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Abstract: The main objective of optimal power flow is to find the proper operating point for the power system. In this
paper, the optimal power flow by considering system security cost (OPFSC) and the small signal stability constraint is
presented. For this purpose, the total profit of the system by considering the system constraints is optimized. The total
profit of the system is equal to the combination of profit from the active power consumption, active power generation cost,
and system security cost. System security cost includes the cost of load shedding, which is computed for all contingencies
that may occur in the system. One of the system constraints is the small signal stability constraint. The small signal
stability constraint causes increasing of the small signal stability margin of the system. In this paper, a hybrid genetic
algorithm and PSO (HGAPSO)-based method for performing OPFSC is presented. The proposed method is then tested
on the WSCC 9-bus system. The results of the proposed method are compared with the primal-dual interior point
(PDIP) method. The total profit of the system obtained from HGAPSO is better than the results of PDIP and system

constraints are not completely satisfied in the results obtained from PDIP.

Key words: Optimal power flow, small signal stability, power system security, hybrid genetic algorithm, particle swarm

optimization

1. Introduction

In a power system, the generation must be enough for supplying the loads of the system and the system
constraints must be satisfied. The system constraints should also be able to be satisfied after the occurrence
of a contingency and the system must be stable against small disturbances. For this purpose, control variables
of the system such as generator active power should be adjusted. Optimal power flow (OPF) can be used for
adjusting the control variables of the system.

Several methods for performing OPF are reported in the literature. Linear programming [1,2], nonlinear
programming [3-8], and the interior point method [9-11] were presented for performing OPF. These optimization
methods start to search for an optimum solution from one point in the search space and continue searching
from one point to another point. If the initial starting point is not suitable, these methods may diverge.

The GA [12-15], PSO [16-18], ant colony [19], gravitational search algorithm [20], and artificial bee
colony [21,22] methods were presented in some studies. These methods start to search for an optimum solution
with a set of points that are scattered in the search space. Therefore, the probability of finding a false optimum
point is less than in point-to-point optimization methods. These methods are easier than numerical calculation

methods. The small signal stability constraint was not considered in above papers.

*Correspondence: sarvi@ikiu.ac.ir
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In [23,24], the primal-dual interior point (PDIP) method was presented for performing OPF by considering
system security cost and the small signal stability constraint. This method is complex and does not completely
satisfy the system constraints.

In this paper, a hybrid genetic algorithm and PSO (HGAPSO)-based method for OPF by considering
system security cost (OPFSC) by considering the small signal stability constraint and maximizing the total
profit of the system is proposed. The small signal stability constraint causes an increase in the stability of the
system against small disturbances.

This paper is organized as follow: in Section 2 small signal stability calculations are detailed. In Section
3 the HGAPSO algorithm is described. In Section 4 the OPFSC problem is detailed. The proposed algorithm
is described in Section 5. In Section 6 characteristics of the test system are presented. Simulation results are
presented in Section 7. In Section 8 results of the proposed method are compared with the PDIP method.

Conclusions of this paper are presented in Section 9.

2. Small signal stability

The power system is modeled as the set of differential and algebraic equations in small signal stability calcula-
tions.

i = f(zy) 1)
= g(zy) (2)
Here, f is the differential equations, x is the state variables, g is the algebraic equations, and yis the algebraic

variables. The differential and algebraic equations of the system must be linearized around the steady-state
operating point.

Az fo fy Az
0 | |9 g9 || Ay )
The state matrix is computed as follows.
Ag=fo— fy9, "0 (4)

We can compute the right-most system eigenvalue (system critical eigenvalue) from the state matrix [25]. If the
real part of the right-most system eigenvalue is negative, the system is stable against the small disturbances.

The smaller the real parts of system eigenvalues, the more stable the system is.

