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Abstract:The support vector machine (SVM) is a powerful tool for classification problems. Unfortunately, the training

phase of the SVM is highly sensitive to noises in the training set. Noises are inevitable in real-world applications. To

overcome this problem, the SVM was extended to a fuzzy SVM by assigning an appropriate fuzzy membership to each

data point. However, suitable choice of fuzzy memberships and an accurate model selection raise fundamental issues.

In this paper, we propose a new method based on optimization methods to simultaneously generate appropriate fuzzy

membership and solve the model selection problem for the SVM family in linear/nonlinear and separable/nonseparable

classification problems. Both the SVM and least square SVM are included in the study. The fuzzy memberships are built

based on dynamic class centers. The firefly algorithm (FA), a recently developed nature-inspired optimization algorithm,

provides variation in the position of class centers by changing their attributes’ values. Hence, adjusting the place of the

class center can properly generate accurate fuzzy memberships to cope with both attribute and class noises. Furthermore,

through the process of generating fuzzy memberships, the FA can choose the best parameters for the SVM family. A set

of experiments is conducted on nine benchmarking data sets of the UCI data base. The experimental results show the

effectiveness of the proposed method in comparison to the seven well-known methods of the SVM literature.

Key words: Support vector machines, fuzzy support vector machine, fuzzy membership function, model selection

problem, firefly algorithm, classification, noise

1. Introduction

The support vector machine (SVM) was developed by Vapnik et al. [1,2]. The SVM minimizes the structural

risk instead of the empirical risk. Vapnik demonstrated that the generalization error is bounded by the sum of

the empirical error and a confidence interval term, which depends on the Vapnik–Chervonenkis dimension [3],

and he proved that the SVM achieves better generalization performance by minimizing that bound.

Training a SVM is equivalent to solving a convex quadratic problem, which, in comparison to traditional

neural networks, has the significant computational benefit of not getting stuck in local minima. A complete

tutorial on SVM classifier can be found in [4].

One of the main drawbacks of the SVM is that its training phase is sensitive to the existing outliers and

noises in the training data set [5]. In some real-world data sets, neither of the training points belong to either

of the two classes because of existing outliers or noises. For instance, one training data point may belong by

90% to the positive class and be 10% irrelevant to that class, or belong to the negative class.
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Noises are irrelevant or meaningless data points in a training data set [6]. Noise will confuse the machine-

learning algorithm in the training phase. Accordingly, accuracy and generalization ability are noticeably reduced

[7–9]. Thus, an important phase associated with using machine-learning algorithms, such as SVMs, is to reduce

the effect of noisy data on the training data set [7,10].

Generally, noisy data in the classification problems can be organized into three groups [10–14]: 1) data

whose corresponding labels include noise (paradoxical labeling error for a data point or misclassifications errors),

2) data points whose attribute values get noisy, and 3) data that simultaneously have noise in their class labels

and in their attributes.

Lin et al. reformulated the SVM to the fuzzy SVM (FSVM) by associating a fuzzy membership to each

data point [15]. The fuzzy membership of each data point is specified by the distance between the point and

its class center. However, the class center is sensitive to noise. It was proven that the FSVM achieved a better

performance in comparison with the SVM-encountered noise. However, there exists a problem in FSVM about

how to generate appropriate fuzzy membership functions to cope with all the classes of noise. In [16], two

factors, named ‘confident’ and ‘trashy’, were introduced for the automatic assignment of fuzzy memberships in

FSVM. In this approach, large computation in high-dimensional feature space is needed and many parameters

must be optimized, which makes it hard and complex for implementation. Jiang et al. designed a new fuzzy

membership function with a kernel extension of the FSVM formulation of Lin [17]. In [18], based on the class

centers, a fuzzy membership function was developed for separable and nonseparable data sets in input space

and feature space, respectively. In SVMs, the optimal hyperplane is constructed with a small portion of data

called support vectors (SVs), which are laid in the convex hull of each class in the feature space, similarly to the

outlier and third group of noise. Therefore, in those approaches, SVs and outliers could not be distinguished

accurately. This will reduce the generalization performance and accuracy of the FSVM.

Moreover, attribute noises have a tendency to occur more often in real-world data sets, and there exists

some risk of discarding the meaningful data points as noise or outliers. This may lead to loss of informative

data. Just because a noisy data point contains noise in its attribute and class, it does not mean that this data

point is completely meaningless and that it needs to be removed from the other data.

