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Abstract: Recently, the need for automatic identification has caused researchers to focus on biometric identification

methods. Palmprint-based biometric identification has several advantages such as user friendliness, low-cost capturing

devices, and robustness. In this paper, a method that integrates the discrete cosine transform (DCT) and an autoregres-

sive (AR) signal modeling is proposed for biometric identification. The method provides scale invariance and produces a

fixed-length feature vector. In particular, the Burg algorithm is used for the determination of the AR parameters used

as a feature vector. Experimental results demonstrate that a small number of the AR parameters that are modeling

the DCT coefficients of a palmprint are sufficient to constitute a practically applicable identification system achieving

a correct recognition rate of 99.79%. The accuracy of the proposed approach is not overly dependent on the number of

training samples, another advantage of the method.
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1. Introduction

Information technology developments have appeared in many fields during the last few decades. This has

increased the need of new verification methods that could replace traditional methods such as identification

cards or personal identification numbers [1,2]. The use of palmprint identification systems as a hand-based

biometric systems provides a reliable personal identifier, because the palmprint patterns are not duplicated, not

even in monozygotic twins [2,3]. Figure 1 shows a typical palmprint and its region of interest (ROI). This is

cropped from the acquired palmprint image as described in [4]. The ROI consists of discriminative information

for the identification. Figure 1a shows a typical palmprint image, and Figure 1b represents its ROI, which is

indicated with white lines in Figure 1a.

Because palmprint identification systems have several advantages such as user friendliness, low cost,

robustness, high accuracy, and high speed [5,6], palmprint-based security applications have a wide range of

applications in various fields such as network security, social security, and access control.

A regular palmprint recognition system would consist of 3 stages: preprocessing, feature extraction,

and matching or classification. The feature extraction stage could be considered as the most important stage

in palmprint recognition systems because this stage extracts reliable and distinctive feature vectors. Current

popular approaches for feature extraction could be divided into two groups: structural and textural methods.

Structural approaches make use of structural information such as delta points, principal lines, and creases [7,8].

∗Correspondence: ergen@firat.edu.tr

1768



ERGEN/Turk J Elec Eng & Comp Sci

Although the structural approaches have achieved some success, it is reported that extracting structural features

is a very difficult task [9].

(a)                                                         (b)

Figure 1. (a) A typical palmprint and (b) its region of interest (ROI).

Therefore, we will focus on texture-based approaches combining signal processing techniques and statisti-

cal methods to constitute feature vectors. Eigenpalm [10], Fisherpalms [11], Gabor filters [12], Fourier transform

[13], cosine transform [14], and local texture features [15] are some of the methods that are used to find out

textural properties. Indeed, textural analysis of a palmprint integrates the analysis of principle lines, creases,

delta points, and minutiae while incorporating the smoothness or roughness of a palmprint.

Methods relating to the spatial domain operate directly on the pixels of the input image. Alternatively,

the pixels of the images are separated into frequency bands by filtering methods such as wavelet transform [6,16],

Gabor filters [12], and contourlet transform [17]. With regard to frequency domain methods, the traditional

Fourier transform (FT) and the discrete cosine transform (DCT) are used to discover the frequency coefficients of

palmprint images. Some of the coefficients are considered as feature vectors and compared to measure similarity

for identification.

The DCT is the most popular approach when it comes to determining the frequency coefficients rather

than the FT algorithms because of the complex arithmetic involved. The DCT works on real data and is

widely used in practical situations. In the literature, PCA or LDA is also used with the DCT to achieve more

accurate results, and to provide a way for dimension reduction and for shortening the length of feature vector

[1,14,18]. Eigendecomposition steps in PCA and LDA decrease the practical implementation of the system

because they require extra computation time and memory. Because the proposed method does not contain

eigen-based reduction methods, it is applicable in practice.

To obtain a feature vector for recognition purposes, the implementation forms of the DCT may be

classified into three groups: block-based [19,20], frequency bands [14,21], and zigzag scanning [18]. In all of these

studies, different kinds of methods are used to select coefficients for shortening the feature vector. Researchers

generally prefer to crop or discard some of the coefficients according to their form of implementation [14,21].

