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Abstract: The purpose of this paper is twofold. The first purpose is to detect M-peaks from raw photoplethysmography

(PPG) signals with no preprocessing method applied to the signals. The second purpose is to estimate heart rate

variability (HRV) by finding the peaks in the PPG signal. HRV is a measure of the fluctuation of the time interval

between heartbeats and is calculated based on time series between strokes derived from electrocardiogram (ECG),

arterial pressure (AP), or PPG signals, separately. PPG is a method widely used to measure blood volume of tissue

on the basis of blood volume change in every heartbeat. In the estimation of the HRV signal from the PPG signal,

HRV is calculated by measuring the time intervals between the peak values in the PPG signal. In the present paper,

a novel peak detection algorithm was developed for PPG signals. Finding peak values correctly from PPG signals, the

HRV signal can be estimated. This peak detection algorithm has been called an adaptive segmentation method (ASM).

In this method, the PPG signals are first separated into segments with sample sizes and then the peak points in these

signals are detected by comparing with maximum points in these segments. To evaluate the estimated pulse rate and

HRV signals from PPG, Poincaré plots and time domain features including minimum, maximum, mean, mode, standard

deviation, variance, skewness, and kurtosis values were used. Our experimental results demonstrated that ASM could

be even used both in the estimation of HRV signals and to detect the peaks from raw and noisy PPG signals without a

pre-processing method.
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1. Introduction

Photoplethysmography (PPG) is a noninvasive, electro-optical method that provides information about the

volume of blood flowing in a test region close to the skin of a body. PPG is obtained by illuminating the

region of interest of the body using reflected or transmitted light. In obtaining a PPG signal, the wavelength

λ of a light source on one side is placed in a protrusion, for example the finger and a photodetector are placed

on the other side of the source to capture the transmitted light. A typical PPG signal consists of the large

DC component caused by skin, muscle, and bone not involving blood vessels; a small AC component occurred

in the blood vessels leaving from skin, muscle, and bone; and heartbeat frequency components occurred from

passing light into arterial blood vessels. A typical PPG signal is composed of S-M-P-Q points and the M point

is the peak value in the PPG signal. In the estimation of the heart rate variability (HRV) signal from the PPG
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signal, HRV is calculated by computing the time intervals between the M-M (peak values) in the PPG signal.

Figure 1 shows the typical PPG signal and its characteristics. Figure 2 presents the schematic representation of

transmission and reflected sensors on a finger-type PPG sensor [1]. To date, PPG has been used for determining

many physiologic parameters such as oxygen saturation [2], heartbeat, respiration [3], and blood pressure [4]

in blood [5]. In addition, PPG also reflects some other important cardiovascular parameters such as vascular

occlusion [6]. In the acquisition process of the PPG signal, such sources of noise as motion artifacts, baseline

drift, and light noise buried in the PPG signal occur. These noisy components have to be removed before the

PPG signal is used for data processing in the detection of heart rate.

Figure 1. A sample PPG signal and its characteristic

points.

Figure 2. The schematic representation of transmission

and reflected sensors on finger-type PPG sensor [19].

The measurement of HRV is of vital significance with respect to health status information, which is used

in many medical or sport applications such as stress tests or life-threatening situation prediction [7]. HRV is

described as the variation in M-wave intervals (M-M) in PPG signals [8]. There is a high correlation between

the RR intervals obtained from ECG signals and peak to peak intervals obtained from PPG signals and this

information is verified by many studies [9–11].

In the related literature, there are some peak detection algorithms for PPG signals. Sun et al. [12]

emphasized that many vital physiological characteristics are embedded in PPG. They mentioned that of these

features heartbeat is the most important for physiological observations in clinical and mobile health services.

They proposed a signal processing method on the basis of multiscale data analysis using empirical mode

decomposition (EMD) for extracting the heartbeat correctly. They obtained a rate of 84.68% with improving the

detection accuracy of heart rate using the signals from the PhysioNet database and their own lab experiment.

