicates the average

of 20 runs. The unfitness value of JPEG for same target bits per pixel is also shown in Figure 11 for comparison.

It implies that the unfitness value obtained from KBGA is decreasing gradually over generations and reaches

the near-optimal solution in far fewer generations. The CGA does not produce an optimal or near-optimal

solution within 100 generations and it also requires more generations to attain the results obtained by the

KBGA, which proves the strength of domain knowledge. Selection of the optimal quantization table using the

KBGA requires more time than the CGA does. In our experiment, the KBGA takes 18 s longer than the CGA

for each generation. Hence, the CGA is run for more generations in order to fill the same amount of time taken

by the KBGA, but even then it does not produce feasible results. The KBGA has more computational cost than

the CGA; however, it attains the optimal solution at a fast convergence rate. Figure 12 shows the resultant

optimized quantization table generated by the KBGA. A zoomed part of reconstructed images using KBGA

and JPEG quantization tables is shown in Figure 13a and 13b, respectively, for comparison.

Table 2. Simulation parameters considered.

Parameters CGA KBGA
Initial population 100 100
Probability of crossover 0.6 0.6
Probability of mutation 0.093 0.015 to 0.093 for ranks 1 to 6 respectively
Number of generations 100 100
Number of independent runs 20 20
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Figure 10. Lena-parent selection vs. generation (target

bits/pixel = 1.0).

Figure 11. Lena-unfitness value vs. generation (target

bits/pixel = 1.0).

The quality of the quantization table for the proposed KBGA is evaluated by employing two performance

measures, the MSE and PSNR, as discussed in Section 5. Table 3 compares the practical compression perfor-

mance of the KBGA-based quantization table with CGA-based and default JPEG quantization tables for three

different bits values per pixel. It shows the results of the 10 different complexity images shown in Figure 5.

The results shown in Table 3 are the best results from 20 independent runs with different random seeds. From

Table 3, it is clearly shown that the KBGA-based quantization table yields better results than the other two

with less MSE and high PSNR. As shown in Table 4, the proposed KBGA produces the average PSNR gain by

3.31% and average MSE gain by 20.6% over the default JPEG quantization tables. Figure 14 shows the rate
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distortion curve for the JPEG, CGA, and KBGA quantization tables. It shows that the KBGA quantization

tables have reduced MSE over the JPEG quantization tables at the same bits per pixel.

 

32 23 21 19 14 24 31 37 

22 21 22 20 16 35 36 33 

20 20 18 21 24 34 41 34 

20 16 26 23 31 38 48 37 

11 23 17 27 41 65 62 46 

14 21 33 26 49 62 68 55 

29 38 47 52 62 73 72 61 

43 55 57 59 67 60 62 59 

Figure 12. Optimized quantization table (target bits/pixel = 1.0).

Table 3. Comparison of image quality measures for different target bits/pixels.

Target bits/pixel 0.75 1 1.5

Image
Quantization Bits

MSE
PSNR Bits

MSE
PSNR Bits

MSE
PSNR

table /pixel in dB /pixel in dB /pixel in dB

Lena

JPEG 0.76 51.96 31.01 1.03 34.29 32.81 1.50 19.26 35.31
CGA 0.76 83.94 28.92 1.00 88.28 28.71 1.56 81.11 29.07
KBGA 0.75 43.27 31.80 1.03 26.36 33.96 1.55 12.35 37.25

Camera Man

JPEG 0.75 66.24 29.95 1.02 44.25 31.71 1.51 22.29 34.68
CGA 0.77 116.5 27.50 0.99 105.2 27.94 1.55 119.73 27.38
KBGA 0.76 53.24 30.87 1.01 31.29 33.21 1.51 15.50 36.26

Barbara

JPEG 0.77 61.71 30.26 1.01 41.93 31.94 1.50 16.92 35.88
CGA 0.77 96.98 28.30 1.04 91.18 28.57 1.51 98.48 28.23
KBGA 0.77 48.57 31.30 1.01 28.81 33.57 1.52 12.05 37.35

Clock

JPEG 0.75 24.28 34.31 1.00 14.64 36.51 1.51 7.21 39.58
CGA 0.75 79.74 29.15 1.01 61.52 30.27 1.49 59.49 30.41
KBGA 0.75 18.66 35.45 1.00 12.06 37.35 1.51 4.72 41.43

Bridge

JPEG 0.75 157.7 26.19 1.03 120.0 27.37 1.61 75.77 29.37
CGA 0.76 201.4 25.12 1.05 174.9 25.74 1.65 150.3 26.40
KBGA 0.75 144.1 26.58 1.04 103.1 28.03 1.60 61.66 30.27