Another problem is the lack of a certain method to select the most suitable parameters in the family

of SVMs. SVMs have two adjustable sets of parameters: the kernel parameter(s) and the regularization

parameter (C in SVM and γ in LSSVM). SVM generalization ability depends on the proper choosing of these

parameters. The best performance of a SVM is realized with an optimal choice of the kernel parameter(s)

and the regularization parameter. The optimal choice of these parameters is called the SVM model selection

problem [19–21].

Various model selection methods exist considering different criteria, such as the Opper–Winther bound

[22], span bound [23], radius/margin bound [24], distance between two classes [25], and generalization perfor-

mance (K-fold cross-validation (CV)) [26]. According to the solvers applied to those criteria, the methods for

model selection of the SVM can be classified into two groups. The first contains classical (analytical) approaches

and the second contains population-based optimization algorithms. The classical approaches, such as [19,23]

and [25,27], use a gradient descent method to optimize the model selection criteria.

The optimization methods based on the gradient methods are fast, although for smooth cost functions

the optimization algorithm may get stuck in local minima. Moreover, for nonsmooth cost functions (i.e.

not differentiable ones), gradient methods are not applicable. Additional disadvantages of the gradient-based

methods are memory usage and the need to invert the modified Gram matrix, as well as requiring a solution to
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the additional quadratic programming problem [19,21,27,28]. To overcome the drawbacks of the first group, a

second group, based on population-based algorithms, has been introduced. In this group, global optimization

techniques, such as PSO [29,30,31], adaptive chaos PSO [32], quantum PSO [33], simulated annealing [34], ant

colony [35], and the GA [36–39], were employed for finding the optimal solution of the cost function so as to

achieve the best model selection for the SVM.

Many studies have been performed on how to assign new fuzzy memberships and how to solve the model

selection problem of the SVM in isolation; however, their combined effects have not been addressed before. The

main contribution of this paper is to propose a novel method to solve both problems. In this method, generating

appropriate fuzzy memberships and solving the model selection problem of the SVM family in linear/nonlinear

and separable/nonseparable classification problems are defined as optimization problems. Moreover, the fuzzy

memberships are generated based on dynamic class centers in contrast to previous works [15–18], which had fixed

class centers. The firefly algorithm (FA), which is a recently developed nature-inspired swarm-based algorithm

on the behavior of social insects (fireflies) and the phenomenon of bioluminescent communication [40], is used

to solve the optimization problem. Preliminary studies on solving multimodal optimization problems indicate

that the FA is superior to GA and PSO [41]. The FA provides a variation in the position of both positive

and negative class centers by changing their attributes’ values. Hence, adjusting the place of class centers

can properly generate accurate fuzzy memberships to cope with attribute and class noises. Moreover, the FA,

through the process of generating fuzzy memberships, chooses the best parameters for the SVM family. A set

of experiments is conducted on nine benchmarking data sets of the UCI database, and the results are compared

with the seven well-known methods for the SVM family in the literature.

This paper is organized as follows. The basic SVM, FSVM, LSSVM, and FLSSVM formulations for

binary classification are reviewed in Section 2. In Section 3, the FA as an optimization method is introduced

for realizing the proposed approach. In Section 4.1, the model selection problem is summarized, and the details

of the new fuzzy membership function assignment for the SVM family are discussed in Section 4.2. In Section

5, experimental results are presented and discussed to illustrate the effectiveness of the proposed method.

Concluding remarks are given in Section 6.

2. Review of the formulations of the SVM family

The necessary mathematical formulation of SVM, FSVM, LSSVM, and FLSSVM for classification problems is

reviewed in this section.

2.1. SVM

Assume that a two-class set Ω of labeled training points (xiyi) is given. Each training point xi ∈ Rn belongs

to either of the two classes, as determined by the corresponding label yi∈ {−1, 1} for i = 1, . . . , n . The optimal

hyperplane is obtained by solving the quadratic optimization problem Eq. (1) (known as primal form), whose

number of variables is as large as the training data size n .

Minφ (w, ξ) = 1
2w

Tw + C
n∑

i=1

ξi

st

yi
(
wT . xi + b

)
≥ 1− ξi, i = 1, 2, . . . , n

ξi ≥ 0, i = 1, 2, . . . , n

(1)
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Here, ξi s are slack variables that represent the violation of the pattern separation condition. The user-defined

parameter C is regarded as a regularization parameter that controls the model complexity. This is one of the

model selection parameters in the SVM formulation. For nonlinear separable data, a kernel trick is utilized to

map the input space into a high-dimensional space named feature space. The optimal hyperplane is obtained

in the feature space. The primal optimal problem Eq. (1) can be transformed into dual form as follows.

