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Abstract: This paper deals the stability analysis of a six-phase synchronous motor using eigenvalue criteria from its

linearized model, so that the small displacement stability during steady-state condition can be accessed. Eigenvalue

provides a simple but effective means for the stability analysis of a motor. An association between eigenvalues and motor

parameters has been established, followed by the formulation of transfer functions and plotting the root locus of system,

employing the dq0 approach in the MATLAB environment.
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1. Introduction

The area of multiphase (more than three phases) motor drives has been found to experience accelerated growth

over the last two decades. This is because of their use in different applications like electric ship propulsion,

EV/HEV vehicle propulsion, aircraft, thermal power plants to drive induce draft fans, nuclear power plants,

and higher power applications. A multiphase motor possesses several potential advantages over conventional

three-phase motors, such as reduction of space and time harmonics, lower dc link current harmonics, reduced

amplitude and increased frequency of torque pulsations, reduction of current per phase without increase in

voltage per phase, increase in power to weight ratio, and higher reliability [1–3].

As far as six-phase synchronous motors are concerned, general modelling is available in the literature

[4–8]. Analysis of a six-phase synchronous alternator with its two three-phase stator windings displaced by an

arbitrary angle was carried out by Fuchs and Rosenberg [4], where an orthogonal transformation of the phase

variables into a new set of (d− q) variables was employed. In the analysis, it was concluded that the advantage

of partial elimination of time dependence of the coefficients from system differential equations can be achieved

by employing orthogonal transformation. Furthermore, a phasor can be utilized for the steady-state analysis of

generator having two sets of stator windings. Consideration of the mutual leakage coupling between two sets of

three-phase stator windings in the mathematical model of a six-phase synchronous machine was presented by

Schiferl and Ong [5]. Moreover, the transformer and motor mode of power transfer during steady-state was also

examined. In their companion paper [6], formulation of the relationships of mutual leakage inductances with

winding displacement angle and pitch was carried out, applicable for different winding configurations of six-phase

and proposed a scheme of a single machine uninterruptible power supply using a six-phase synchronous machine.

Along with the presentation of modelling and simulation of a high power drives using a double star synchronous

motor, the effect of winding displacement angle on torque ripple and harmonic effect was highlighted by Terrien
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and Benkhoris [7]. Authors in ref. [8] briefly presented the analysis of a six-phase synchronous machine with

emphasis on its redundancy property, operation during fault conditions, machine behavior under nonsinusoidal

voltage input, and sensitivity of the design parameters.

Operation of any electrical machine during steady-state depends on many design factors that directly

affect the stability of the machine. Stability of the machine is an important factor considered by design

engineers. Among the various aspects of stability, small signal stability is an important one. It determines

the stable operation of the machine during a small disturbance. This needs a comprehensive stability analysis

of the machine to ensure a stable operation of the system. As far as stability of an AC motor is concerned, very

limited studies are available. Rogers [9] examined induction machine operation that gives a frequency dependent

oscillatory response, and analyzed its stability using the root locus technique. Stability of an induction motor fed

by a variable frequency inverter was examined in ref. [10], wherein the effect of harmonics was neglected, using

Nyquist stability criteria [11] and the root locus technique [12]. The technique of transfer function for stability

of controlled current induction motor was carried out by Cornell and Lipo [13], whereas a linearized model of

the current source inverter fed induction motor drive for stability analysis was developed by Macdonald and Sen

[14], followed by the formulation of transfer for different control strategies. Stability analysis of a double-cage

induction motor was carried out by Tan and Richard [15]; the eigenvalues were calculated using a boundary

layer model, whereas the Lyapunov’s first method by employing the placement of eigenvalues was carried out in

detail for a three-phase induction motor in ref. [16]. As far as stability of a synchronous machine is concerned,

small signal stability analysis was carried out for a reluctance-synchronous machine in ref. [17], and the variable

frequency operation of synchronous machine in ref. [18] using the Nyquist criteria technique, whereas the root

locus study of a synchronous machine was carried out in ref. [19].

The only available papers on small signal stability of multiphase motor are [20, 21]. These deal with

the stability issue for six-phase and five-phase induction motors, respectively, with no available literature as

far as multiphase synchronous motor is concerned to the best of the authors’ knowledge. Therefore, the main

purpose of the present paper is to report the small signal stability analysis of a six-phase synchronous motor,

by applying the eigenvalues criterion for small excursion behavior through the developed linearized version of

motor equations, followed by the establishment of eigenvalues association with motor parameters. Further, a

transfer function will be formulated between input and output variables, followed by the stability plots of root

locus. Analysis has been carried out using dq0 approach in the MATLAB environment.

2. Linearization of motor equations for stability analysis

While developing the linearized model of the motor, some important simplifying assumptions are made:

• Both sets of stator windings (abc and xyz ) are symmetrical so as to have a perfect sinusoidal distribution

along the air-gap,

• Existence of space harmonics is neglected, ensuring the flux and mmfs are sinusoidal in space,

• Saturation and hysteresis effects are neglected,

• Skin effect is neglected, windings resistance are not dependent on frequency.

A schematic representation of stator and rotor axes is shown in Figure 1. The six stator phases of the

motor consist of two sets of star-connected three-phase windings, namely, abc and xyz, such that their magnetic
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axes are displaced by an angle ξ = 30 electrical degrees (for asymmetrical winding configuration). This is

because, with an asymmetrical winding configuration, advantages of the elimination of many lower order time

harmonics such as 5th, 7th, 17th, and 19th are ensured from the contribution to the air gap flux and torque

pulsation. The rotor circuit is equipped with a field winding FR and a damper winding KD along the d -axis

and a damper winding KQ along the q -axis. By adopting the motor convention, the equations of voltage and

electromagnetic torque when written in machine variables will result in sets of nonlinear differential equations.