Couple

JPEG 0.75 49.57 31.21 1.01 34.31 32.81 1.50 19.49 35.27
CGA 0.74 71.39 29.63 1.03 84.28 28.91 1.57 87.13 28.76
KBGA 0.75 44.36 31.70 1.00 29.55 33.46 1.50 15.01 36.40

Crowd

JPEG 0.76 40.51 32.09 1.01 27.25 33.81 1.52 14.77 36.47
CGA 0.74 64.74 30.05 1.03 88.15 28.71 1.53 77.69 29.26
KBGA 0.75 37.86 32.38 1.02 24.04 34.36 1.53 11.34 37.62

Baboon

JPEG 0.75 404.2 22.10 1.04 330 22.98 1.54 223.3 24.68
CGA 0.74 470.9 21.44 1.02 408.5 22.05 1.49 345.9 22.77
KBGA 0.76 368.4 22.50 1.04 282.5 23.66 1.53 183.9 25.52

Pattern

JPEG 0.75 58.63 30.48 1.01 48.10 31.34 1.51 35.91 32.61
CGA 0.74 79.43 29.17 0.99 74.87 29.42 1.49 65.98 29.97
KBGA 0.75 50.87 31.10 1.01 39.43 32.21 1.51 25.09 34.17

Montage

JPEG 0.75 25.20 34.15 1.00 13.55 36.85 1.50 5.51 40.76
CGA 0.76 79.99 29.13 1.01 74.58 29.44 1.53 69.59 29.74
KBGA 0.75 17.38 35.76 1.01 10.488 37.96 1.50 2.98 43.42

1629



BALASUBRAMANIAN and MANAVALAN/Turk J Elec Eng & Comp Sci

Table 4. Average MSE and PSNR gain of KBGA-based quantization table over JPEG table.

Bits/pixel Average MSE gain in % Average PSNR gain in %
0.75 13.64 2.55
1.0 20.33 3.02
1.5 27.83 4.37
Average 20.60 3.31

 

(a)                                                                             (b)  

Figure 13. Reconstructed image by (a) JPEG quantization table and (b) KBGA quantization table.
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Figure 14. Rate distortion curve of JPEG, CGA, and KBGA quantization tables.

As given in Section 5, performance measures such as average unfitness value fa(k), likelihood of evolution

leap Lel(k), and likelihood of optimality Lopt(k) have been taken into consideration in a comparative study to

show the efficacy of the KBGA. For both the CGA and KBGA, these measures are estimated for 10 different

images by setting target bits per pixels at 0.75, 1.0, and 1.5 in 20 independent runs (totally 10 × 3 × 20 =

600 runs for each algorithm). The results shown in Tables 5–7 are for target bits per pixel set at 1.0. Table 5
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shows the average unfitness value in the initial population and 50th and 100th generations for both the CGA

and KBGA. Table 6 shows the likelihood of evolution leap within 50 and 100 generations for both the CGA

and KBGA. Table 7 shows the likelihood of optimality within 50 and 100 generations for the KBGA. The

likelihood of optimality cannot be estimated for the CGA because it does not produce any optimal solution

for the given simulation parameters shown in Table 2. Average values of these measures for different bits per

pixel are summarized in Tables 8–10. They are also shown graphically in Figures 15a–15c, respectively. Figure

15a clearly indicates that the KBGA provides a better initial solution seed than randomization, and also the

average unfitness value of the KBGA is better than that of the CGA in all generations. Figure 15b shows that

the average number of evolution leaps of the KBGA is higher than the CGA, which indicates that the KBGA

has a continuous change in solution from one generation to the next. Figures 15a and 15b show that the KBGA

has enhanced the search capabilities more than the CGA. Figure 15c shows that the probability of finding the

optimal solution, Lopt (100), for the KBGA with this simulation parameter setting is 95.8%, which guarantees

a feasible solution.

Table 5. Average unfitness value (target bits/pixel = 1.0).

Bits/pixel = 1.0 CGA KBGA

Images
Initial After 50 After 100 Initial After 50 After 100
population generations generations population generations generations

Lena 129.20 109.52 87.23 66.92 33.59 31.43
Camera man 203.92 129.05 105.43 64.69 39.72 38.03
Barbara 240.55 120.81 100.33 54.85 33.69 32.04
Couple 180.37 122.73 93.46 44.81 33.59 32.39
Crowd 159.79 106.69 96.19 37.88 26.46 25.61
Bridge 324.33 246.05 183.01 47.74 113.80 111.13
Clock 139.54 80.47 62.41 30.96 13.76 13.61
Pattern 121.17 86.66 75.12 54.88 42.00 41.23
Montage 199.68 100.12 75.16 23.85 12.89 12.77
Baboon 571.01 460.82 442.35 371.74 325.36 321.13
Average 226.96 156.29 132.06 79.83 67.40 65.90

Table 6. Likelihood of evolution leap (target bits/pixel = 1.0).