3. Hybrid GA and PSO (HGAPSO)
HGAPSO is combination of the GA and PSO. PSO is used instead of mutation in the GA. The PSO algorithm

changes the position of population members by Eqs. (5) and (6). A flowchart of minimizing the objective
function by HGAPSO is shown in Figure 1.

n n—1 n
Xi =X+ vel; (5)
vel} = wnxvel;%l + ex RR(X 0k — Xj’-“l) (6)

Here, wy, is the inertia of the nth generation, which is changed from 0.9 to 0.4; X7 is the position of the jth

member of the nth generation; Xg;elst is the best member of the (n — 1)th generation; c¢ is a constant, which

is considered as 2; and R is a random vector, the components of which are between 0 and 1.
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Figure 1. Flowchart of minimizing fitness function by HGAPSO

4. Description of OPFSC problem and constraints
In order to perform OPF by considering the system security cost, the total profit (TP) of the system should be

maximized. Total profit of the system is computed as:

M

TP=P°« PR’ + 3 P™«PR™, (7)
m=1
where PV is:
M
PP=1-%"pPm (8)
m=1

M is the number of contingencies that may occur in the system, PP is the probability of no occurring contingency
in the system, P™ is the probability of the mth occurring contingency in the system, PR® shows the profit of
the system in the precontingency state, and PR™ shows the profit of the system in the mth postcontingency

state.
The profit of the system in precontingency state is computed as follows.

PR = 3" Lpi(PY) = 3 Gel(PY) (9)

i€BY, 1€BY,

Ge,(PY) = ag, * (PS,)" + b, * (PY) +cq, i€ BY (10)
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2
by (7)o, () () s, 558 W

Here, G, (Pg2.) is the generator cost curve of bus 4, ij(ng) is the consumer profit curve of bus j, B is the
set of indices of buses that have generators in the precontingency state and B? is the set of indices of buses that
have loads in the precontingency state, P&: is the active power of bus ¢ generator in the precontingency state,
and ng is the active power of bus j load in the precontingency state. ag,, bg,, and cg, are the constant
coefficients of the generator cost curve of bus 7 and ar;, br,, and cr, are the constant coefficients of the

consumer profit curve of bus j.

The profit of the system in the postcontingency state is computed as follows.

S Y Y PR =Lpj(PP) = Ge,(PE) — L, (PE,, PY)  for  m=1,..,M (12)

jEBY i€BY jEBM

Le,(PL,P7) =be, (P, —P[")  jeBf for m=1,..M (13)
Here, P is the active power of bus ¢ generator in the mth postcontingency state, Pi’; is the active power of
the bus j load in the mth postcontingency state, L., (PLOJ,,P’L”j) is the cost of load shedding in bus j, B}" is

the set of indices of buses that have loads in the mth postcontingency state, and b, is the constant coefficient

of the cost of load shedding in bus j.

4.1. Constraints

The constraints consist of equality and inequality constraints. Equality constraints consist of load flow equations
and reactive power limits of loads. Inequality constraints consist of active power limits of generators, reactive
power limits of generators, active power limits of loads, voltage limits of buses, transmission power limits of
lines, and the small signal stability constraint. OPFSC variables consist of voltage of buses, active and reactive
power of generators and loads, and system eigenvalues, which are obtained from optimization, load flow, and
small signal stability calculations. These variables must be in the permitted range. Constraints of the OPFSC

are as follows.

4.1.1. Load flow equations

Load flow equations should be satisfied in precontingency and postcontingency states of the system. Thus, we

have the following.

> PR - PP =VEVEYcos (0" — 07" —ajp) i€ BP for m=0,.,M (14)
keBy

> QE - Qr =VEVEYRsin(0]' — 07 —afy), i€ By for m=0,.,M (15)
kEBR

Here, V520" is the voltage of bus ¢, By is the set of indices of buses, Q7" is the reactive power of the bus
i generator, Y;'Zaj} is the sum of admittances connected to bus 7, and Y;'Zaj} is the negative value of the

sum of admittances connected between bus i and k (i # k).
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4.1.2. Active power limits of generators
The active power of each generator must be in the allowed range in the precontingency state of the system.
This limit is as follows.