Nonlinearity is introduced due to the presence of the inductance term, which is the function of rotor position and

is time dependent. In order to achieve the simplified equations with constant inductance terms, reference frame

theory will be applied, and all the sets of equations will be written in rotor reference frame (Park’s equation).

The equations of voltages and flux linkage per second of a six-phase synchronous motor in Park’s variables are

stated in the Appendix [22,23], which are the function of current and flux linkage per second. It is to be noted

that either current or flux linkage per second can be selected as state variable, because they are related to each

other (as seen in Eqs. (A8)–(A16)). This choice is generally application dependent. In this paper, current has

been selected as state variable. Treating current as independent variable, the flux linkage per second is replaced

by currents and the voltage–current relation of motor can be written in matrix form. An explanation of the

nomenclature used is given in Table 1.

[v] = [z] [i] , (1)

where
[v] = [vQ1, vD1, vQ2, vQ2, vKQ, vFR, vKD] (2)

[i] = [iQ1, iD1, iQ2, iQ2, iKQ, iFR, iKD] (3)

z =



r1 + p
ωB

(
xL1 + xLM + xMQ

)
xL1 + xLM + xMD

p
ωB

(
xLM + xMQ

)
+ xLDQ

−
(
xL1 + xLM + xMQ

)
r1 + p

ωB
(xL1 + xLM + xMD) p

ωb
xLDQ −

(
xLM + xMQ

)
p

ωB

(
xLM + xMQ

)
− xLDQ

p
ωb

xLDQ + (xLM + xMD) r2 + p
ωB

(
xL2 + xLM + xMQ

)
− p

ωB
xLDQ −

(
xLM + xMQ

) p
ωB

(xLM + xMD)− xLDQ −
(
xL1 + xLM + xMQ

)
p

ωB
xMQ 0 p

ωB
xMQ

0 p
ωB

x2
MD
rFR

0

0 p
ωB

xMD 0

− p
ωB

xLDQ + (xLM + xMD) p
ωb

xMQ xMD xMD

p
ωb

(xLM + xMD) + xLDQ −xMQ
p
ωb

xMD
p
ωb

xMD

xL2 + xMD + xLM
p
ωb

xMQ xMD xMD

r2 + p
ωB

(xL2 + xLM + xMD) −xMQ
p
ωb

xMD
p
ωb

xMD

0 rKQ + p
ωB

(
xLKQ + xMQ

)
0 0

p
ωB

x2
MD
rFR

0 xMD
rFR

{
rFR + p

ωB
(xLFR + xMD)

}
p

ωB

x2
MD
rFR

p
ωB

xMD 0 p
ωB

xMD rKD + p
ωB

(xLKD + xMD)


(4)

Developed motor electromagnetic torque is given by

TE =
3

2

P

2

1

ωB

[
(iQ1 + iQ2)xMD (iD1 + iQ2 + iKD + iFR)
− (iD1 + iD2)xMQ(iQ1 + iQ2 + iKQ)

]
(5)
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Figure 1. Stator and rotor axes of six-phase motor.

Table 1. Explanation of nomenclature used.

Notation Explanation

vD1,vQ1 d− qvoltage of winding set abc
vD2,vQ2 d− qvoltage of winding set xyz
iD1,iQ1 d− qcurrent of winding set abc
iD2,iQ2 d− qcurrent of winding set xyz
vFR Field excitation voltage
iFR Field excitation current
vKQ,vKD Voltage along damper windings KQ and KD, respectively
iKQ,iKD Current along damper windings KQ and KD, respectively
r1,r2 Stator resistance per phase of winding sets abc and xyz, respectively
xL1, xL2 Leakage reactance per phase of winding sets abc and xyz, respectively
xLKq,xLKd Leakage reactance of damper windings KQ and KD, respectively
xLFR Leakage reactance of field winding
xMD,xMQ Magnetizing inductance along d− qaxes respectively
xLM Common mutual leakage reactance between winding sets abc and xyz
xLDQ Cross mutual coupling reactance between d− qaxes of stator windings
ψD1, ψQ1 Flux linkage per second along d− q axes of stator winding abc
ψD2, ψQ2 Flux linkage per second along d− q axes of stator winding xyz
ψMD, ψMQ Magnetizing flux linkage per second along d− q axes, respectively
TE ,TL Motor electromagnetic torque and load torque, respectively
ωR,ωB Rotor speed and base speed, respectively
J Moment of inertia

The relationship between torque and rotor speed is given by Eq. (6), whereas the expression of rotor angle

(load angle) is given by Eq. (7).

TE =
P

2J

ωR

ωB
+ TL (6)

δ =
ωB

p

(
ωR − ωE

ωB

)
(7)
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The relationship between the variables fEQ and fED in synchronously reference frame and variables fRQ and fRD

in rotor reference frame will be helpful in the linearization process, which is given by Eq. (8).[
fRkQ

fRkD

]
=

[
cos δk −sinδk
sin δk cos δk

][
fEkQ

fEkD

]
, (8)

where k = 1 (for winding set abc) and 2 (for winding set xyz ).

δ1 = δ0(load angle)

δ2 = δ0 − γ − ξ

γ is the phase difference between phases a and x voltages and ξ is the phase shift between both winding sets

abc and xyz. Both the angles have the magnitude of 30 electrical degrees.

The procedure of linearization about small departure will be carried out by making use of the well-known

Taylor series expansion, wherein each variable x is replaced by its reference value plus a deviation (x0 +∆x).