In practice, choosing the DCT coefficients for a reliable recognition process is a very difficult and

challenging task. In this study, we have proposed a method that uses all of the DCT coefficients. The proposed

method, integrating the DCT and autoregressive (AR) modeling, provides scale invariance for the input images

having different resolutions and fixed-length feature vectors. It can be briefly described as follows. After

globally calculating 2D-DCT coefficients of the input image, all of the DCT coefficients are converted into a 1D

signal using a scanning scheme for modeling them with a relatively small number of parameters. We have used

two schemes for the conversion: zigzag scanning and band scanning. The AR method is chosen to model the

1D-DCT coefficients because the AR modeling methods are widely used in many applications [22–24].
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Our previous experiments demonstrated that AR modeling provides a way for obtaining a fixed-length

feature vector [25]. Although this study achieved CRR of about 93%, our experiments indicate that the results

of the method are dependent on the number of training samples. It also revealed that the direct AR modeling

of palmprint images has some inconsistencies in terms of the success rates.

That the DCT determines the frequency coefficients regardless of data length provides scale invariance

for the images having different sizes. The AR method can model data of different lengths with a fixed number

of parameters. Hence, we have presented a novel method that integrates the DCT and AR modeling to provide

a scale invariant palmprint recognition system with a fixed-length feature vector. The rest of this paper is

organized as follows. We have provided a description of our approach in Section 2. Sections 3 and 4 present the

experimental results and some conclusions, respectively.

2. Proposed method

A palmprint recognition system mainly consists of three stages: preprocessing, feature extraction, and feature

matching. The preprocessing stage consists of aligning the input image and extracting the ROI, which can be

accepted as the central part of the palmprint. The feature extraction stage consists of three steps: obtaining the

DCT coefficient matrix, converting it into a vector, and AR modeling. Initially, a 2D-DCT of the input image

produces a 2D-DCT coefficient matrix. Afterwards, one of two different scanning schemes is used to convert

the 2D-DCT coefficient matrix into a 1D coefficient vector.

After applying the DCT with regard to the entire image, each of the scanning schemes is carried out. No

other approach, such as block-based or band selection filtering, is used at this stage. For the conversion of the

2D-DCT coefficients into a vector, we have used the most well-known zigzag scanning scheme and a novel band

scanning scheme. The third step involves the usage of an AR signal modeling method in order to construct a

feature vector. Model parameters were accepted as they describe the image and are used as the feature vector

of the given image. Figure 2 shows the proposed system for palmprint recognition.

2D 
DCT

Zigzag/Band
Scanning

AR
Modeling

ClassifierTrainSet

Preprocessing

Decision

FeatureExtraction FeatureMatching

Figure 2. Block diagram of the proposed palmprint-based recognition system.

3. DCT and dimension reduction

The DCT has successful applications with regard to data compression, feature extraction, and recognition. The

computational efficiency of the DCT is very high because it does not require complex arithmetic. It also has a

relatively easy implementation in terms of practical applications thanks to the various kinds of fast algorithms
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developed [26]. The 2D-DCT of a f(x, y) signal can be described as follows:

F (u, v) =
1√
MN

α(u)α(v)
M−1∑
x=0

N−1∑
y=0

f(x, y)C(x, y, u, v),u = 0, 1, . . . ,Mandv = 0, 1, . . . , N, (1a)

where C(•) and α(•) are defined as follows:

C(x, y, u, v) = cos

(
(2x+ 1)uπ

2M

)
cos

(
(2y + 1)vπ

2N

)
, (1b)

α(w) =

{ 1√
2
w = 0

1 otherwise , (1c)

where f(x, y) is assumed as an intensity image and F (u, v) denotes the 2D matrix of the DCT coefficients.

Although block-based approaches are the most common implementations of the DCT, we have chosen to

apply the DCT on the entire palmprint in this study. The result of the DCT is a 2D coefficient matrix, and it

needs to be converted into a 1D vector for modeling purposes. Traditional zigzag scanning and band scanning

schemes are used for the conversion. These schemes provide a simple way for dimension reduction from 2D to

1D. Figure 3 shows the DCT and the scanning schemes that are used in this study. Figure 3a shows the DCT

coefficients of Figure 1b as an image, and Figures 3b and 3c show the zigzag scanning scheme and the band

scanning scheme, respectively.