0 .
Pg‘Mini S PGi S PgMa:c,i (S B% (16)

Here, P{y o, and Pg,,, are the maximum and minimum allowed values for the active power of the bus i
generator in the precontingency state, respectively.

The active power of each generator can be changed in the allowable range in the postcontingency state
of the system. Thus, we have the following.

Piivtin, < P < Pénggw, 1€ BE  for m=1,....M (17)
Pviaz, = min(Pgi + AypPa, , PgMMi) ie By for m=1,.,M (18)
P&rin, = max (PS, — ApownPa, s Poyrin,) 1€ BE  for m=1,..,M (19)

Here, AypPg, is the maximum permitted value for increasing the active power of the bus ¢ generator in the
postcontingency state, and ApownPq, is the maximum permitted value for decreasing the active power of the

bus i generator in the postcontingency state.

4.1.3. Reactive power limits of generators

The reactive power of each generator is variant and must be in the permitted range in precontingency and
postcontingency states of the system.

QGIVIini S le S QGJWa:L’i 1€ Bg} fOT m = 07 7M (20)

Here, QG aaz; shows the maximum permitted value for the reactive power of the bus ¢ generator, and Qaarin,

shows the minimum permitted value for the reactive power of the bus 7 generator.

4.1.4. Active power limits of loads

The active power of each load must be in the permitted range in the precontingency state of the system.

PgMinj S P S P%Maxj J € Bg (21)

0
L;

Here, P Mag, 1S the maximum permitted value for the active power of the bus j load in the precontingency

state, and P? Min, is the minimum permitted value for the active power of the bus j load in the precontingency

state.
Active power of each load must be in the allowable range in the postcontingency state of the system.

Pligin, < PTj < Plhas, JEBP for m=1,.,M (22)
Pltas, = P(L jeB® for m=1,.,M (23)
Pviin, = Platin, J € BY for m=1,..,M (24)
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4.1.5. Reactive power limits of loads

Reactive power of each load is a function of active power of that load in precontingency and postcontingency

states of the system. This function is as follows:

V1-pf

jeBY for m=0,.., M, (25)
Pfj v

m _ pm
Q L, = PLj *
where pf,; shows the power factor of the bus j load.

4.1.6. Voltage limits of buses
The voltage magnitude of each bus must be in the allowable range in precontingency and postcontingency states
of the system. This range is defined as follows:

VBMink < V%Lk < ‘/]3]\4115701c ke Br}il for m= 0,..,M, (26)

where V' shows the voltage magnitude of bus k, Vparin, shows the minimum permitted value for the voltage

magnitude of bus k, and Vpasaz, shows the maximum permitted value for the voltage magnitude of bus k.

4.1.7. Transmission power limits of lines

The transmission power of each line must be equal to or smaller than the maximum allowable value in

precontingency and postcontingency states of the system.
ST, < Stmaz, t€ Ly for m=0,.,M (27)
Here, S7* shows the transmission power of line ¢, L’ shows the set of indices of lines, and Sy arqr, shows the
. :

maximum permitted value for the transmission power of line ¢.

4.1.8. Small signal stability constraint

The real part of the right-most eigenvalue of the system must be equal to or smaller than the maximum permitted

value in precontingency and postcontingency states of the system.
pgﬁgm <PRMaz m=0,...M (28)

Here, p}?ﬁgh shows the real part of the right-most system eigenvalue, and pgrasq, shows the maximum permitted

vt

value for the real part of the right-most system eigenvalue.