For example, consider an equation z = xy ; this is written as

z0 +∆z = (x0 +∆x) (y0 +∆y)
= x0y0 + y0∆x+ x0∆y +∆x∆y

Terms in the reference level can be eliminated from both sides of equation (z0 = x0y0); also the last term

(∆x∆y) is neglected, considering the deviations are very small, resulting in an equation between the deviations

with coefficient that can be considered constant over a limited region. Simplification incorporated in Taylor

series expansion can be quantitatively included by having the following restrictions imposed on motor equations:

(a) Under small perturbation, there is a little variation in flux levels, such that the inductances can be

regarded as constant.

(b) Under small perturbation, the terms involving the product of two (or more) deviations can be

neglected, being small with respect to other terms.

Linearization of Eqs. (1), (5)–(8) yields an equation that can be written in matrix form as

 ∆v1DQ

∆v2DQ

∆vRR

 =

 W1 X1 Y1

X2 W2 Y2

Q1 Q2 S


 ∆i1DQ

∆i2DQ

∆iRR

 (9)

where

(x)
T
=

[
(∆i1DQ)

T
(∆i2DQ)

T
(∆iRR)

T
]

=

[
∆iQ1, ∆iD1, ∆iQ2, ∆iD2, ∆iKQ, ∆iFR, ∆iKD,

∆ωR

ωB
, ∆δ

]
(10)

(u)
T
=

[
(∆v1DQ)

T
(∆v2DQ)

T
(∆vRR)

T
]

= [∆vQ1, ∆vD1, ∆vQ2, ∆vD2, ∆vKQ, ∆vFR, ∆vKD, ∆T, 0] (11)

Other elements of the matrix are explained in a later part of the section.
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A synchronous motor is usually connected to an infinite bus, where the existence of input supply of

constant magnitude and frequency is assumed. Therefore, it will be advantageous to relate the synchronously

rotating reference frame variables, where independent input supply exists, to the variables in the rotor reference

frame. This has to be taken into account with the help of Eq. (8), which is nonlinear. This equation will

be linearized before incorporating it into a set of linear set motor differential equations. Therefore, suitable

approximation is taken, cos∆δk = 1 and sin∆δk = ∆δk , such that linearization of Eq. (8) yields

∆fRkDQ = Tk∆f
E
kDQ + FR∆δ (12)

Linearization of inverse transformation yields

∆fEkDQ = (Tk)
−1

∆fRkDQ + FE∆δ, (13)

where

FR and FE are the steady-state d−q operating indices in the rotor and synchronously rotating reference

frame, respectively.

Tk =

[
cos δk − sin δk

sin δk cos δk

]
(14)

(Tk)
−1

=

[
cos δk sin δk

− sin δk cos δk

]
(15)

Substitution of Eqs. (12) and (13) into Eq. (9) yields

 T1∆v
E
1DQ

T2∆v
E
2DQ

∆vRR

 =

 W1 X1 Y1

X2 W2 Y2

Q1 Q2 S


 T1∆i

E
1DQ

T2∆i
E
2DQ

∆iRR

 , (16)

which can be further arranged and written as

 ∆vE1DQ

∆vE2DQ

∆vRR

 =


(T1)

−1
W 1T1 (T1)

−1
X1T2 (T1)

−1
Y 1

(T2)
−1
X2T1 (T2)

−1
W 2T2 (T2)

−1
Y 2

Q1T1 Q2T2 S


 ∆iE1DQ

∆iE2DQ

∆iRR

 (17)

The above equation can be expressed in following form:

Epx = Fx+ u, (18)

where

(x)
T

=
[
(∆iE1DQ)

T
(∆iE2DQ)

T
(∆iRR)

T
]

=
[
∆iEQ1, ∆i

E
D1, ∆i

E
Q2, ∆i

E
D2, ∆iKQ, ∆iFR, ∆iKD,

∆ωR

ωB
, ∆δ

] (19)

(u)
T

=
[
(∆vE1DQ)

T
(∆vE2DQ)

T
(∆vRR)

T
]

=
[
∆vEQ1, ∆v

E
D1, ∆v

E
Q2, ∆v

E
D2, ∆vKQ, ∆vFR, ∆vKD, ∆T, 0

] (20)
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E =


(T1)

−1
W 1PT1 (T1)

−1
X1PT2 (T1)

−1
Y 1P

(T2)
−1
X2PT1 (T2)

−1
W 2PT2 (T2)

−1
Y 2P

Q1PT1 Q2PT2 SP

 (21)

F = −


(T1)

−1
W 1KT1 (T1)

−1
X1KT2 (T1)

−1
Y 1K

(T2)
−1
X2KT1 (T2)

−1
W 2KT2 (T2)

−1
Y 2K

Q1KT1 Q2KT2 SK

 (22)

In Eq. (18), coefficient matrix E is associated with the derivative part with the elements having subscript p .

Similarly, the coefficient matrix F whose elements have subscript K are associated with the remaining terms

of the linearized motor equation. Elements of the matrices E and F are defined as

W1P = (
1

ωB
)

[
(xL1 + xLM + xMQ) 0

0 (xL1 + xLM + xMD)

]
(23)

W2p = (
1

ωB
)

[
(xL2 + xLM + xMQ) 0
0 (xL2 + xLM + xMD)

]
(24)

X1p = (
1

ωB
)

[
(xMQ + xLM ) −xLDQ

xLDQ (xMD + xLM )

]
(25)

X2P = (
1

ωB
)

[
(xMQ + xLM ) xLDQ

−xLDQ (xMD + xLM )

]
(26)

Q1P = Q2P = (
1

ωB
)



xMQ 0

0
x2
MD

rFR

0 xMD

0 0

0 0


(27)

Y1P = (
1

ωB
)

[
xMQ 0 0 0 (xL1 + xLM + xMQ) iD10 − (xMQ + xLM ) iD20

0 xMD xMD 0 (xL1 + xLM + xMD) iQ10 + (xMD + xLM )iQ20

]
(28)