(a)                                                                        (b)                                                                            (c)

Figure 3. (a) A DCT transformed palmprint, (b) zigzag scanning scheme, and (c) band scanning scheme.

Figure 4 shows the normalized signals after the zigzag scanning scheme and the band scanning schemes for

the first 500 pixels. Indeed, the resultant vector has a length of 16,384 for the palmprint image that consists of

128 × 128 pixels. Each of the scanning schemes represents a different signal to be modeled. The two 1D signals

after the zigzag scanning scheme and the band scanning scheme are shown in Figures 4a and 4b, respectively.

4. AR signal modeling

The AR signal modeling method is the most popular modern parametric method used with regard to spectral

estimation problems. It is generally used to detect the frequencies of a particular signal in a noise-like signal.

1771



ERGEN/Turk J Elec Eng & Comp Sci

A discrete signal can be considered as a combination of current output values and the past output values of a

system. In parametric AR modeling, the input signal of the system should be assumed as a Gaussian white

noise signal having zero mean. Weights on previous outputs minimize the average square errors of the estimated

AR parameters. If u(n)and x(n)indicate the zero mean white noise input and output of a system, then the

AR model of the system can be given as follows [27]:

p∑
k=0

a(k)x(n− k) = u(n), (2)

where a(k) indicates the AR parameters modeling the signal, or the system producing the signal.

(a) (b)
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Figure 4. The signals after scanning schemes: (a) the zigzag scanning scheme and (b) the band scanning scheme.

For estimating the AR parameters, the method minimizes the forward prediction error in the least square

sense in order to fit the AR model to the given input data [28]. Parameters can be calculated by solving the

autocorrelation function obtained from the following equation [29]:

σ2 =
1

N

∞∑
n=−∞

∣∣∣∣∣x(n)−
p∑

k=1

a(k)x(n− k)

∣∣∣∣∣
2

, (3)

where σ2 is the variance of the white noise input signal, which is assumed as 1; x (n) is the signal to be modeled;

and p is the model order.

The parameters obtained are the poles of the system modeled and can also be used to estimate the

spectrum of the system. This can be found by using the following equation [30]:

P̂ (f) =
σ̂2∣∣∣∣1 + p∑

k=1

a(k)e−j2πfk

∣∣∣∣2
, (4)

where P̂ (f) is the spectrum of the model signal, a(k) are the AR parameters of the model signal, and p is the

model order.

1772



ERGEN/Turk J Elec Eng & Comp Sci

The Burg algorithm [31,32] is one of the best known algorithms for estimating model parameters. The

basic idea of the Burg algorithm is to estimate the AR parameters using an order recursive least square

lattice method instead of solving an autocorrelation function. In this process, forward and backward errors are

minimized so that the AR parameters can satisfy the Levinson–Durbin recursion [33]. Forward and backward

prediction errors for a p-order model are defined as follows:

f̂p(n) = x(n) +

p∑
i=1

âp(i)x(n− i), n = p+ 1, · · · , N, (5a)

ĝp(n) = x(n− p) +

p∑
i=1

â∗p(i)x(n− p+ i), n = p + 1, · · · ,N. (5b)

The output of the filter can be obtained by substituting the Levinson recurrence formula. The relation between

AR parameters and the reflection coefficient k̂p can be given as follows:

âp(i) =

{
ap−1,i + kpa

∗
p−1,p−i, i = 1, · · · , p− 1

kp, i = p
. (6)

Reflection coefficients are estimated as follows:

k̂p = −2

N∑
n=p+1

f̂p−1(n)ĝ
∗
p−1(n)

N∑
n=p+1

[(
f̂p−1(n)

)2

+ (ĝp−1(n))
2

] . (7)

The recursive expressions given in Eq. (8) should be satisfied by the prediction errors.

f̂p(n) = f̂p−1(n) + k̂pĝp−1(n− 1) (8a)