5. Proposed OPFSC method

In this paper OPFSC is performed by HGAPSO. For this purpose, a fitness function should be defined for the
variables of the OPFSC problem. The control variables of the OPFSC problem are defined as:

X = [PS, PY V3, Pty PioVR, ... PY PYVAT, (29)

where Pg:o is a vector that contains the initial values of generator active power in the precontingency state (G

symbolizes the initial values of generators’ active power), PBO is a vector that contains the initial values of load
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active power in the precontingency state (L symbolizes the initial values of loads’ active power), and V3 is a

vector that contains the voltage magnitude of buses that have generators in the precontingency state.

The noncontrol variables consist of nongenerator buses’ voltage, reactive power of generators, transmission

power of lines, and system eigenvalues, which are obtained from load flow and small signal stability calculations.

The fitness value of vector X is computed by the following eight steps:

Step 1: set m =0.

Step 2: if the loads’ and generators’ active powers exceed their constraints, change them.

m m
PgLOL Péannl S PGOiS PG]\/Iax,i
Pz Pévraz, P&o, > Pévrax, for i € B&
‘PgLJWzn1 PCT?O1 < PgL]Wznl
m
P[%]' Piann] S PLOj S PinMalj
m m m .
Pri, = Prvas, Pry, > Plitas, for j € B
PFMZHJ PZBJ < PFMzn]
Step 3: lf Z Z Z (PiannJ S PgLL S PinMaxJ)

jEB™ i€BX jEBY

elseif > > (Pgy, > P}TLM(IZEJ')

i€BY jEBY

Y. > D Ph =P, -

i€BZ i€BY jEBY

elseif > > (P&, < Plusin,)

i€BY jEBT

Y>> P =PE o+

i€BZ jEBT i€BY

Step 4: if Y. > (Pingj:Pngi)

JEBY i€ B

m __ pm
PGZ_PGI

m __ pm
PLQ*PLl

(P&, — Péfain,)

(P2, — PZvon.) * (P, — PL]\/Iawj)

m _ pm
PLQ_PLI

(PénMami _Pgli N (Pm _pm )
m m LMinj Gli
(PGMaxi - PGli)

Py = Py
Pl = Pry
P = Pr

for i € B

for i € B

(31)
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elseif > > (Py, > FPiy,)

JjEBT i€ BY

Py = P, (40)
(P, = Privin,)
> D Zpﬂzpfnzj—(p%_]ﬂ{ J)*(PFQ,.—P&) for j € BY' (41)
jEBY jEBT i€ BY L2; LMin;
elseif >3 > (Pfy < P&y)
JEBY i€BY ’
PG = FPgy (42)
Pr; axr; Py
S Y Y rperp e ey wegenp
JEBTi€BY jEBT ( LMaz; — sz)

Step 5: if m = 0, perform load flow and small signal stability calculations for the precontingency state;

otherwise, perform load flow and small signal stability calculations for the mth postcontingency state.

Step 6: compute the value of exceeding constraints by a penalty function (Eq. (44)).

PF" = Kpg*DimuPE,, , + Koa* 2 AiminQe,
e . " (44)
+Ev x> AimitVE, + Ksx 3 DuiminST, + Kp * Diimadg
kEBD teBm
m
0 PéanszackS PGsla,ck < PénMaiEslack
m m m m
Anmngilm = PGslack - PGMawszack PGslack: > PGManszack (45)
PgLMinslack - Pg’ilack Pg’ilack < PénMinslack
0 QGMini S ng7 S QGMa:ni
AlimithLi = Q21 - QG’Mawi Q%L > QGIVIami for ¢ S Bén (46)
Qaemin, — QF, Qe < Qamin,
0 Vemine < V5, < VBMaa,
m m
Niimia Vgt = VB = VBMaz, Vi, > VBMaa, for k € BY' (47)
Veming — V5, Vg, < VBMin,
0 Szlt é SLMaxt
Apimit ST = for te LY Ay = fo— fy9. g 48
ALy ST — SLMaz, ST, > Simaz, T s ydy g (48)
0 p,rlgright S PRMax
AlimitPR., = 49)
S Rripht P’ﬁmht — PRMax Prﬁmght > PRMax (
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Here, Ajimit PEY,.