Y2P = (
1

ωB
)

[
xMQ 0 0 0 (xL2 + xLM + xMQ) iD20 − (xMQ + xLM ) iD10

0 xMD xMD 0 (xL2 + xLM + xMD) iQ20 + (xMD + xLM )iQ10

]
(29)
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Sp = (
1

ωB
)



(xLKQ + xMQ) 0 0 0 − (xMQiD10 + xMQiD20)

0 xMD(xLFR+xMD)
rFR

x2
MD

rFR
0

x2
MD

rFR
(iQ10 + iQ20)

0 xMD (xLKD + xMD) 0 xMD (iQ10 + iQ20)

0 0 0 −2Jω2
B

P 0

0 0 0 0 −ωB


(30)

W1K =

[
r1 (xL1 + xLM + xMD)

− (xL1 + xLM + xMQ) r1

]
(31)

W2k =

[
r2 (xL2 + xLM + xMD)

− (xL2 + xLM + xMQ) r2

]
(32)

X1k =

[
xLDQ (xLM + xMD)
− (xLM + xMQ) xLDQ

]
(33)

X2k =

[
xLDQ (xLM + xMD)
− (xLM + xMQ) −xLDQ

]
(34)

Q1K = Q2K =


0 0

0 0

0 0
(xMD (iD10 + iD20 + iFR0)− xMQ (iD10 + iD20))fQS (xMD (iQ10 + iQ20)− xMQ (iQ10 + iQ20))fQS


(35)

Y1K =

[
0 xMD xMD (xL1iD10 + xMD (iD10 + iD20 + iFR0))

−xMQ 0 0 − (xL1iQ10 + xMQ (iQ10 + iQ20))

(−r1iD10 + (xL1 + xLM + xMD) iQ10 − xLDQiD20 + (xMD + xLM ) iQ20 + vD10

(r1iQ10 + (xL1 + xLM + xMQ) iD10 + (xMQ + xLM ) iD20 − vQ10

]
(36)

Y2K =

[
0 xMD xMD (xL2id20 + xMD (iD10 + iD20 + iFR0))

−xMQ 0 0 − (xL1iq10 + xMQ (iQ10 + iQ20))

]

(−r2iD20 + (xL2 + xLM + xMD) iQ20 + xLDQiD10 + (xMD + xLM ) iQ10 + vD20

(r2iQ20 + (xL2 + xLM + xMQ) iD20 + (xMQ + xLM ) iD10 − vQ20

]
(37)

SK =


rKQ 0 0 00

0 rFR

(
xMD

rFR

)
0 0 0

0 0 rKd 0 0
−xMQ (iD10 + iD20) fQS xMD (iQ10 + iQ20) fQS xMD (iQ10 + iQ20) fQS 0 fQSs45
0 0 0 ωb 0

 , (38)
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where

s45 = −iD10 (xMD (iD10 + iD20 + iFR0)− xMQ (iD10 + iD20)) + iQ10 (xMD (iD10 + iD20)− xMQ (iQ10 + iQ20))

−iD2 (xMD (iD10 + iD20 + iFR0)− xMQ (iD10 + iD20)) + iQ20 (xMD (iQ10 + iQ20)− xMQ (iQ10 + iQ20))

fQS = 3P/4ωB

Variables with additional subscript ‘0’ (iD10, iD20, iFR0, iQ10, iQ20) show its value during steady-state oper-

ating condition. Eq. (18) may be written in the fundamental form:

px = Ax+Bu, (39)

where

A = (E)
−1
F (40)

B = (E)
−1

(41)

It has to be noted that in the developed linearized motor model, the effect of mutual leakage reactance has

been considered. Results discussed in the following section are only for the asymmetrical motor (practical case

where ξ = 30 electrical degrees).

3. Stability analysis with eigenvalues

An effective but simple means of stability analysis under small disturbance is provided by the eigenvalues of a

system characteristic equation, given by

det (A− λI) = 0, (42)

where I is the identity matrix and λare the roots of the characteristic equation.

Eigenvalues may be either real or complex; when complex, they occur as conjugate pairs signifying a

mode of oscillation of the state variables. The system is said to be stable if all the real and/or real component

of eigenvalues are negative. This is because a negative real part represents a damped oscillation to a finite

value of system response and the roots with positive real parts lead to an infinite output response, indicating an

unstable system. Thus the sign of real parts of the roots of a system characteristic equation (location of roots

in s-plan) can be used for the determination of motor absolute stability.

The state equation (39) of a six-phase synchronous motor is described by nine state variables. Therefore,

nine eigenvalues will be obtained, out of which there will be three complex conjugate pairs and the remaining

will be real. The dependency of eigenvalues on motor parameters are difficult to relate analytically [20,24];

therefore, this dependency has been established by calculating the eigenvalues by varying the motor parameters

with each parameter varied at a time within a certain interval, keeping the other parameters constant at its

normal value. Calculations of motor eigenvalues have been carried out for the motor operating at the load

torque of 50%, maintaining the phase voltage of 160 V at power factor of 0.88 (lagging). The motor parameters

are given in Table 2.
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Table 2. Parameter of 3.7 kW, 36 slots, 6-poles six-phase synchronous motor.

xMQ = 3.9112Ω xL1 = xL2 = 0.1758Ω r1 = 0.181Ω
xMD = 6.1732Ω xLDQ = 0 r2 = 0.210Ω
xLKQ = 0.66097Ω xLM = 0.001652Ω rKQ = 2.535Ω
xLKD = 1.550Ω rFR = 0.056Ω rKD = 140.0Ω
xLFR = 0.2402Ω

3.1. Change in stator parameters

Variations in eigenvalues with the change in stator parameters are tabulated in Table 3a for the change in

stator resistance rS and in Table 3b for the change in stator leakage reactance xLS (assuming that stator

resistance and leakage reactance are the same for both the winding sets abc and xyz, i.e. rS = r1 = r2 and

xLS = xL1 = xL2). The complex conjugate pairs, which are affected by the change in stator parameters, are

termed ‘Stator eigenvalue’ I and II, as shown in the Tables, where other eigenvalues almost remain unchanged.