ĝp(n) = ĝp−1(n− 1) + k̂∗p f̂p−1(n) (8b)

AR coefficients are estimated with a recursive algorithm by using these expressions [34,35]. The Burg algorithm

for AR modeling is a stable and computationally efficient method. The estimated AR parameters of the

palmprint in Figure 3 are shown in Table 1. The model order is chosen as 11. The AR parameters for zigzag

scanning and band scanning are provided in the first and second rows, respectively. Because the AR parameters

can be considered as the poles of a system, they can be given on a complex plane called Z-plane plots. The

Z-plane plot presentations of the parameters in Table 1 are shown in Figures 5a and 5b for the zigzag and

band scanning schemes, respectively. The symbols O and × represent a zero and a pole in a Z-plane plot,

respectively. Any presentation consists of one zero and many poles referring to the AR parameters. As stated

before, spectral estimations can be done using the AR parameters. The spectra using the estimated model

parameters for the zigzag and band scanning are shown in Figures 5a and 5b.

Table 1. The estimated AR parameters of the palmprint in Figure 3.

Zigzag 1.0000 - 0.0645 - 0.0033 - 0.0029 0.0011 0.0506 - 0.0151 - 0.0640 - 0.0184 - 0.0337 - 0.0305
Band 1.0000 - 0.0104 0.0070 - 0.0694 0.0006 - 0.0312 0.0098 - 0.0675 0.0567 - 0.0425 - 0.0141
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Figure 5. Z-plane plots of the AR parameters for: (a) the zigzag scheme and (b) the band scheme.

5. Classification

One of the most widely used classifiers is the k nearest neighbor classifier (kNN) because of its simplicity and

classification performance. kNN classifies an unlabeled input example among its k -nearest neighbors in the

training set. Thus, the distance metric used to identify nearest neighbors needs to be picked carefully for its

effectiveness in classifying performance. Here, kNN is chosen to classify the AR parameters, which are used

as a feature vector to construct a practically applicable system.

A classification problem can be summarized as assigning a given feature vector f to a class by measuring

similarities between f and the feature vectors of known classes ti . It is assumed that the required information

consists of a training set T = {(t1, c1) , . . . , (tN , cN )} of N vector ti(i = 1, 2, . . . , P ) and the corresponding

class labels ci(i = 1, 2, . . . , N). Thus, an unclassified input vector f is assigned to the class presented by a

majority of its k -nearest neighbors in T .

The similarity that is inversely proportional to the distance between the training image and the test image

can be measured by the Euclidean distance, the Manhattan distance (or city block), and the cosine distance.

If the distance between all the classes in the database is minimal, the test image is identified as it is

belonging to class c . The Euclidean distance (de), the Manhattan distance (dm), and the cosine distance (dc)

are defined as follows [36,37]:

de(f, t) =

√√√√ P∑
i=1

(f(i)− t(i)), (9a)

dm(f, t) =
P∑
i=1

|f(i)− t(i)|, (9b)
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dc(f, t) =

N∑
i=1

f(i)t(i)√
N∑
i=1

p(i)2
N∑
i=1

t(i)2

, (9c)

where f(i)is the feature of the image in the gallery, t(i)is the feature of the test image, and p is the length of

the feature vector. The kNN method classifies the given input by finding out the minimum distance. This

procedure of the classifier can be simply formulized as follows:

argmin(d (f, ti)) → assignc, (10)

where d is the distance vector between the input feature and the features in T .

Indeed, this classification method could be summarized as follows. A distance vector d (f, ti) is consti-

tuted between the feature vectors of the input to be classified and the known classes, which are labeled patterns.

The unknown input is then assigned to a class by finding out the minimum distance in the distance vector.

6. Experiments and results

Our proposed method based on the AR modeling of the DCT coefficients is tested on the public palmprint

database (PolyU - II Palmprint Database, 2006) [38]. This palmprint database includes 7752 palm images from

386 volunteers that were collected in two sessions. Each volunteer provided approximately 10 images of each

palm for each session. In our experiment, the central part (128 × 128) of the image is cropped from the original

palmprint as described in [4].