shows the value of exceeding the permitted range of generator reactive power, AyimitVpg, shows the value of

. shows the value of exceeding the permitted range of slack generator active power, AjimitQgF,
exceeding the permitted range of bus voltage, AyiyiST, shows the value of exceeding the permitted range of
the transmission power of lines, and Almitpgﬂght shows the value of exceeding the maximum permitted value
for the real part of the right-most system eigenvalue. Kpg shows the penalty factor of exceeding the permitted
range of slack generator active power, Ko shows the penalty factor of exceeding the permitted range of
generator reactive power, Ky shows the penalty factor of exceeding the permitted range of bus voltage, Kg
shows the penalty factor of exceeding the permitted range of the transmission power of lines, and K, shows the
penalty factor of exceeding the maximum permitted value for the real part of the right-most system eigenvalue.

Step 7: if m = 0, compute the profit of the system (PR°) by Eq. (9), else compute the profit of the
system (PR™) by Eq. (12).

Step 8: if m < M, set m = m + 1 and go to step 2, else compute the fitness value of vector X by Eq.

(50).
Fitness value (X)=PF —TP (50)
M

> PF=PF" (51)

m=0

M
> TP =P"xPR" (52)
m=0

6. Test system

The WSCC 9-bus system shown in Figure 2 is used as a test system in this paper. Some properties of
the test system were presented in [23,26]. Six contingencies are defined in the WSCC 9-bus system. These
contingencies consist of outages of lines 4-6, 4-5, 5-7, 6-9, 7-8, and 8-9. The probability of each contingency is
0.01 (P™ =0.01, m =1, 2,...,6). Generator data, generator cost curve coefficients, voltage limits of buses, line
and transformer data, load and generator constraint data, consumer profit curve coefficients, and load shedding
cost coefficients are shown in Tables 1-7, respectively. Spase 1S 100 MV A (Spase= 100 MV A).

7. Simulation results

In order to investigate the accuracy and performance of the proposed method, a test WSCC 9-bus system is
considered. The proposed method is tested on the WSCC 9-bus system for different conditions of the small
signal stability constraint. The maximum permitted value for the real part of the right-most system eigenvalue
is considered as 0, —0.15, 0.2, and —0.25. HGAPSO is coded by using the MATLAB Optimization Toolbox [27].
Population size, crossover fraction, and the maximum number of generations are considered as 60, 0.8, and 20,

respectively.
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Figure 2. WSCC 9-bus system.

Gen 1

Table 1. Generator data.

Gen 3

Parameter

Genl | Gen 2 | Gen 3
Generator
K, 20 20 20
T (s) 0.2 0.2 0.2
Kg 1.0 1.0 1.0
Tz (s) 0.314 | 0.314 | 0.314
Kp 0.063 | 0.063 | 0.063
Tr (s) 035 | 0.35 | 0.35
X4 (pu) 0.146 | 0.8958 | 1.3125
X, (p.u.) 0.0608 | 0.1198 | 0.1813
X, (pu.) 0.0969 | 0.8645 | 1.2547
X, (p-u.) 0.0969 | 0.1969 | 0.25
T, (s) 8.96 | 6.0 5.89
T),(s) 0.31 |0535 |06
H (s) 23.64 | 6.4 3.01
D 0.0 0.0 0.0
SEi(Efdi) = 0.0039¢1-555E7a:

Table 2. Generator cost curve coefficients.

Bus no. | ag ($/MW?h) | bg ($/MWh) | cq($/h)
1 8.20e-4 12.712 0.00
2 8.76e-4 12.001 0.00
3 6.46¢-4 12.290 0.00
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Table 3. Voltage limits of buses.

Bus no.
1 2 3 4 5 6 7 8 9
Parameter
Vewmin (pu.) 0.950 | 0.955 | 0.955 | 0.955 | 0.955 | 0.955 | 0.955 | 0.950 | 0.955
VBMaz (p-u.) 1.04 1.045 | 1.045 | 1.09 1.09 1.09 1.09 1.09 1.09

Table 4. Line and transformer data.