As the value of stator resistance of both winding sets abc and xyz is increased, the real part of both stator

eigenvalue I and II is becoming more negative, resulting in the system being more stable and lowering the time

constant. The pattern of the variation in the real part of stator eigenvalue I and II was found to be reversed

and become less negative, as far as the variation in leakage reactance xLS is concerned, hence taking the system

towards instability. It has to be noted that for both the variation in stator parameters rS , xLS , there is no

change in the imaginary part of stator eigenvalue I and small variation in stator eigenvalue II (close to base

speed ωB), indicating that the damped frequency of oscillation will be at base frequency, approximately.

Table 3a. Variation in eigenvalue with the change in stator resistance.

Value of stator
Stator eigenvalue I Stator eigenvalue II Rotor eigenvalue

Real eigenvalue
resistance, rs I II III
0.1538 –91.6 ± j 104.7 –14.3 ± j 100.3 –11.5 ± j 58.2 –9135.9, –698.5, –16.3
0.1629 –97.0 ± j 104.7 –15.2 ± j 100.0 –11.4 ± j 58.2 –9136.0, –699.1, –16.3
0.1719 –102.4 ± j 104.7 –16.1 ± j 99.7 –11.3 ± j 58.2 –9136.2, –699.7, –16.3
0.1810∗ –107.8 ± j 104.7 –16.9 ± j 99.4 –11.2 ± j 58.2 –9136.3, –700.3, –16.4
0.1901 –113.2 ± j 104.7 –17.8 ± j 99.1 –11.1 ± j 58.3 –9136.5, –701.0, –16.4
0.1991 –118.6 ± j 104.7 –18.7 ± j 98.8 –11.0 ± j 58.3 –9136.7, –701.6, –16.4
0.2081 –124.0 ± j 104.7 –19.6 ± j 98.5 –10.9 ± j 58.3 –9136.8, –702.2, –16.5

Table 3b. Variation in eigenvalue with the change in stator reactance.

Value of
stator leakage Stator eigenvalue I Stator eigenvalue II Rotor eigenvalue

Real eigenvalue

reactance, xLS I II III
0.1406 –134.8 ± j 104.7 –17.9 ± j 100.3 –11.3 ± j 58.6 –9192.3, –717.0, –17.3
0.1582 –119.8 ± j 104.7 –17.7 ± j 99.2 –11.3 ± j 58.4 –9163.4, –708.5, –16.8
0.1758∗ –107.8 ± j 104.7 –16.9 ± j 99.4 –11.2 ± j 58.2 –9136.3, –700.3, –16.4
0.1934 –98.0 ± j 104.7 –16.5 ± j 99.6 –11.2 ± j 58.1 –9110.9, –692.3, –16.0
0.2110 –89.8 ± j 104.7 –16.1 ± j 99.8 –11.2 ± j 57.9 –9086.8, –684.6, –15.6

3.2. Change in field parameters

Variations in the motor eigenvalues for the change in parameters of the field circuit, i.e. field resistance rFR ,

and field leakage reactance xLFR , are tabulated in Tables 4a and 4b, respectively. The real eigenvalues are
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associated with the offset current decay in rotor circuits and therefore associated with inverse of the effective

time constant. The time constant of the field winding circuit has the largest value and therefore gives rise to

the smallest real eigenvalue. It has been confirmed by noting the variation in the smallest real eigenvalue with

the variation in field circuit parameters. As the field circuit resistance rFR is increased (or decreased) up to

20% of its normal value, variation in the real eigenvalue III is noted. This value becomes more negative (or

less negative), moving the system towards more stable region, i.e. field offset current will decay more rapidly.

This pattern of variation in real eigenvalue III was found to be reversed by having the variation in field leakage

reactance xLFR by the same percentage of amount, i.e. field offset current will decay less rapidly and the

system moves towards instability.

Table 4a. Variation in eigenvalue with the change in field circuit resistance.

Value of field
Stator eigenvalue I Stator eigenvalue II Rotor eigenvalue

Real eigenvalue
resistance, rFR I II III
0.0448 –107.8 ± j 104.7 –17.1 ± j 100.0 –11.0 ± j 58.2 –9136.3, –700.3, –13.0
0.0504 –107.8 ± j 104.7 –17.0 ± j 99.7 –11.1 ± j 58.2 –9136.3, –700.3, –14.7
0.0560∗ –107.8 ± j 104.7 –16.9 ± j 99.4 –11.2 ± j 58.2 –9136.3, –700.3, –16.4
0.0616 –107.8 ± j 104.7 –16.8 ± j 99.1 –11.4 ± j 58.3 –9136.4, –700.3, –18.1
0.0672 –107.8 ± j 104.7 –16.7 ± j 98.8 –11.5 ± j 58.3 –9136.4, –700.3, –19.8

Table 4b. Variation in eigenvalue with the change in field circuit reactance.