MaxQ (α) = 1
2

n∑
i=1

n∑
j=1

αiαjyiyjk (xi, xj)−
n∑

j=1

αj

st

l∑
j=1

αiyi = 0

0 ≤ αi ≤ C, i = 1, . . . , n

(2)

Here, K(., .) is a kernel function. In practical applications of SVMs, there are several frequent substitutions for

selecting the kernel function K(., .). Some of the conventional kernel functions are listed in Table 1. In this

table, σ and d are constants, and those parameters must be set by a user. For the MLP kernel, a suitable

choice for β0 and β1 is needed to enable the kernel function to satisfy the Mercer condition [42,43]. Those

kernel parameters have an enormous effect on generalization performance. Therefore, kernel parameters are

selected as the other model selection parameters. Furthermore, in Eq. (2) α = (α1, . . . , αn) is the vector of

nonnegative Lagrange multipliers. The solution vector α = (α1, . . . , αn) is sparse, i.e. αi = 0 for most indices

of training data. This is the so-called SVM sparseness property. The points xi correspond to nonzero αi and

are called support vectors. Therefore, the points xi that correspond to ai = 0 have no contribution to the

construction of the optimal hyperplane, and only part of the training data and support vectors construct the

optimal hyperplane. Letting v be the index set of support vectors, the optimal hyperplane is then:

Table 1. Conventional kernel functions.

Name Kernel function expression
Linear kernel k (xi, xj) = xT

i xj

Polynomial kernel k (xi, xj) = (t+ xT
i xj)

d

RBF kernel k (xi, xj) = exp?(−∥xi − xj∥2 /σ2)
MLP (*) kernel k (xi, xj) = tanh?(β0x

T
i xj + β1)

f (x) =

#sv∑
i∈ ν

αiyik (xi, xj) + b = 0 (3)

and the resulting classifier is:

y (x) = sgn

[
#sv∑
i∈ν

αiyik (xi, xj) + b

]
(4)

where b is easily determined by KKT conditions.

2.2. Fuzzy SVM

In many real-world applications, each data point is not fully classified into one of the two classes. Based on this

fact, Lin extended the theory of classical SVM to FSVM [15]. In FSVM, each data point can make a different

1800



NAGHASH ALMASI and ROUHANI/Turk J Elec Eng & Comp Sci

contribution to the construction of the optimal hyperplane in contrast to SVM, where all data points have the

same effect on the optimal decision surface. To materialize this idea, fuzzy memberships are assigned to each

data point to make them have different importance weights. Assume the training data in the following form:

Ω = {(xi, yi, si) , i = 1, · · · , n} (5)

where xi ∈ Rn and yi are a training sample and its corresponding label si is represented by a fuzzy membership

satisfying σ ≤ si ≤ 1 with adequately positive small constant σ . The optimal hyperplane problem in FSVM is

regarded as the solution to the following.

Minφ (w, ξ) = 1
2w

Tw + C
n∑

i=1

siξi

st

yi
(
wT . xi + b

)
≥ 1− ξi, i = 1, 2, . . . , n

ξi ≥ 0, i = 1, 2, . . . , n

(6)

Here, C is the regularization parameter. The main difference between the SVM and FSVM arises from the siξi
term. Since ξi is known as a measure of error in the SVM, the fuzzy membership si has different weights for

error measurement in FSVM. Note that by adjusting the value of fuzzy membership, si can reduce or increase

the effect of each training data point. Similar to the SVM formulation, by some manipulating the solution of

the FSVM is obtained. Additionally, the FSVM can be solved by its dual form. This issue was discussed in

more detail in [15,16].

2.3. Least square SVM and FLSSVM

The least square SVM (LSSVM) was first proposed by Suykens et al. by modifying the formulation of the

standard SVM [44]. The LSSVM was modified in two points: first, instead of inequality constraints, it took

equality constraints and changed the quadratic programming to a linear programming. Second, a squared loss

function was taken from the error variable [44,45]. These modifications greatly simplified the problem and can

be described in detail as follows.