Bus no. | Busno. | R (P.U.) | X (P.U.) | Y (P.U.) | Scamax (MVA)
1 4 0.0000 0.0576 0.000 450
2 7 0.0000 0.0625 0.000 320
3 9 0.0000 0.0586 0.000 335
4 ) 0.0100 0.0850 0.176 390
4 6 0.0170 0.0920 0.158 325
5 7 0.0320 0.1610 0.306 375
6 9 0.0390 0.1700 0.358 375
7 8 0.0085 0.0720 0.149 375
9 8 0.1190 0.1008 0.209 375
Table 5. Load and generator constraint data.
Bus no.
1 2 3 415 6 718 9
Parameter
Penran (MW) 250 | 270 | 285 | - | - - - |- -
Pearin (MW) 25 25 35 - |- - - - -
AypPo (MW) 50 35 35 - |- - - |- -
ApownPa (MW) | 50 35 35 - - - - - -
QcMaz (MVAR) | 100 | 100 | 100 | - | - - - - -
Qcemin (MVAR) | =50 | =50 | =50 | - | - - - - -
Praraz (MW) - - - - 1 125 90 - | 100 -
Pragin (MW) - - - - 10 0 - 10 -
pf - - - - 10928 | 0.948 | - | 0.943 | -
Table 6. Consumer profit curve coefficients.

Bus no. | ar,($/MW?h) | bp($/MWh) | c($/h)

5 -0.1047 38.665 0.00

6 -0.0231 16.844 0.00

8 —0.0431 21.630 0.00

Table 7. Load shedding cost coefficients.

Bus no. | b.($/MWh)
) 100
6 100
8 100
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7.1. The proposed method’s results
7.1.1. The proposed method’s results with pryax= 0

The minimum values of the fitness function in different generations of HGAPSO are shown in Figure 3. The
minimum value of the fitness function at the end of the generations is —2291.95. The results obtained from the
proposed method are presented in Table 8. Total profit of system is equal to 2291.95 ($/h).

The real part of the most critical eigenvalue of the system is —0.152, created after removing line 6-9 and

smaller than 0. System constraints are completely satisfied in the results obtained from the proposed method.

7.1.2. The proposed method’s results with prnax= —015

The minimum values of the fitness function in different generations of HGAPSO are shown in Figure 4. The
minimum value of the fitness function at the end of the generations is —2287.89. The results obtained from
HGAPSO are presented in Table 9. Total profit of system is equal to 2287.89 ($/h).

1900, Best: ~2291.959 Mean: —2287.1497 1900 Best: -2287.8933 Mean: -2282.3793
-1950 } ~1950 |
o Best fitness o Best fitness
o Mean fitness . i
_s000k _2000l Mean fitness
:;’z -2050 E -2050 |
< <
g g
g -2100f g -2100f
g 8
= 2150 H 2150
-2200 . -2200 .
-2250F * . e, 22501 ° . T
e el il Cre e e a0l gy
2300 L L L L N N N h 3 | I ] -2300 L L L L L L L N 1 7
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Generation Generation
Figure 3. The minimum values of fitness function ob-  Figure 4. The minimum values of fitness function ob-
tained from the proposed method (praiaez =0). tained from the proposed method (praraz = —0.15).

The real part of the most critical eigenvalue of the system is —0.159, created after removing line 6-9
and smaller than —0.15. System constraints are completely satisfied in the results obtained from the proposed
method.

7.1.3. The proposed method’s results with pryax= —02

The minimum values of the fitness function in different generations of HGAPSO are shown in Figure 5. The
minimum value of the fitness function at the end of the generations is —2281.13. The results obtained from the
proposed method are presented in Table 10. Total profit of system is equal to 2281.13 ($/h).