Value of
field leakage Stator eigenvalue I Stator eigenvalue II Rotor eigenvalue

Real eigenvalue

reactance, xLFR I II III
0.1922 –107.8 ± j 104.7 –19.5 ± j 98.0 –11.3 ± j 59.0 –9158.5, –700.3, –19.1
0.2162 –107.8 ± j 104.7 –18.1 ± j 99.7 –11.3 ± j 58.6 –9146.5, –700.3, –17.6
0.24021∗ –107.8 ± j 104.7 –16.9 ± j 99.4 –11.2 ± j 58.2 –9136.3, –700.3, –16.4
0.2642 –107.8 ± j 104.7 –15.9 ± j 99.9 –11.2 ± j 58.0 –9127.6, –700.3, –15.3
0.2883 –107.8 ± j 104.7 –15.0 ± j 100.3 –11.2 ± j 57.7 –9119.9, –700.3, –14.4

3.3. Change in damper winding parameters

The time constant of the damper winding KD has a smaller value
(
1.76X 10−4s−1

)
than the other rotor circuit;

therefore, it will give rise to the largest real eigenvalue. This has been confirmed by having the variation in

real eigenvalue I by changing the damper winding resistance rKD and leakage reactance xLKD, as tabulated

in Table 5a and Table 5b, respectively. The value of real eigenvalue I becomes more negative for the change in

resistance rKD from lower to higher (20% of normal) value. Therefore, the system will become more stable.

However, the system moves towards instability for the variation in leakage reactance xLKD from lower to higher

value. It can be noted that other eigenvalues almost remain unaffected while changing the above parameters.

The time constant of damper winding KQ was found to be 2.87X 10−3s−1 . This value is higher than the time

constant of damper winding KD but lower than the field circuit FR . Therefore, it causes the variation in real

eigenvalue II with the change in resistance rKQ and leakage reactance xLKQ , as tabulated in Tables 6a and

6b, respectively. Variation in the parameter of this damper winding also shows the same pattern of variation

in eigenvalue II as discussed in the above cases.
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Table 5a. Variation in eigenvalue with the change in damper winding KD resistance.

Value of
damper winding Stator eigenvalue I Stator eigenvalue II Rotor eigenvalue

Real eigenvalue

resistance, rKD I II III
112.56 –107.8 ± j 104.7 –16.9 ± j 99.4 –11.2 ± j 58.2 –7309.7, –700.3, –16.4
126.63 –107.8 ± j 104.7 –16.9 ± j 99.4 –11.2 ± j 58.6 –8223.0, –700.3, –16.4
140.70∗ –107.8 ± j 104.7 –16.9 ± j 99.4 –11.2 ± j 58.2 –9136.3, –700.3, –16.4
154.77 –107.8 ± j 104.7 –16.9 ± j 99.4 –11.2 ± j 58.2 –10050.0, –700.3, –16.4
168.84 –107.8 ± j 104.7 –16.9 ± j 99.4 –11.2 ± j 58.2 –10963.0, –700.3, –16.4

Table 5b. Variation in eigenvalue with the change in damper winding KD reactance.

Value of
damper leakage Stator eigenvalue I Stator eigenvalue II Rotor eigenvalue

Real eigenvalue

reactance, xLKD I II III
1.2397 –107.8 ± j 104.7 –16.9 ± j 99.4 –11.2 ± j 58.2 –11309.0, –700.3, –16.4
1.3946 –107.8 ± j 104.7 –16.9 ± j 99.4 –11.2 ± j 58.2 –10107.0, –700.3, –16.4
1.5496∗ –107.8 ± j 104.7 –16.9 ± j 99.4 –11.2 ± j 58.2 –9136.3, –700.3, –16.4
1.7045 –107.8 ± j 104.7 –16.9 ± j 99.4 –11.2 ± j 58.2 –8335.7, –700.3, –16.4
1.8595 –107.8 ± j 104.7 –16.9 ± j 99.4 –11.2 ± j 58.2 –7664.0, –700.3, –16.4

Table 6a. Variation in eigenvalue with the change in damper winding KQ resistance.

Value of
damper leakage Stator eigenvalue I Stator eigenvalue II Rotor eigenvalue

Real eigenvalue

reactance, xLKQ I II III
4.0568 –107.8 ± j 104.7 –16.8 ± j 98.8 –14.4 ± j 58.5 –9136.3, –552.0, –16.3
4.5639 –107.8 ± j 104.7 –16.9 ± j 99.1 –12.6 ± j 58.4 –9136.3, –626.6, –16.3
5.071∗ –107.8 ± j 104.7 –16.9 ± j 99.4 –11.2 ± j 58.2 –9136.3, –700.3, –16.4
5.5781 –107.8 ± j 104.7 –17.0 ± j 99.6 –10.1 ± j 58.1 –9136.3, –773.6, –16.4
6.0852 –107.8 ± j 104.7 –17.0 ± j 99.8 –9.2 ± j 58.1 –9136.3, –846.5, –16.4

Table 6b. Variation in eigenvalue with the change in damper winding KQ reactance.

Value of
damper leakage Stator eigenvalue I Stator eigenvalue II Rotor eigenvalue

Real eigenvalue

reactance, xLKQ I II III
0.5288 –107.8 ± j 104.7 –16.9 ± j 99.4 –11.2 ± j 58.1 –9136.3, –856.0, –16.4
0.5949 –107.8 ± j 104.7 –16.9 ± j 99.4 –11.2 ± j 58.2 –9136.3, –770.6, –16.4
0.6610∗ –107.8 ± j 104.7 –16.9 ± j 99.4 –11.2 ± j 58.2 –9136.3, –700.3, –16.4
0.7271 –107.8 ± j 104.7 –17.0 ± j 99.4 –11.3 ± j 58.3 –9136.3, –641.5, –16.4
0.7932 –107.8 ± j 104.7 –17.0 ± j 99.4 –11.3 ± j 58.2 –9136.3, –591.5, –16.4

3.4. Change in moment of inertia

The remaining eigenvalue has been termed the ‘rotor eigenvalue’ of the synchronous motor. It indicates the

oscillatory behavior of the motor, particularly referred to as hunting or swing mode, i.e. the primary mode of

oscillation of the rotor with respect to electrical angular velocity, in an electromechanical system. Oscillatory
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behavior of the rotor is affected by the variation in moment of inertia, as tabulated in Table 7. It is to be

noted that the frequency of rotor oscillation is decreased by varying the value of moment of inertia J from lower

to higher (20% of normal) value. Moreover, it also tends to move the system towards instability as the real

component of eigenvalue is becoming less negative.