Consider a given training set of n data points {(xiyi)|i = 1, 2, . . . , n , xi ∈ Rn , yk ∈ R , where xi is the

ith input pattern and yi is the ith output pattern. The nonlinear classification function modeling takes the

form in Eq. (7):

y (x) = wTφ (x) + b (7)

where φ (x) denotes the high-dimensional feature space, w is the weight vector, and b is the bias term. Then

the problem is resolved to minimize the empirical risk cost function in Eq. (8).

min J (w, e) = 1
2w

Tw + γ 1
2

n∑
i=1

e2i

st

yi = wTφ (xi) + b+ ei , i = 1, . . . , n

(8)

Here, ei are error variables that play a similar role as the slack variables ξi in the Vapnik SVM formulation,

and γ is a regularization parameter in determining the trade-off between minimizing the training errors and
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minimizing the model complexity. The Lagrangian corresponding to Eq. (8) can be defined as:

L (w, b, e, α) = J (w, e)−
n∑

i=1

αi{wTφ (xi) + b+ ei − yi (9)

where αi ∈ R are the Lagrange multipliers. The KKT optimality conditions for a solution can be obtained by

partially differentiating with respect to w , b , ei , and αi .

∂L
∂w = 0 → w =

n∑
i=1

aiφ (xi)

∂L
∂w = 0 → −

n∑
i=1

aiyi = 0

∂L
∂ei

= 0 → ai = γei , i = 1, . . . , n

∂L
∂αi

= 0 → wTφ (xi) + b+ ei − yi = 0,

(10)

After elimination of the variable w and ei , the following linear equation can be obtained: b

α

 =

 0 1⃗Tn

1⃗n Ω+ γ−1In

 0

y

 (11)

where y = [y1; . . . ; yn] , 1⃗n = [1; . . . ; 1] , and α = [α1, . . . , an] . The kernel trick is applied here as follows:

Ωij = φ (xi)
T
φ (xj)

= K(xixj), ij = 1, . . . , n
(12)

where K(·, ·) is the kernel function fulfilling the Mercer condition. Similarly, b and α are obtained by the

following.

b =
1⃗Tn (Ω + γ−1In)

−1
y

1⃗Tn (Ω + γ−1In)
−1

1⃗Tn
(13)

α =
(
Ω+ γ−1In

)−1
(y − 1⃗Tn b) (14)

Finally, the resulting LSSVM model for the classification problem can be expressed as follows.

y (x) =
n∑

i=1

αiK(xi, xj) + b (15)

2.4. Fuzzy LSSVM

A fuzzy extension of LSSVM for classification problems is formulated as follows.

min Jf (w, e) =
1
2w

Tw + γ 1
2

n∑
i=1

sie
2
i

st

yi = wTφ (xi) + b+ ei , i = 1, . . . , n

(16)
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The Lagrangian function is

L (w, b, e, α) = Jf (w, e)−
n∑

i=1

αi{wTφ (xi) + b+ ei − yi (17)

where αi∈ R are the Lagrange multipliers and could have either positive or negative values due to the equality

constraints. The optimal conditions are obtained by differentiating Eq. (17).

∂L
∂w = 0 → w =

n∑
i=1

aiφ (xi)

∂L
∂w = 0 → −

n∑
i=1

aiyi = 0

∂L
∂ei

= 0 → ai = γsiei , i = 1, . . . , n

∂L
∂αi

= 0 → wTφ (xi) + b+ ei − yi = 0,

(18)

Similar to the normal LSSVM, the matrix formulation can be obtained as follows:

 b

α

 =

 0 1⃗Tn

1⃗n Ω+ γ−1In

 0

y

 , (19)

where y = [y1; . . . ;yn] , 1⃗n= [1; . . . ; 1] , and α = [α1, . . . ,an] . The kernel trick is applied here as follows:

Ωij=yiyjφ (xi)
T
φ (xj) + (siγ)

−1
I (20)

= K (xi, xj) , i , j = 1, . . . , n

where K(·, ·) is the kernel function satisfying Mercer’s condition. The resulting FLSSVM model and its

parameters, b and α , are similarly obtained by the normal LSSVM formulation. For further details, see

[44,46,47].

3. Firefly algorithm

The FA is a population-based algorithm proposed by Yang [40,41]. It is based on the following three idealized

rules:

• All fireflies are unisex, so that a firefly is attracted to other fireflies regardless of their sex.

• Attractiveness is proportional to their brightness or light intensity; thus, for any two flashing fireflies, the

less bright one will move towards the brighter one. Attractiveness is proportional to brightness and they

both decrease as their distance increases. If no firefly is brighter than any other, then it moves randomly.

• The brightness of a firefly is affected or determined by the landscape of the objective function to be

optimized.