Liu et al. [13] mentioned that PPG is a suitable noninvasive method for extracting the heart rate on monitoring

of physical cases. They emphasized that PPG could be easily corrupted by various effects such as raising or

lowering of the hand, breathing, and cardiovascular diseases and therefore the determination of heart rate was a

difficult problem. In their work, they proposed a heart rate determination algorithm having better performance

than other methods using wavelet and correlation methods. They used the fuzzy logic discriminator to extract

the accuracy of each peak in the slope of the PPG signal. Ellenby et al. [14] emphasized that heartbeat detection

algorithms had many clinic applications such as pulse oximetry, cardiac arrhythmia detection, and heartbeat

monitoring. They designed an automatic detection algorithm determining the place of the first peak following

each heartbeat for pressure signals. This algorithm integrated a filter bank with variable cut-off frequency, the

heart rate spectral estimation, rank-order nonlinear filters, and the logic of the decision. In their experiments,

they obtained a sensitivity of 99.36% and a positive detection rate of 98.43%. Shin et al. [15] mentioned that

PPG-based temporal analyses were widely used as an analytical method for the diagnosis of physiological and
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cardiovascular diseases. They emphasized that many of the temporal approaches of PPG were based on peak

points. The aim of their work was to develop an improved peak detection algorithm in PPG waveforms.

M points (peak points) in PPG signals must be correctly detected in the calculation of the heart rate

and HRV from PPG signals. In this study, the detection of M points from raw PPG signal directly will reduce

the calculation time in the estimation of HRV from raw PPG signals since no pre-processing method is used.

For this reason, a novel method named adaptive segmentation has been proposed to detect the M points from

raw PPG signals. In this paper, a novel heartbeat detection algorithm to estimate the heart rate from PPG

signals was proposed that involves separating PPG signals into segments with specific sizes, and then detection

of peak points in these signals by comparing with maximum points in these segments.

2. Materials

In the present paper, 20 healthy volunteers (15 males and five females, with a mean age of 23.3, a range of 18

to 41, a mean body mass index (BMI) of 22.9, and a range of 17.9 to 29.7) participated in the experiment.

The volunteers had no known cardiovascular, neurological, or respiratory diseases. Before the experiment,

information was gathered from the volunteers about their physical status, which included height, weight, smoking

habit, and BMI. Table 1 gives statistical values of the male and female groups. The volunteers were informed

about the study before the data were obtained. The study was approved by the university ethics committee

and written informed consent was obtained from all subjects.

Table 1. Descriptive statistics for male and female groups.

Groups  
Age 

(years) 

Height 

(cm) 

Weight 

(kg) 
Smoking Nonsmoking 

BMI 

(kg/m2) 

Mean ± SD 

(range) for males 

22.6 ± 6.2 

(18–39) 

177 ± 5.9 

(167–188) 

74 ± 10.9 

(51–94) 
9 6 

23.4 ± 3.3 

(18.3–29.7) 

Mean ± SD 

(range) for females 

25.4 ± 9.7 

(19–41) 

160 ± 9.7 

(147–171) 

55 ± 8.1 

(47–66) 
0 5 

21.4 ± 3.4 

(17.9–27.8) 

Mean ± SD 

(range) for total 

23.3 ± 7.0 

(18–41) 

173 ± 10.1 

(147–188) 

69 ± 13.1 

(47–94) 
9 11 

22.9 ± 3.5 

(17.9–29.7) 

In PPG signal measurements, the SDPPG PPG data acquisition card made by APMKorea (South Korea)

was used. This card has a 12-bit ADC and a sampling frequency of 2 kHz. Experiments were carried out in the

sitting position with a sampling frequency of 2 kHz over 1 min. The PPG signals obtained from the 20 subjects

were recorded on a PC. Figure 3 demonstrates a sample PPG signal of a healthy person recorded during 10 s

of a 1-min recording. In this sample PPG signal, there are baseline drift, noise, and motion artifacts.

In addition to the PPG data acquisition card, we used other PPG signals taken from the data including

3189288 and 3189849 signals of the MIMIC II Waveform Database [16], version 3 part l (mimic2wdb/31). These

PPG signals were sampled at 125 Hz over 5 min. Figure 4 demonstrates a sample PPG signal during a 10-s

section of 5 min recorded in the MIT MIMIC II PPG database [16].