Table 7. Variation in eigenvalue with the change in moment of inertia.

Value of moment
Stator eigenvalue I Stator eigenvalue II Rotor eigenvalue

Real eigenvalue
of inertia, J I II III
0.4224 –107.8 ± j 104.7 –17.4 ± j 98.8 –13.7 ± j 65.6 –9136.3, –694.5, –16.3
0.4752 –107.8 ± j 104.7 –17.1 ± j 99.2 –12.4 ± j 61.6 –9136.3, –697.8, –16.4
0.5280∗ –107.8 ± j 104.7 –16.9 ± j 99.4 –11.2 ± j 58.2 –9136.3, –700.3, –16.4
0.7271 –107.8 ± j 104.7 –16.8 ± j 99.6 –10.3 ± j 55.4 –9136.3, –702.4, –16.4
0.7932 –107.8 ± j 104.7 –16.7 ± j 99.7 –9.6 ± j 53.0 –9136.3, –704.2, –16.4

Note: ‘*’ indicates the normal value.

3.5. Effect of load variation

The effect of load variation in eigenvalues is graphically presented in Figure 2. The solid line indicates the

real component and the dashed line indicates the imaginary component of eigenvalue. The real components

of both stator eigenvalue I and II are found to be numerically constant with the imaginary component almost

equal to base speed ωB , i.e. stator eigenvalues are almost unaffected by the variation in load. The motor

was found to become unstable at the load of 1.7 times the rated load/torque. This has been depicted by the

rotor eigenvalue, where the real component is becoming positive, associated with the increase in oscillation in

the rotor circuit, shown by the imaginary component in Figure 2c. The real eigenvalues remain negative with

increase and decrease in its magnitude for real eigenvalue II and III, respectively.
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Figure 2. Effect of load variation on motor’s eigenvalues.
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3.6. Effect of frequency/speed variation

Frequency and voltage can be individually varied to study the stability of the motor. Practically, this practice

is not adopted. In fact, in variable speed systems, the amplitude of applied voltages is varied in proportion

with the frequency in order to avoid saturation. Therefore, in this section, stability of the motor has been

observed for the change in frequency and voltage of the same ratio. The effect on motor eigenvalues with the

change in frequency/speed is shown graphically in Figure 3. With change in the eigenvalue, both real and

imaginary components were found to have almost the same variation patterns for both stator eigenvalue I and

II. The real component of rotor eigenvalue was also found to be almost the same, irrespective with the change

in frequency. However, for lower values of frequency (less than 20 Hz), the imaginary component was found to

increase, showing a larger frequency of oscillation in the rotor circuit, whereas the magnitude of real eigenvalue

II was found to increase at lower frequency operation. The motor at very low frequency operation is becoming

unstable. This is because the real eigenvalue III under very low frequency operation is becoming positive, as

shown in Figure 3f. This result is the same as discussed by the authors in [9,11–13] for the operation of a

three-phase motor at very low frequency.
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Figure 3. Effect of frequency variation on motor’s eigenvalues.

4. Formulation of transfer function

The linearized equations of a system are more often used for the analysis and design of controllers, like a speed

controller for a variable speed drive system, which needs the formulation of transfer function. This is because the

transfer function when written from linearized system equations yields a relation between the output variable

to be controlled to the input variable. Moreover, it also facilitates the study of small displacement behavior

of the system about a steady-state operating point rather than to use the detailed nonlinear equations [24,25].

Consequently, the different control theory approach can be applied like plotting of root locus, Bode plot, and
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Nyquist plot. Hence, this greatly simplifies the control analysis of a system, applicable for motor operation.

In this section, the formulation of a transfer function will be outlined, wherein the linearized equations of

a six-phase synchronous motor will be utilized. As an illustration, transfers function of the change in reactive

power w.r.t. the change in field excitation, i.e. ∆Q(s)
∆EFR(s) is derived in a simplified manner, followed by the

plotting of root locus for stability analysis.

The state equations of a linear dynamic system are

ẋ = Ax+Bu (43)

y = Cx+Du, (44)

where

x is state vector defined by Eq. (19)

u is input vector defined by Eq. (20)

y is a output variable (or a set of output variables)

A is a matrix defined by Eq. (39)

C and D matrices are defined below.

Solving Eq. (43) for x , considering the initial condition to be zero and substituting the result in Eq. (44)

yields

Y (s) =
[
C (sI −A)

−1
B +D

]
U(s) (45)

Therefore, the transfer function is

G (s) =
Y (s)

U (s)
=

[
C (sI −A)

−1
B +D

]
(46)

For the purpose to derive the transfer function of ∆Q(s)
∆EFR(s) , the linearized expression for reactive power is given

by

∆Q (s) = vEQ1∆i
E
D1 + iED1∆v

E
Q1 − vED1∆i

E
Q1 − iEQ1∆v

E
D1 + vEQ2∆i

E
D2 + iED2∆v

E
Q2 − vED2∆i

E
Q2 − iEQ2∆v

E
D2

= Cx+Du,

(47)

where

C =
[
−vED1, v

E
Q1, −vED2, v

E
Q2, 0, 0, 0, 0, 0

]
(48)

D =
[
iED1, −iEQ1, i

E
D2, −iEQ2, 0, 0, 0, 0, 0

]
(49)

Therefore, the transfer function will be in following form:

∆Q (s)

∆EFR (s)
= K

(s− z1) (s− z2) . . . (s− zm)

(s− p1) (s− p2) . . . (s− pn)
, (50)

where the values of gain K , zeros (z1, z2, . . . zm), and poles (p1, p2, . . . pn) were calculated for the motor

operation at 50% of rated load. These values are shown in Table 8. Root locus of the transfer function, given
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by Eq. (50) can be drawn by the well-known procedure [25] and is shown in Figure 4. It also shows that the

system is stable for all values of gain K , as all the poles are lying in the negative half of s -plan. Necessary

steps used to perform the small signal stability analysis of a six-phase synchronous motor are shown in the form

of a flowchart in Figure 5. Steps have to be followed for different combinations of input and output variables,

while formulating the transfer function to study the stability of a six-phase synchronous motor under small

disturbance.