Our proposed system is applied both with regard to same-sized and differently sized palmprints. The

same-sized palmprints (128 × 128) are used to show the performance of the proposed system for palmprint

recognition, while differently sized palmprints are used to prove that the proposed system is scale invariant.

Both of the palmprints are tested using zigzag and band scanning schemes. Although the same-sized palmprints

have a pixel resolution of 128 × 128, the resolutions of the differently sized palmprints vary between 30 × 30

and 110 × 110 pixels in groups of ten. In order to create a differently sized palmprint database, each of the

10 palmprints from a single volunteer is resized. That is, while the first palmprint image of a volunteer in a

database shows his/her original palmprint, the second palmprint image shows a resized original image of 100 ×
100, the third palmprint image shows a resized original image of 90 × 90, and so on. In this way, a database

consisting of different sizes and textures is formed.

Classifications of the AR modeling are experimented on with regard to both the same-sized palmprints

and the differently sized palmprints for both the zigzag and band scanning schemes. In classification, the

distance measurements are performed using Eqs. (7), (9b), and (9c). These experiments have been performed

in terms of the five different ratios of training and testing images. In the experiments, some of the 10 images

are used for training and the remaining images are used for testing. The training and test samples are chosen

randomly. The experiments are conducted on a computer system (Intel Core i5 CPU 2.67 GHz and 4 GB RAM

with MATLAB 7.9) with the whole database that contains roughly 7750 palmprint images.

Table 2 summarizes the first experiment performed on the same-sized palmprints using the AR modeling

of the zigzag scanned DCT coefficients. The results are presented for the different ratios and the feature vector

length, which is the number of the AR parameter. CRRs are calculated for the different numbers of the AR
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parameters. The maximum CRR is obtained when the number of AR parameters is 300. Table 3 presents the

results of the second experiment performed on the differently sized palmprints using the AR modeling of the

zigzag scanned DCT coefficients.

Table 2. The CRRs of the zigzag scanning scheme on the same-sized palmprints.

Ratio 
Distance 

method 

DCT + AR 

25 50 100 200 300 

1:9  

Euclidean 

Manhattan 

Cosine 

87.55 

90.55 

87.72 

93.03 

94.94 

93.26 

94.58 

95.94 

94.77 

95.12 

96.05 

95.19 

95.91 

95.91 

95.97 

2:8 

Euclidean 

Manhattan 

Cosine 

95.03 

95.81 

95.09 

97.34 

98.02 

97.47 

98.46 

98.98 

98.56 

98.07 

98.47 

98.14 

98.35 

98.44 

98.44 

3:7 

Euclidean 

Manhattan 

Cosine 

96.23 

97.04 

96.34 

97.80 

98.15 

97.83 

98.65 

99.11 

98.78 

99.04 

99.24 

99.07 

98.78 

98.83 

98.83 

4:6 

Euclidean 

Manhattan 

Cosine 

97.09 

97.88 

97.17 

98.77 

99.11 

98.83 

99.20 

99.31 

99.24 

99.07 

99.20 

99.09 

99.07 

99.20 

99.09 

5:5 

Euclidean 

Manhattan 

Cosine 

97.90 

98.47 

97.90 

98.91 

99.22 

98.91 

99.40 

99.53 

99.40 

99.53 

99.53 

99.51 

99.53 

99.53 

99.58 

Table 3. The CRRs of the zigzag scanning scheme on the differently sized palmprints.