The real part of the most critical eigenvalue of the system is —0.201, created after removing line 4-6
and smaller than —0.2. System constraints are completely satisfied in the results obtained from the proposed
method.
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7.1.4. The proposed method’s results with pryax= —025

The minimum values of the fitness function in different generations of HGAPSO are shown in Figure 6. The
minimum value of the fitness function at the end of the generations is —2274.94. The results obtained from
HGAPSO are presented in Table 11. Total profit of system is equal to 2274.94 ($/h).

-1900 ¢ Best: -2281.1344 Mean: -2277.4967 1850 Best: —-2274.9432 Mean: -2266.367
~1950 -1900 |
¢ Best fitness : I%/fSt ﬁ;‘ness
-2000+ *  Mean fitness -1950 F ean fitness
2 —2050} g -2000f
g =
2 ° - -2050 |
$ -2100+ &
g & .
ol = -2100
2150} . =
. -2150 | °
2200} . . .
. -2200 F .
~2250¢ ..,,...'-... o -2250 ® e o o e e o o
® ® * o e o e o 3 8 3 3 8 © ® * o o e e o e o s o3
-2300 L L L L L L L L L ! -2300 L L L L L L L L L |
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Generation Generation
Figure 5. The minimum values of fitness function ob- Figure 6. The minimum values of fitness function ob-
tained from the proposed method (praez = —0.2) tained from the proposed method (prarar = —0.25).

The real part of the most critical eigenvalue of the system is —0.251, created after removing line 6-9
and smaller than —0.25. System constraints are completely satisfied in the results obtained from the proposed
method.

8. Comparison of results of the proposed method and PDIP methods

In [23,24], OPF by considering system security cost and the small signal stability constraint was performed on
the WSCC 9-bus system by the PDIP method. The results of the PDIP method are shown in Tables 12-15.
The profit of the system and total profit of the system (7'P) in Tables 12-15 are computed by considering load
shedding cost. If we are computing the profit of the system by neglecting the load shedding cost, it becomes
equal to 2192.76, 2192.33, 2170.18, and 2130.20 after removing line 4-5 in Tables 12-15, respectively. The total
profit of the system (7T'P) becomes equal to 2314.59, 2313.45, 2307.96, and 2300.80 in Tables 12-15, respectively.
The total profits of the system by considering load shedding cost obtained from the proposed method and PDIP
are presented in Table 16.

As shown in Table 16, the results obtained from the proposed method are better than the results obtained
from PDIP. Also, some constraints are violated in the results obtained from PDIP. For example, voltage limits
of buses and active power limits of loads are violated in the results presented in Tables 12-15. The voltage

values of Table 14 were not mentioned in [23,24].

The maximum permitted values for Pr, and Vg, are 100 MW and 1.04 P.U., respectively, but as shown

in Tables 12-15, Pr, and Vp, are greater than the maximum permitted values.
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Table 16. Total profit of the system by considering the cost of load shedding.

PRMaz | TPucapso ($/h) | TPpprp (8/h)
0 2291.95 2286.39
-0.15 2287.89 2285.38
-0.20 2281.13 2279.75
-0.25 2274.94 2272.11

9. Conclusion
In this paper, a HGAPSO-based method has been presented for performing OPFSC. The presented method
was tested on the WSCC 9-bus system for different conditions of the small signal stability constraint. System

constraints were completely satisfied in the proposed method. Therefore, OPFSC with small signal stability

constraints can be performed by the proposed method.

The results obtained from the proposed method and PDIP were compared with each other. The total

profits of the system obtained from the proposed method are better than the results of PDIP. Also, system

constraints are not completely satisfied in the results obtained from PDIP.

The proposed method was implemented by a DELL PC (2.66 GHz CPU). The computation time is about

30 min. For decreasing the computation time, we could perform OPF separately for each contingency and use

a parallel processor, which is suitable for performing the HGAPSO algorithm.
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