Table 8. Zeros and poles of the transfer function ∆Q(s)
∆EFR(s)

.

Zeros Poles
z1 = −91.6+ j 104.7 p1 = −91.6+ j 104.7
z2 = −91.6− j 104.7 p2 = −91.6− j 104.7
z3 = −1.3+ j 103.5 p3 = −14.3+ j 100.3
z4 = −1.3− j 103.5 p4 = −14.3− j 100.3
z5 = −11.3+ j 54.7 p5 = −11.5+ j 58.3
z6 = −11.3− j 54.7 p6 = −11.5− j 58.3
z7 = −9508.4 p7 = −9135.9
z8 = −698.1 p8 = −698.5
Gain K = 619.6 p9 = −16.3
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Figure 4. Root locus for the transfer function ∆Q(s)/∆EFR(s) .

5. Conclusion

A linearized mathematical model of a six-phase synchronous motor has been developed, where the mutual leakage

between both the stator winding sets abc and xyz, was considered, by employing the dq0 approach. This results

in a set of linear differential equations describing the dynamic behavior of small displacement/excursion about

a steady-state operating point, so that the basic linear control system theory can be applied to evaluate the

eigenvalues. An eigenvalue criterion was used to study the stability of a six-phase synchronous motor. An

association between the eigenvalues and motor parameters has been established by calculating the eigenvalue at
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Input motor
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Function
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Start
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Figure 5. Steps to perform stability analysis of six-phase synchronous motor.

Figure 6. An equivalent circuit of a six-phase synchronous machine (motor).
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an operating point by changing the motor parameter. It was found that the two eigenvalues (stator eigenvalue I

and II) are almost unaffected by the variation in rotor parameter and load. The other complex conjugate pair is

affected by the variation in moment of inertia J and load. It actually indicates “settling out” rotor oscillation

of the synchronous motor during hunting or swing mode. The remaining three real eigenvalues signify the offset

currents decay in rotor circuit hence associated with their effective time constant.

The developed linearized model can be easily used to formulate the transfer function between input and

output variables, where different stability plots (like root locus, Nyquist plot, Bode plot) can be easily drawn,

thus greatly simplifying the control analysis of a system applicable for a six-phase synchronous motor.
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A. Appendix

A.1. Voltage equation:

vQ1=r1iQ1+
ωR

ωB
ψD1+

p

ωB
ψQ1 (A1)

vD1 = r1iD1 −
ωR

ωB
ψQ1 +

p

ωB
ψD1 (A2)

vQ2 = r2iQ2 +
ωR

ωB
ψD2 +

p

ωB
ψQ2 (A3)

vD2=r2iD2−
ωR

ωB
ψQ2+

p

ωB
ψD2 (A4)

vKQ=rKQiKQ+
p

ωB
ψKQ (A5)

vKD=rKDiKD+
p

ωB
ψKD (A6)

vFR=
xMD

rFR

(
rFRiFR+

p

ωB
ψFR

)
, (A7)

where p denotes the differentiation function with respect to time.

A.1.1. Flux linkage per second:

ψQ1 = xL1iQ1 + xLM (iQ1 + iQ2)− xLDQiD2 + ψMQ (A8)

ψD1 = xL1iD1 + xLM (iD1 + iD2) + xLDQiQ2 + ψMD (A9)

ψQ2=xL2iq2+xLM (iQ1+iQ2)+xLDQiD1+ψMQ (A10)

ψD2=xL2iD2+xLM (iD1+iD2)−xLDQiQ1+ψMD (A11)

ψKQ=xLKQiKQ+ψMQ (A12)

ψKD=xLKDiKQ+ψMD (A13)

ψFR=xLFRiFR+ψMD, (A14)

where
ψMQ=xMQ(iQ1+iQ2+iKQ) (A15)

ψMD=xMD(iD1+iD2+iKD+iFR) (A16)

Parameters of the rotor circuit are referred to one of the stator windings (abc windings). These voltage

and flux linkage equations suggest the equivalent circuit as shown in Figure 6, where LLM and LLDQ are known

1
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as common mutual leakage inductance and cross mutual coupling inductance between d and q -axis of stator

respectively given by:

xLM=xLax cos (ξ)+xLay cos (ξ+2π/3)+xLaz cos (ξ−2π/3) (A17)

xLDQ=xLax sin (ξ)+xLay sin (ξ+2π/3)+xLaz sin (ξ−2π/3) (A18)

The common mutual leakage reactance xlm signifies the mutual coupling due to leakage flux between

two sets of three-phase stator windings (abc and xyz ) occupying the same slot. It has an important effect on

the harmonic coupling of both sets of stator windings, but negligible effect on transient except some changes in

voltage harmonic distortion [22,23]. The value of common mutual leakage reactance xlm depends on the winding

pitch and displacement angle between two stator winding sets (abc and xyz ). An explanation in detail along

with a technique for finding the slot reactance is given in [26]. Standard test procedures for the determination

of machine parameters are given in [27,28].
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