Ratio 
Distance 

method 

DCT + AR 

25 50 100 200 300 

1:9  

Euclidean 

Manhattan 

Cosine 

88.26 

90.43 

88.43 

93.31 

94.81 

93.44 

94.50 

95.82 

94.69 

95.20 

95.97 

95.43 

95.61 

95.97 

95.76 

2:8 

Euclidean 

Manhattan 

Cosine 

94.94 

95.87 

94.96 

97.39 

97.97 

97.45 

97.87 

98.46 

97.87 

98.17 

98.54 

98.31 

98.12 

98.34 

98.20 

3:7 

Euclidean 

Manhattan 

Cosine 

96.68 

97.22 

96.74 

97.90 

98.46 

97.92 

98.83 

99.01 

98.85 

98.70 

98.94 

98.83 

98.63 

98.76 

98.72 

4:6 

Euclidean 

Manhattan 

Cosine 

96.91 

97.51 

96.93 

98.57 

98.94 

98.70 

98.74 

98.92 

98.76 

99.15 

99.24 

99.15 

99.07 

99.02 

99.11 

5:5 

Euclidean 

Manhattan 

Cosine 

98.03 

98.34 

98.03 

99.01 

99.27 

99.01 

99.17 

99.27 

99.17 

99.14 

99.27 

99.19 

99.30 

99.43 

99.32 

Values in the tables are the results of random observations. Therefore, CRRs according to the model

order for the same ratio of training and testing samples may be changed very slightly. The training and testing

images are randomly selected for each experiment.

Comparing the results in Tables 2 and 3, the proposed system shows very similar performance for the

same-sized palmprints and the differently sized palmprints. Thus, the result of the comparison proves that the
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proposed system is scale invariant. In other words, the AR modeling and the DCT methods in the proposed

system provide the fixing of the feature vector length and scale (or size) invariance.

Tables 4 and 5 present results of the experiments for the band scanning scheme on the same-sized

palmprints and the differently sized palmprints, respectively. It can be seen that the band scanning scheme

produces slightly more successful results. That the band scanning scheme can produce slower varying signals is

the reason for this success.

Table 4. The CRR of the band scanning scheme using the same-sized palmprints.

Ratio 
Distance 

method 

DCT + AR 

25 50 100 200 300 

1:9  

Euclidean 

Manhattan 

Cosine 

88.64 

91.35 

88.70 

93.50 

95.71 

93.50 

94.32 

95.30 

94.58 

94.95 

95.39 

95.06 

96.59 

97.31 

96.60 

2:8 

Euclidean 

Manhattan 

Cosine 

95.36 

96.27 

95.36 

97.36 

98.10 

97.40 

97.61 

98.04 

97.70 

97.74 

97.89 

97.78 

98.96 

99.14 

98.96 

3:7 

Euclidean 

Manhattan 

Cosine 

96.46 

97.37 

96.48 

98.61 

99.09 

98.61 

98.29 

98.57 

98.33 

98.59 

98.64 

98.63 

99.24 

99.38 

99.24 

4:6 

Euclidean 

Manhattan 

Cosine 

97.32 

98.01 

97.32 

98.81 

99.28 

98.81 

98.92 

99.13 

98.96 

98.87 

98.94 

98.89 

99.33 

99.48 

99.33 

5:5 

Euclidean 

Manhattan 

Cosine 

98.21 

98.57 

98.21 

99.17 

99.40 

99.19 

98.86 

98.88 

98.86 

99.17 

99.11 

99.19 

99.53 

99.64 

99.53 

Table 5. The CRR of the band scanning scheme on the differently sized palmprints.

Ratio 
Distance 

method 

DCT + AR 

25 50 100 200 300 

1:9  

Euclidean 

Manhattan 

Cosine 

89.58 

91.85 

89.62 

93.60 

95.68 

93.63 

95.84 

97.29 

95.90 

96.56 

97.66 

96.59 

96.28 

97.26 

96.34 

2:8 

Euclidean 

Manhattan 

Cosine 

94.87 

96.30 

94.90 

97.29 

98.31 

97.29 

98.29 

98.94 

98.33 

98.63 

98.88 

98.65 

98.51 

98.80 

98.51 

3:7 

Euclidean 

Manhattan 

Cosine 

96.74 

97.48 

96.76 

98.55 

98.92 

98.55 

98.81 

99.20 

98.79 

99.11 

99.27 

99.11 

99.01 

99.22 

99.03 

4:6 

Euclidean 

Manhattan 

Cosine 

97.38 

98.07 

97.38 

98.89 

99.20 

98.89 

99.33 

99.58 

99.30 

99.37 

99.52 

99.39 

99.61 

99.58 

99.61 

5:5 

Euclidean 

Manhattan 

Cosine 

98.36 

98.75 

98.36 

99.04 

99.35 

99.01 

99.27 

99.50 

99.27 

99.58 

99.63 

99.58 

99.61 

99.79 

99.63 

The experimental results also indicate that a longer feature length provides higher recognition rates. The

CRRs of the proposed method are higher than 87% in any case. Even if a small feature vector size (such as 25)
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is chosen, the CRR remains higher than 87%. A greater number of AR parameters yields higher CRRs of more

than 99%.