3. Adaptive segmentation algorithm for detecting peaks from PPG signals

The heartbeat could be estimated by measuring the time between the peak intervals in the PPG signal. A

sample PPG signal comprises four characteristic points: S, M, P, and Q.
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Figure 3. PPG signal of a healthy person recorded dur-

ing 10 s of 1-min recording (the y-axis is the normalized

amplitude in the range of 0 and 1).

Figure 4. A sample PPG signal during a 10-s section of 5

min recorded in MIT MIMIC II PPG database (the y-axis

is the normalized amplitude in the range of 0 and 1) [16].

In this paper, a novel peak detection algorithm for PPG signals is proposed. In this method, the PPG

signals were first separated into segments with sample sizes and then the peak points in these signals were

detected by comparing with maximum points in these segments. If the maximum point in any segment is less

than the maximum value in the segment that comes after it, this signal will have a positive slope. In the reverse

situation, if the maximum point in a segment is greater than the maximum value in the segment that comes

after it, this signal will have a negative slope. During the transition from a positive slope to a negative slope, the

maximum value in the segment with the latest positive slope is considered to be the peak value in that signal.

The PPG signal demonstrated in Figure 1 was separated into segments as shown in Figure 5. The transition

from a positive slope to a negative slope is shown within segments of S3–S4 and S7–S8 in Figure 5. In these

transitions, the maximum values within S3 and S7 segments with the latest positive slope are detected as M

and Q points in the PPG signal.

Figure 5. Detection of peak points by separating PPG signal with segments.

The peak number detected in the signal changes depending on the size of the segment. When the segment

size is kept very small, all the peaks including peaks that resulted from noise in the signal can be detected.
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When the segment size is kept very large, M peaks cannot be detected. For instance, two peak points in the

PPG signals were detected with 5 segments shown in Figure 6a. Four peak points in the PPG signals were

detected with 16 segments shown in Figure 6b. Normally, there are two peak points in the PPG signals as

shown in Figure 6. The selection of segment size should be adjusted adaptively. Therefore, the segment size

must be within the range of the minimum and maximum values. In the proposed algorithm, the range value of

maximum and minimum segment sizes calculated depending on maximum and minimum heartbeat values for

humans was used as a criterion.

a) Two peaks detected in PPG signals by optimum seg-

ment points (correct estimation).

b) Four peaks detected in PPG signals by big segment

points (wrong estimation).

Figure 6. Peak points detected according to chosen sample segment points.

In order to find peaks in PPG signals, according to the adaptive segmentation method capable of finding

the most suitable segment size proposed in this study, an unknown heart rate period should be chosen in at

least three segments. Figure 7 shows the separating of the heartbeat period into at least three segments. The

reason for establishing at least three segments within a given heartbeat period is to detect the positive and

negative slopes that take place within this period. If fewer than three segments are created in the heartbeat

period, M peak points will not be detected.

Figure 7. Separating a given heartbeat period into three segments where a and b points show the peak points to be

detected and c point represents the noise and/or the peaks outside M peak points.

The noise or unwanted peaks replaced in the segments are blinked in the proposed method. The peak

values (M peaks) could be properly detected with the proposed adaptive segmentation method without a pre-

processing method including noise elimination, moving average, filtering etc. In the proposed method, firstly

the minimum segment size is obtained when the heartbeat period is divided by three in the maximum heart

rate. Then heart rate begins to be perceived in the peaks with a minimum segment size. From the peaks
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detected in the PPG signals, M-M time intervals for the PPG signal are calculated. The standard deviation

and average heart rate values are computed from the peak to peak time interval arrays. Then the peaks are

again detected magnifying the sampling frequency at the rate of 1% and standard deviation and average heart

rate are calculated. In this way, the calculation of standard deviation and mean heart rate continues until

the maximum segment size is found by dividing the heartbeat period into three in the minimum heart rate.

Figure 8. The algorithm for finding the optimum segment size.
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KAVSAOĞLU et al./Turk J Elec Eng & Comp Sci

The HRV and its histogram for heart rate values less than 0.1 of standard deviation from average calculated

according to segment size depending on segment size taken into account are calculated and drawn. In this point,

the standard deviation value was used as a threshold. In this way, the peaks detected depending on segment

size will have the same pulse period by determining a threshold. If the standard deviation from average heart

rate values calculated according to segment size is less than 0.1, the size of the segment will be increased by

0.1 at a step every time and HRV and its histogram will be calculated and drawn. For heartbeat values with

the highest repeat numbers in the histogram, the segment size is taken as the optimal segment size. Finally,

for the optimum segment size, the detected peaks will be the M peaks for the PPG signal. Figure 8 shows the

flowchart of the algorithm created for finding the optimum segment size in the proposed adaptive segmentation

method. Figure 9 presents the flowchart of the peak detection algorithm using optimum segment size.