Initially, all the fireflies are randomly dispersed across the search space. The FAs can be summarized simply in

the two following stages:
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1) Variation of light intensity: Light intensity depends on the value of the objective function. Therefore,

it can be suggested that in the maximization/minimization problem, a firefly with high/low intensity will attract

another firefly with high/low intensity.

For all the fireflies, xi brightness Ii corresponds to its value of the objective function and is represented

as follows [48]:

Ii = f (xi) i = 1, 2, . . . , n. (21)

2) Movement toward a brighter firefly: The movement of a firefly xi is absorbed into another brighter (more

attractive) firefly xj and is formulated by:

xt+1
i = xt

i + β (r)×
(
xt
i − xt

j

)
+ αεti (22)

where β(r) is the attractiveness function of the firefly and is determined by:

β (r) = β0e
−γr2ij (23)

where β0 is the attractiveness at r = 0 and γ is the light absorption coefficient. r represents the distance

between any two fireflies i and j at xi , and x j can be formulated by any norm, such as the l2 -norm, as follows:

rij = ∥xi − xj∥2 (24)

Finally, the third term is randomization, with the vector of random variables εi being drawn from a Gaussian

distribution. In essence, the parameter γ characterizes the variation of the attractiveness and partly controls

how the algorithm behaves. It is also possible to adjust γ so that multiple optima can be found at the same

during iterations [49]. A meticulous detailed description of the FA was given in [41]. All parameters required

to implement the FA are presented in the Appendix. The pseudocode of this algorithm is given below.

Algorithm 1. Firefly algorithm.

Objective function f(x), x = (x1, . . . , xd)
T

Initialize a population of fireflies xi(i = 1, 2, . . . , n). Define light absorption coefficient γ

while (t < MaxGeneration)

for i = 1: n all n fireflies

for j = 1: i all n fireflies

Light intensity Ii at xi is determined by f(xi)

if (Ij > Ii)

Move firefly i toward j in all d dimensions

end if

Attractiveness varies with distance r via exp[−γr2]

Evaluate new solutions and update light intensity

end for j

end for i

Rank the fireflies and find the current best

end while

Postprocess results and visualization.
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4. New fuzzy membership assignment and model selection problem

4.1. Model selection problem

The optimal parameter selection of the SVM family is an important step in achieving a high generalization

performance. As mentioned earlier, the SVM family has two adjustable parameters known as the regularization

parameter and kernel parameter(s). The kernel parameter(s) implicitly characterize the geometric structure

of data in the high-dimensional space known as feature space. In the feature space, the data become linearly

separable in such a way that the maximal margin of separation between two classes is achieved. The selection

of kernel parameter(s) will change the shape of the separating surface in the input space. Selecting improperly

large or small values for kernel parameter(s) is the cause of overfitting or underfitting in the model surface of

the SVM family. Consequently, the model would be unable to accurately separate data [28,42,50].

In nonseparable problems, noisy training data will introduce slack variables to measure their violation of

the margin. Therefore, a penalty factor, named C in SVM and γ in LSSVM, is considered for controlling the

amount of margin violation. In other words, the penalty factor is defined to determine the trade-off between

minimizing empirical error and structural risk and guaranteeing the accuracy of the classifier outcome in the

presence of noisy training data. A higher penalty factor value causes the margin to be hard and the cost of

violation to become too high, and hence the separating model surface overfits the training data. By contrast,

lower penalty factor values allow the margin to be soft, which results in underfitting separating the model

surface. In both cases, the generalization performance of the classifier is unsatisfactory, and this renders the

SVM family’s model useless [28,51].

4.2. New fuzzy membership assignments

How to determine appropriate fuzzy memberships for use in the FSVM and FLSSVM is a significant problem.

Basically, the lower bounds of fuzzy memberships are defined, and then the main property of each data point

is chosen and a connection is made between this property and the fuzzy memberships function. As a result,

the FSVM and FLSSVM can achieve good performance and discard the effects of noise and outliers if the fuzzy

membership functions prepare/provide the fuzzy memberships accurately and appropriately.

Generally, fuzzy memberships are generated by setting the fuzzy membership as a function of the distance

between the data point and its class center [15–18]. Many fuzzy membership functions have been proposed based

on this idea. Although those methods could cope with outliers or misclassification noise in the classification

problem, they were not capable of dealing with attribute noise accurately.

To overcome this problem, a new fuzzy membership function based on dynamic class centers is proposed

so that the performance of the FSVM and FLSSVM is enhanced in both misclassification and attribute noise.

In this approach, determining the appropriate position of class centers is defined as an optimization problem.