Bits/pixel = 1.0 CGA KBGA

Images
After 50 After 100 After 50 After 100
generations generations generations generations

Lena 0.6 1.1 1.35 2.25
Cameraman 0.7 1.2 1.5 2.55
Barbara 0.6 0.9 1.25 2
Couple 0.7 1.3 1.25 2
Crowd 0.7 1 1.05 1.95
Bridge 0.45 0.95 1.45 2.35
Clock 0.65 1.1 0.95 1.3
Pattern 0.5 1.05 0.9 1.55
Montage 0.7 1.25 1.15 1.6
Baboon 0.6 0.9 1.55 1.55
Average 0.62 1.08 1.24 2.01
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Table 7. Likelihood of optimality (target bits/pixel = 1.0).

Bits/pixel = 1.0 KBGA
Images After 50 generations After 100 generations
Lena 0.85 0.95
Cameraman 0.85 0.95
Barbara 1.00 1.00
Couple 0.85 1.00
Crowd 0.85 1.00
Bridge 0.85 1.00
Clock 0.85 0.90
Pattern 1.00 1.00
Montage 0.85 0.90
Baboon 0.85 0.90
Average 8.80 0.96

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Generations
(b)

L
el

(k
)

 

 

CGA

KBGA

0 20 40 60 80 100
60

80

100

120

140

160

180

200

220

240

260

Generations
(a)

f(
k)

 

 
CGA

KBGA

0 50 100
0

10

20

30

40

50

60

70

80

90

100

Generations
(c)

L
o

p
t(

k)
 in

 %

 

 

KBGA

Figure 15. (a) Average unfitness value vs. generations, (b) likelihood of evolution leap vs. generations, (c) likelihood

of optimality vs. generations for KBGA.

Table 8. Summary of average unfitness value for different bits per pixels.

Bits/pixel

CGA KBGA
Initial After 50 After 100 Initial After 50 After 100
population generations generations population generations generations

0.75 234.29 155.94 138.08 121.72 90.11 88.90
1.0 226.96 156.29 132.06 79.83 67.40 65.90
1.5 274.33 154.18 117.28 53.75 40.13 38.14
Average 245.19 155.47 129.14 85.10 65.88 64.31
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Table 9. Summary of likelihood of evolution leap for different bits per pixels.

Bits/pixel

CGA KBGA
After 50 After 100 After 50 After 100
generations generations generations generations

0.75 0.58 0.96 1.40 2.31
1.0 0.62 1.08 1.24 2.01
1.5 0.61 1.09 1.03 1.68
Average 0.6 1.04 1.22 2.00

Table 10. Summary of likelihood of optimality for different bits per pixels.

Bits/pixel
KBGA
After 50 generations After 100 generations

0.75 89.50% 96.50%
1.0 88% 96%
1.5 86.50% 95%
Average 88% 95.80%

Thus, it can be concluded that the initial population of the proposed KBGA considerably reduces the

computational time while KBS avoids premature convergence by using variable selection pressure. Furthermore,

KBC and KBSM increase the search capability. As a whole, these operators minimize the computational hurdles

to achieve the optimal results within a few generations, proving a faster convergence rate than that of the CGA.

6. Conclusion and future scope

In this paper, the KBGA has been proposed to search for the optimal quantization table for the baseline JPEG

algorithm. Image characteristics and knowledge about image compressibility are incorporated in CGA operators

to improve the effectiveness for quantization table generation. The proposed KBGA outperforms the default

JPEG quantization table with MSE and PSNR as the key performance measures. Integrated knowledge in

each genetic operator enhances the potentials of the CGA and minimizes the number of generations to reach

the optimal or near-optimal solution. A comparative study has been made between the proposed KBGA and

CGA with average unfitness value, likelihood of evolution leap, and likelihood of optimality as the performance

measures. This study shows that the proposed KBGA has a faster convergence rate with better quality of

solution, highly enhanced search capability, and highly guaranteed optimal/near-optimal solutions than the

CGA. As a future scope, this research can also be extended to the multiobjective evolutionary algorithms in

quantization table generation.
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