Figure 9. The peak detection algorithm using optimum segment size.

4. Results and discussion

The purpose of this paper is twofold. The first purpose is to detect the peak from raw PPG signals without

applying any pre-processing method to the signals. The second purpose is to estimate HRV by finding the

peaks in the PPG signal. In obtaining PPG signals, two different PPG signals were used and taken from MIT-

MIMIC II database [16] and the PPG data acquisition board made by APMKorea. The PPG signals used in the
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experimental results were obtained from the SDPPG PPG data acquisition card below (South Korea). Figure

10 presents peak detection results based on the ASM and the fixed segment size (40 and 800 segments) using

the raw and pre-processed PPG signals. In the fixed segment size method, a fixed segment number including

40 and 800 was applied to the raw PPG signal. As can be seen from Figures 10b and 10c, the fixed segment

size method could not find the peaks of the raw PPG signal. Figure 10d presents the M peaks found in the

pre-processed PPG signal by MA using ASM, Figure 10e shows the M peaks found in the pre-processed PPG

signal by MA combined with ASM, and Figure 10f denotes the M peaks found in the pre-processed PPG signal

by FIR low pass filter (fc = 10 Hz) using ASM. The ASM was able to accurately find the peak values in both

raw and pre-processed PPG signals.

Figure 11 shows the HRV signals estimated according to peak values time interval series from the raw and

pre-processed PPG signals. Three HRV graphics have been obtained with ASM (first), fixed segment size (40

segment size), and fixed segment size (800 segment size), respectively. As can be seen from the HRV graphics,

since the fixed point segment sizes were not suitable for finding the peaks in PPG signals, the obtained HRV

graphics were not correct. Therefore, the best and truest HRV graphic is with ASM.

Poincaré plots are drawn for the two signals: MM intervals derived. These plots are useful visualization

tools to present the compatibility of all the HRV signals. While a Poincaré plot with all the data points

clustered together produces a good quality HRV signal, the Poincaré plot with the scattered data points produces

corrupted HRV signals [17,18]. Figure 12 shows Poincaré plots obtained from the raw and pre-processed PPG

signals. The Poincaré plots showed that the data in the obtained Poincaré plots for fixed point segment sizes

(40 and 800) were not collected together, while the data in the obtained Poincaré plot for ASM were collected

together.

All the PPG signals were analyzed using MATLAB 7.6 software. To evaluate the estimated HRV signals

from the PPG, the Poincaré plots and time domain features including minimum, maximum, mean, mode,

standard deviation, variance, skewness, and kurtosis values were used. Table 2 gives the time domain features

of HRV signals obtained by processing of PPG signals taken from 20 healthy people using a SDPPG data

acquisition card at a sampling frequency of 2 kHz. Table 2 allows the possibility of comparing the values

obtained. The skewness and kurtosis measures give information to us about the distribution of HRV in Table 2.

In the HRV distribution obtained by ASM with and without pre-treatment, skewness close to zero, unity,

and greater than unity indicates the concentration of the distribution around the mean HR, the case of constant

segment dimensions, and the aggregation of HR distribution below the mean, respectively. High and low kurtosis

values show low and high variability in HRV.

Table 3 gives the pulse rate values estimated using an adaptive segmentation method in raw PPG signals.

In Table 3, SpO2 denotes the oxygen saturation value of a healthy person using a pulse oximeter device; PRbpm

shows pulse rate per minute of a healthy person. In this table, we have also given the oxygen saturation level

and heart rate measured by a pulse oximeter device and compared them with estimated pulse rates by ASM.

The obtained results demonstrated that the proposed ASM could be surely used for both detecting peaks and

estimating the pulse rate from raw PPG signals without any signal processing methods.