Whereas the fuzzy membership functions are generated based on the position of their class centers, the optimal

place of the class centers will improve the performance of the FSVM family. Each data set is divided into two

positive and negative classes. Each class center is a mean vector of positive and negative class-label data points.

We can define the mean of the positive class label as x+ and the mean of the negative class as x− as follows:

x+ =
1

n+

∑
xi∈C+

xi (25)
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and

x− =
1

n−

∑
xi∈C−

xi (26)

where n+ and n− are the number of data points in class C+ and C− , respectively. In previous studies

suggesting new fuzzy memberships, researchers focused on extending the class center-based fuzzy membership

assignment in which the position of the class centers were fixed. Thus, the noise data and outliers are discarded

and eliminated by their distance from their corresponding class centers. It is obvious that the class center

of a noisy data set will be noisy and not adequately pure to use as a reference measure for producing fuzzy

memberships. In this study, we propose to vary the position of the class centers by using FA to denoise class

center attributes. Moreover, by modifying the position of the class centers, their data points within each class

could have different weights, relevant to their class center. For this aim, we considered a lower and upper bound

for class center attributes, and the FA was used to change the mean of the class center attributes within those

bounds. In other words, by altering attributes, the class center place is replaced and the class centers will have

dynamic behaviors. The structure of each firefly is shown in Table 2.

Table 2. Structure of each firefly.

Par. n + 2 Par. m + 1 Par. m Par. 3 Par. 2 Par. 1
MeanNegin+2 − α · · · MeanNegim+1 − α MeanPosim − α · · · MeanPosi3 − α log (0.001) log (0.01) Min. value
xin+2 · · · xim+1 xim · · · xi3 xi2 xi1

MeanNegin+2 + α · · · MeanNegim+1 + α MeanPosim + α · · · MeanPosi3 + α log (150) log (1500) Max. value
Negative class center Positive class center σ C or γ

As shown in Table 2, the first two dimensions of each firefly are considered for solving the model selection

problem in the SVM family, and the remaining dimension of each firefly is used for finding the optimal mean

attribute in each dimension of class centers. The logarithmic range is considered for finding the regularization

parameter and the kernel parameter in the model selection problem. Logarithmic range is used because this gives

a more stable solution to the optimization problem. This range is log(0.01) to log(1500) for the regularization

parameter and log(0.001) to log(150) for the kernel parameter. First, the mean of each positive and negative

class center is calculated, and then a small positive constant, the so-called α , is added or subtracted from these

means to obtain the upper and lower bounds of each feature in positive and negative class centers. In this study,

the value of α is 0.1.

We define the maximum radius of positive class C+ by:

r+ = max |x+ − xi| for xi ∈ C+ (27)

where xi belongs to C+and the maximum radius of the negative class is defined as follows:

r− = max |x− − xi| for xi ∈ C− (28)

where xi ∈ C− . Consequently, fuzzy membership si is defined as a function of the mean and radius of each

class in the following form:

si =

{
1− ∥x+ − xi∥ /(r+ + δ) if y = 1
1− ∥x− − xi∥ /(r− + δ), if y = −1

(29)

where δ is a small positive constant that is used to avoid the case si = 0. The value of this parameter is

selected to be 0.01 in this paper.
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The generalization performance error is regarded as the objective function as follows:

CostFunction = K−foldCV Error (30)

The FA is used to determine the optimal class centers and simultaneously solve the model selection problem

based on the cost function. Many researchers have proposed different criteria, such as the leave-one-out (LOO)

[52] and K -fold CV methods, for evaluating the generalization performance of the SVM [53]. In the K -fold

CV method the training data set is randomly divided into K equal subsets, and then for the K iteration each

subset is defined as a testing data set. Retain subsets, K -1, are used as a training data set. After K iterations,

the overall generalization performance is averaged over K calculated performances. Generally, each part of the

training data set is separately considered as a testing data set. Therefore, K -fold CV is a robust criterion for

evaluating generalization performance. Algorithm 2 describes the proposed method.

Algorithm 2. Proposed method.

1: Initialize FA population, i.e. initial model parameters and positive and negative class centers.

2: Generate fuzzy memberships based on initial class centers.

3: Train FSVM/FLSSVM with initial model parameters.

4: Evaluate the cost function.

5: Update the initial population based on the procedure of FA until the optimization approach terminates.

6: Use the best firefly of the FA containing the best model selection parameters, and the optimal positive

and negative class centers where fuzzy memberships are generated based on them.