It can be inferred that the AR modeling effectively reduces the number of features required for the correct

recognition rate.

The optimal order of the AR model is still a research topic in the literature. In a time series analysis,

many techniques have been proposed to estimate a minimum order of the AR model, such as the Akaike

information criterion, the final prediction error, and the Schwartz Bayesian criterion. We have tried these

criteria to determine an optimal order. Each criterion exposes different order values, varying from 8 to 60 for

different images. Therefore, the experimental results are presented with respect to different orders.

In order to calculate the general CRR of the proposed system, 10-fold cross-validation tests are performed

with respect to some AR orders. In a k -fold cross-validation test, a random subset of the available data is selected

repeatedly as a training set, and the remaining part of the data is used as test set. Table 6 shows the results of

the experiments performed on both the same-sized database and the differently sized database using the zigzag

and band scanning schemes.

Table 6. Ten-fold cross-validation experiments with respect to the AR order.

Order of AR model
Same-sized database Differently sized database
Band Zigzag Band Zigzag

25 99.04 98.94 99.37 98.98
50 99.53 99.39 99.53 99.44
100 99.61 99.61 99.70 99.62
200 99.65 99.64 99.75 99.64
300 99.73 99.64 99.75 99.64

The proposed method is more successful for the differently sized images. These differences probably

arise from the estimated AR parameters. The differently sized images have smaller sizes and produce shorter

signals than the same-sized images. This is because it is harder to model a long signal than a smaller signal

with the same number of parameters. Consequently, the estimated AR parameters may not model long signals

adequately. The differently sized images are the downsized images of the image in the same-sized database. For

this reason, the length of a 1D-DCT coefficient of a downsized image is shorter than the original one.

Table 7 shows a comparison of CRR between the proposed method and some of the transform-based

methods used in the literature. The stability of the proposed method with respect to number of training

samples indicates that the proposed method is better than the others. It is clearly seen that a low number

of training samples significantly affects the performance of the other recognition systems. For instance, if the

number of training samples is 2 at the fourth column in Table 7, the CRRs of the other methods may decrease

to 80%. However, the performance of the proposed method never decreases to 90% if p is greater than 25.

Table 7. A comparison of CRRs of different methods.

Method
Training samples per class (%)
5 4 3 2

Traditional Gabor method [39] 92.88 91.23 86.99 80.96
Gabor local invariant features [12] 98.36 97.12 94.52 88.22
PCA [40] 95.00 94.00 89.50 70.25
GB (2D) 2 PCA [40] 99.00 98.50 96.00 94.50
W2D-DLPP [41] - 94.91 89.8 81.80
Proposed method 99.75 99.48 99.38 99.14
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7. Conclusion

In this paper, a novel palmprint recognition system based on AR signal modeling and the DCT has been

presented. After transforming 2D-DCT coefficients of a palmprint into a 1D signal, the Burg algorithm is used

to estimate the AR model parameters of the signal. Although palmprint recognition systems in the literature

mostly focus on the CRRs, complexity and applicability of recognition systems are also important and should

be dealt with.

Methods trying to obtain short and fixed-length feature vectors complicate the system and make it harder

to be realized in practice. Our proposed system provides a short and fixed-length feature vector without any

resizing processes or any eigenvalue decomposition procedures that complicate the recognition system.

The integration of the DCT and the AR modeling is a novel method to constitute a fixed-length feature

vector and to provide scale invariance. In the proposed method, although the DCT provides scale invariance by

finding frequency components, the AR modeling produces a short and fixed-length feature vector by modeling

different lengths of frequency coefficients. Nonetheless, the CRRs of the proposed system do not decrease

significantly if the number of training sample is decreased. This system achieved very high CRRs, despite

utilizing a very small number of training samples and feature lengths.
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