Table 4 shows results obtained using the MIT MIMIC II database (mimic2wdb/31) 3189288/PLETH

signal [16]. To show the superiority of the proposed ASM, we have also used PPG signals belonging to the MIT

MIMIC II database [16]. The experimental results showed that the ASM could correctly detect the peaks in

raw PPG signals without any signal pre-processing methods such as noise elimination, baseline wandering, and

moving average.
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Figure 10. Comparison of peaks found in raw PPG signals using an adaptive segmentation method (ASM): (a) M

peaks found in raw PPG signals using ASM, (b) M peaks found in raw PPG signals using a fixed segment size (the point

number: 40), and (c) M peaks found in raw PPG signals using a fixed segment size (the point number: 800), (d) the

M peaks found in pre-processed PPG signal by MA using ASM, (e) the M peaks found in pre-processed PPG signal by

MA combined with using ASM, (f) the M peaks found in pre-processed PPG signal by FIR low pass filter (f c = 10 Hz)

using ASM.
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Figure 11. HRV signals estimated according to peak points time interval series from raw PPG signals: (a) HRV signals

estimated in raw PPG signals with ASM, (b) HRV signals estimated in raw PPG signals using a fixed segment size (the

point number: 40), and (c) HRV signals estimated in raw PPG signals using a fixed segment size (the point number: 800),

(d) the HRV signal estimated in pre-processed PPG signal by MA method, (e) the HRV signal estimated in pre-processed

PPG signal by MA combined with baseline wandering, (f) the HRV signal estimated in pre-processed PPG signal by

FIR low pass filter (fc = 10 Hz).
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Figure 12. Poincaré plots obtained from raw PPG signals: (a) Poincaré plot obtained from raw PPG signals with ASM,

(b) Poincaré plot obtained from raw PPG signals using a fixed segment size (the point number: 40), and (c) Poincaré

plot obtained from raw PPG signals using a fixed segment size (the point number: 800), (d) the obtained Poincaré plot in

pre-processed PPG signal by MA method, (e) the obtained Poincaré plot in pre-processed PPG signal by MA combined

with baseline wandering, (f) the obtained Poincaré plot in pre-processed PPG signal by FIR low pass filter (f c = 10 Hz).

ASM results obtained from the PeakFinder algorithm (http://www.mathworks.com/matlabcentral/

fileexchange/25500-peakfinder) over a 30-s PPG signal for the comparison of performance of the proposed

method are presented in Figure 13. To compare our method with other peak detection algorithms, we used
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Table 2. Time domain features of HRV signals obtained by processing of PPG signals taken from 20 healthy people

using a SDPPG data acquisition card at a sampling frequency of 2 kHz.

Time domain 

features 

In HRV signals 
 

obtained from 

raw PPG signals
 

(with 300 

segments found 
 

optimally by 

ASM) 

In HRV signals 

obtained from 

raw PPG signals 

using fixed 

segment 

size (40 points) 

In HRV signals 

obtained from 

raw PPG signals 

using fixed 

segment size (800 

points) 

In the HRV 

signal obtained 

from pre-

processed PPG 

signal by MA 

method 

In the HRV 

signal obtained 

from pre-

processed PPG 

signal by MA 

combined with 

baseline 

wandering 

method 

In the HRV signal 

obtained from  

pre-processed PPG 

signal by FIR low 

pass filter (cuto! 

frequency = 10 Hz)

 

Min MM (s) 0.7418 0.2362 0.7592 0.7568 0.7304  0.7577 

Max MM (s) 0.8929 0.8101 1.5432 1.5468 1.4156 1.5650 

Mean MM (s) 0.8142 0.5057 1.0061 1.0086 0.9789 0.9938 

Mode MM (s) 0.7566 0.2801 0.7631 0.7568 0.7344 0.7608 

Stand Dev (s) 0.0480 0.1699 0.3049 0.3099 0.2601 0.3114 

Variance 0.0030 0.0388 0.1749 0.1777 0.1394 0.1890 

Skewness 0.1747 0.1137 0.6535 0.5937 0.4074 0.6518 

Kurtosis 2.4880 2.8548 2.8016 2.5684 2.4063  2.7116 

Table 3. Pulse rate values estimated using an adaptive segmentation method in raw PPG signals.