5. Computational experiments

5.1. Experimental conditions

To demonstrate the effectiveness of the proposed cost function, a PC with MATLAB R2008b software was

utilized. Experiments on nine different real-world data sets, which are frequently used in the literature, were

carried out to compare the performance of the proposed approach with seven well-known methods of the SVM

family in the literature. The data set descriptions are presented in Table 3 [54]. In order to convert three-class

data sets to two-class data sets, two classes of each data set that are not labeled +1 are merged.

Table 3. Description of data sets.

Data set name # Data # Features # Classes
Banana 5300 2 2
Diabetes 768 8 2
German 1000 20 2
Image 2086 18 2
Ring norm 7400 20 2
Splice 2991 60 2
Thyroid 215 5 2
Two-norm 7400 20 3
Waveform 5000 21 3

Although the proposed method could be applied to all existing kernel functions, the RBF kernel function

is used. The RBF kernel has a superior performance in comparison to the other kernels, as explained below.
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The RBF kernel maps data sets nonlinearly into the feature space, and thus it can handle the data

sets when the relation between desired output and input attributes is nonlinear. The second reason is the

number of hyperparameters influencing the complexity of the model selection. The polynomial kernel has more

hyperparameters than the RBF kernel. Finally, the RBF kernel has less numerical difficulties [25,28,42,43].

Consequently, the model selection parameters consist of the regularization parameter C in SVM and γ in

LSSVM as well as the parameter σ , which is the only parameter of the RBF kernel. Moreover, the K value in

K -fold CV is selected to be 100, as in [55] and [56]. For this purpose, each data set is split into 100 independent

sample sets of training and test sets.

5.2. Experimental results and discussion

In order to emphasize the efficiency of the dynamic class center idea, FSVM-1 and FLSSVM-1 are developed.

The fuzzy memberships of FSVM-1 and FLSSVM-1 are calculated based on the fixed class centers idea, proposed

in [15], and the FA is only used to solve their model selection problems. The proposed approach is applied to

the SVM and LSSVM to develop FSVM-2 and FLSSVM-2, respectively.

Table 4 shows the comparison results for a single RBF classifier (RBF), AdaBoost (AB), and regularized

AdaBoost (ABR), which are obtained from Rätsch et al. [55]; the results for LOO-SVM, obtained from Weston

and Herbrich [56]; the results for FSVM using kernel target alignment (KT) strategy; FSVM using the k nearest

neighbors (k-NN) strategy, obtained from [16]; the results for FSVM-1 and FLSSVM-1 using only the FA for

solving their model selection problems; and FSVM-2 and FLSSVM-2 using the proposed approach.

Table 4. Comparison of test error of seven well-known methods in the literature on 9 benchmarking data sets. The

best results are shown in bold and the second best are underlined.

Data set RBF AB ABR SVMs LOOS KT k-NN
FA- FA- FA- FA-
FSVM-1 FSVM-2 FLSSVM-1 FLSSVM-2

Banana 10.8 12.3 10.9 11.5 10.6 10.4 11.4 10.7 9.5 11.1 9.6

Diabetes 24.3 26.5 23.8 23.5 23.4 23.3 23.5 23.6 22.7 23.6 23.0

German 24.7 27.5 24.3 23.6 N/A 23.3 23.6 23.9 23.2 24.0 23.3

Image 3.3 2.7 2.7 3.0 N/A 2.9 3.0 3.2 2.6 3.1 2.5

Ring norm 1.7 1.9 1.6 1.7 N/A 1.7 1.7 1.7 1.4 1.8 1.5

Splice 10.0 10.1 9.5 10.9 N/A 10.9 10.9 10.9 8.9 10.8 9.0

Thyroid 4.5 4.4 4.6 4.8 5.0 4.7 4.8 4.7 1.8 4.8 2.1

Two-norm 2.9 3.0 2.7 3.0 N/A 2.4 2.9 2.5 2.3 2.4 2.2

Waveform 10.7 10.8 9.8 9.9 N/A 9.9 9.9 9.8 8.4 9.9 8.7

The results showed that the proposed method outperformed the smaller generalization error in the data set with

noise. In contrast to the k-NN and KT strategies, there is no need for additional information about noise in data sets or

the distribution of data sets to show which strategy should be used in each case. Moreover, the results demonstrate that

our method can considerably improve the performance of SVM and LSSVM when the data sets contain class noise or

even attribute noise. Figures 1 and 2 show the variation attributes of the positive and negative class centers in FSVM-2

and FLSSVM-2 for both fixed and dynamic class centers’ ideas. Both figures consist of nine sections for the entire data

set of experiment, and each section is divided into four subplots. In both figures, right-upper and left-upper subplots

show the fixed positive and negative class centers, and right-lower and left-lower subplots illustrate the positive and

negative class centers after applying the proposed method. The optimal cost functions are obtained in FSVM-2 and