Subject 

Values found by  

a pulse 

oximeter  device 

"e used and obtained parameters belonging to the raw PPG signal  

PRbpm 

"e di#erence 

between actual 

PRbpm and 

estimated 

PRbpm 

Segment point 

number found 

optimally by 

ASM 

Standard 

deviation 

values 

"e 

detection 

accuracy of 

ASM 

algorithm 

SpO2  PRbpm 

1 94 73 72.20 0.8 260 0.0326 98.90 

2 97 87 87.70 0.7 320 0.0896 99.20 

3 97 92 91.27 0.73 260 0.0185 99.21 

4 98 96 96.49 0.49 280 0.0177 99.49 

5 98 82 81.60 0.4 260 0.0318 99.51 

6 98 60 58.99 1.01 300 0.0589 98.32 

7 98 63 61.47 1.53 300 0.0943 97.57 

8 96 97 96.73 0.27 260 0.0745 99.72 

9 98 58 59.51 1.51 260 0.0928 97.40 

10 97 57 57.86 0.86 260 0.0684 98.49 

11 98 67 67.66 0.66 260 0.0360 99.01 

12 97 87 86.88 0.12 260 0.0345 99.86 

13 98 79 78.37 0.63 260 0.0323 99.20 

14 98 71 70.92 0.08 260 0.0212 99.89 

15 98 68 69.37 1.37 260 0.0469 97.99 

16 96 70 70.98 0.98 360 0.0955 98.60 

17 97 74 75.04 1.04 380 0.0266 98.59 

18 96 87 87.69 0.69 260 0.0278 99.21 

19 98 68 67.14 0.86 260 0.0377 98.74 

20 98 80 80.16 0.16 260 0.0230 99.80 

Average 97.25 75.8 75.9 0.744 279 0.04803 98.93 

the PeakFinder algorithm. Normally, the example raw PPG signal has 35 M peaks. While our method finds

all peaks including 35 M peaks, the PeakFinder algorithm finds 48 peaks (13 unwanted peaks in PPG signal).

The PeakFinder algorithm and ASM complete their operation in 0.294 s and a shorter time of 0.271 s, respec-
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Table 4. Time domain features of HRV signals obtained processing PPG signals taken from MIT MIMIC II database

(mimic2wdb/31) 3189288 PPG signals at a sampling frequency of 125 Hz (recording time: 300 seconds).

Time domain 

features 

In HRV signals obtained 

from raw PPG signals 

(with 12 segments found 

optimally by ASM) 

In HRV signals obtained 

from raw PPG signal using 

a fixed segment size 

(4 points) 

In HRV signals obtained 

from raw PPG signal 

using a fixed segment size  

(25 points)  

Min MM (s) 0.3200 0.1120 0.3280 

Max MM (s) 0.9520 0.8960 1.6400 

Mean MM (s) 0.4246 0.4090 0.4774 

Mode MM (s) 0.4240 0.4160 0.4160 

Stand Dev (s) 0.0444 0.0639 0.1726 

Variance 0.0020 0.0041 0.0298 

Skewness 8.7681 –0.9362 3.3709 

Kurtosis 95.6888 17.7748 15.4072 

PRbpm 141.309 146.699 125.68 
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Figure 13. Comparison of peak detection algorithms including PeakFinder and ASM methods: a) the found peaks

from PPG signal using PeakFinder algorithm b) the found peaks from PPG signal using the proposed ASM algorithm.

tively. Moreover, ASM operates without the need for a threshold level, as with the conventional peak-detection

algorithms. These results show that the proposed ASM appears to be promising for sensing peaks of PPG

signals.
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5. Conclusions

In the present experimental study involving 20 volunteers using the SDPPG data acquisition card and MIT-

MIMIC II public database, the ASM algorithm was proposed and tested both to estimate the HRV values and

to detect peaks in the PPG signals. The PPG signals used included noises such as analogue circuit noises,

changes in ambient light, and baseline drift caused by respiration and motion artifacts. The proposed ASM

led to accurate estimates of HRV and peak values for the raw PPG signals without any signal pre-processing

method. Our results showed that the ASM could be even used in the estimation of HRV signals from corrupted

and noisy PPG signals without the need for a pre-processing method. Using raw PPG waveforms without a

pre-processing method appears to be promising given the digital signal processing cards.
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