FLSSVM-2, based on the different class centers in comparison to fixed class centers. As shown in these figures, the

proposed method properly denoises the new positive and negative class centers from attribute noise. Furthermore, the
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fuzzy memberships, which are generated based on the new class centers, could appropriately discard the boundary data

points from class noise. Moreover, Figure 3 illustrates the positive and negative class center position in the Banana data

set. Figures 3a and 3b display the position of the fixed class centers and the dynamic class center, which were obtained

from the proposed method in FSVM-2 and FLSSVM-2, respectively. In these figures, positive and negative class-label

data points are shown in blue and red colors, respectively. Both fixed class centers of positive and negative data points

are presented with blue- and red-filled squares, respectively. The blue- and red-filled circles show the new class centers

for positive and negative data points, respectively. On the other hand, fuzzy memberships are assigned to data points

regarding their distance to the corresponding class centers. The movements of class centers play an important role in

this matter. The optimal solution for the model selection problem using the FA for FSVM-1, FLSSVM-1, FSVM-2, and

FLSSVM-2 is shown in Table 5.
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Figure 1. Comparison between the variation of the fixed positive class center (left-upper column) and the new positive

class center after applying the proposed approach (left-lower column), and the fixed negative class center (right-upper

column) and the new negative class center after applying the proposed approach (right-lower column) for FSVM-2 in

nine data sets.
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Table 5. Solution of model selection problem for all the experiments.

Data set name
FSVM-1 FLSSVM-1 FSVM-2 FLSSVM-2
log(C) log(σ) Log(γ) Log(σ) Log(C) Log(σ) Log(γ) Log(σ)

Banana –0.4685 0.3016 0.2917 –0.4963 3.9764 –0.0082 2.5396 –0.8400

Diabetes –0.6649 1.4401 5.3623 4.7953 4.1815 4.4852 –3.8401 3.9511

German 0.5650 0.8735 –0.6563 1.9206 2.9125 2.5629 –0.3235 1.8367

Image 3.6401 –0.0599 4.5441 1.5783 7.2264 1.1537 3.2086 0.4181

Ring norm 0.3278 –0.4002 –0.8223 1.3019 –0.4791 0.9915 –0.7487 1.1872

Splice 3.0938 1.4657 0.7980 3.5811 5.1435 1.4551 4.6986 3.0734

Thyroid 4.6921 1.0884 0.4293 0.5250 5.7720 1.3054 –0.7317 0.4040

Two norm 1.0193 2.2679 –0.6090 3.9299 5.2730 3.9446 –3.6330 4.4739

Waveform –0.2541 0.8417 0.2338 4.3971 –0.1392 0.9313 3.0969 5.0031
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Figure 2. Comparison between the variation of the fixed positive class center (left-upper column) and the new positive

class center after applying the proposed approach (left-lower column), and the fixed negative class center (right-upper

column) and the new negative class center from the proposed approach (right-lower column) for FLSSVM-2 in nine data

sets.
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Figure 3. The positive and negative class center position in the Banana data set: a) FSVM-2, b) FLSSVM-2.

6. Conclusion

In the FSVM family, different training points can make different contributions to the learning of the decision surface.

Both choosing proper fuzzy memberships and selecting the optimal parameters play a significant role in the SVM family.

This paper proposed a new method based on the FA for assigning appropriate fuzzy memberships and solving the model

selection problem for linear/nonlinear and separable/nonseparable classification problems.

The results demonstrate that by using this fuzzy membership assignment and model selection simultaneously, the

effect of the attribute noise and outlier data can be considerably reduced. In addition to the FSVM and FLSSVM, it was

established that this method can achieve higher generalization performance in comparison to other methods in previous

works. It makes FSVM and FLSSVM more feasible for real applications, containing noise in the attribute and class label

of the data points, although not enough information exists to choose appropriate fuzzy memberships and their optimal

parameters.

Further work is necessary on the extension of the proposed approach to feature space, as well as on the optimization

method for feature/data reduction for large noisy data sets.
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Appendix. FA algorithm parameters.

FA algorithm parameters

Swarm size 25

Max. iteration 40

β0 1

γ 1

α 0.2

εi N ∼ [−1, 1]
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