
Turk J Elec Eng & Comp Sci

(2016) 24: 1879 – 1900

c⃝ TÜBİTAK

doi:10.3906/elk-1311-45

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

System identification by using migrating birds optimization algorithm: a

comparative performance analysis

Hasan MAKAS∗, Nejat YUMUŞAK
Department of Computer Engineering, Faculty of Computer and Information Sciences, Sakarya University,

Sakarya, Turkey

Received: 06.11.2013 • Accepted/Published Online: 01.07.2014 • Final Version: 23.03.2016

Abstract: System identification is an important process to investigate and understand the behavior of an unknown

system. It aims to establish an interface between the real system and its mathematical representation. Conventional

system identification methods generally need differentiable search spaces and they cannot be used for nondifferentiable

multimodal search spaces. On the other hand, metaheuristic search algorithms are independent from the search

space characteristics and they do not need much knowledge about the real system. The migrating birds optimization

algorithm is a recently introduced nature-inspired metaheuristic neighborhood search approach. It simulates the V

flight formation of migrating birds, which enables birds to save energy during migration. In this paper, first, a set

of comparative performance tests by using benchmark functions are performed on the migrating birds optimization

algorithm and some other well-known metaheuristics. The same metaheuristic algorithms are then employed to solve

several system identification problems. The results show that the migrating birds optimization algorithm achieves

promising optimizations both for benchmark tests and for system identification problems.

Key words: Migrating birds optimization, system identification, neighborhood search, swarm intelligence, metaheuris-

tics

1. Introduction

Metaheuristics are algorithms that are designed to solve hard optimization problems in a wide range of

applications and they do not have to deeply adapt to each problem. The prefix “meta” indicates that they

are higher-level heuristic algorithms in contrast with problem-specific heuristics. They are generally used

to solve problems for which there is no satisfactory problem-specific algorithm to get a reasonable solution.

These problems are complex problems in industry and services ranging from finance to production management

and engineering [1]. Most of the metaheuristic algorithms are called neighborhood search methods, and they

constitute an important and large class among the improvement algorithms. They search the neighborhoods of

the existing solutions and try to get better solutions [2]. Therefore, the choice of the neighborhood structure is

a critical issue for the design of a neighborhood search algorithm [3].

There are many metaheuristic algorithms that have been introduced by researchers so far. Some of the

most popular and commonly used metaheuristics are the genetic algorithm (GA) introduced by Holland [4], the

simulated annealing algorithm introduced by Kirkpatrick et al. [5], the tabu search algorithm introduced by

Glover [6], the ant colony optimization algorithm introduced by Drigo [7], and the particle swarm optimization

∗Correspondence: hasanmakas@gmail.com

1879

MAKAS and YUMUŞAK/Turk J Elec Eng & Comp Sci

(PSO) algorithm introduced by Eberhart and Kennedy [8]. Some of the recent metaheuristic algorithms are the

differential evolution (DE) algorithm [9], the harmony search algorithm [10], the monkey search algorithm [11],

the artificial bee colony (ABC) algorithm [12], the firefly algorithm [13], the intelligent water drops algorithm

[14], the cuckoo search algorithm [15,16], the bat algorithm [17,18], and the migrating birds optimization (MBO)

algorithm [2]. In parallel to these studies, many researchers have worked to enhance the metaheuristics. Some

of them have worked on the best tunings of these metaheuristics [19]; on the other hand, some of them have

developed new modified or hybrid forms of the metaheuristics [20–22], and some others have established parallel

running methodologies [23] to get much better optimization performances.

Most of the metaheuristics are inspired by nature. This shows that the perfectness of nature is still

an inspiration source for mankind to develop new methodologies. In these algorithms, while the mobile agents

interact locally, they somehow form emergent and self-organized behaviors under the right conditions, leading to

global convergence. The agents generally explore the search space locally and they are aided by randomization

to increase the diversity of solutions. Thus, there is a fine balance between local intensive exploitation and

global exploration [24]. In addition, swarming agents are suitable to work in parallel, leading to reduction in

computation time.

System identification is an approach that establishes an interface between real unknown systems and their

mathematical representations. System identification methods aim to find appropriate models for the systems.

They generally use input and output signals of the unknown systems for modeling. There are many system

identification techniques, including the autoregressive with exogenous inputs model [25], the output error model

[26], and the Box–Jenkins model [27]. Nowadays, some metaheuristic methods are used for system identification,

and they give promising and competitive results [28–30].

In this paper, first we make a performance test among the PSO, ABC, DE, GA, and MBO algorithms

by using multidimensional benchmark test functions. We compare the performance of the MBO algorithm

with that of the others. We then employ these metaheuristics to solve some system identification problems

considering that they are commonly encountered in optimal parameter tunings of the transfer functions in areas

ranging from digital filter design to PID controller tuning [31,32]. The paper is organized as follows. Section

2 gives the theoretical background of the metaheuristics used in this paper and clarifies the philosophy of the

system identification approach. Section 3 lists the benchmark functions used in experimental works, gives the

system identification problem examples, and explains the experimental setups. Section 4 gives the experimental

results and discusses them. Section 5 concludes the study.

2. Methods and background

2.1. The PSO algorithm

The PSO algorithm is a swarm intelligence-based metaheuristic algorithm. It is inspired by the behavior of

flocking birds. The algorithm uses a swarm of particles as its population. It is assumed that each particle is

in motion inside a multidimensional search space and represents a possible solution for the problem. The next

position of a particle is calculated by Eq. (1), which adds its velocity in the next time step to its current position

[33]:

xi(t+ 1) = xi(t) + vi(t+ 1), (1)

where xi and vi are the position and velocity of the ith particle. The velocity vector controls the optimization

1880

MAKAS and YUMUŞAK/Turk J Elec Eng & Comp Sci

process and it is calculated by Eq. (2) [33]:

vij (t+1) =w · vij+c1 · rand · (pij (t)− xij (t))+c2 · rand · (pgj (t)− xij (t)) , (2)

where vij is the velocity of the ith particle in the j th dimension, w is inertia weight, c1 and c2 are acceleration

coefficients, rand is a uniform random number ranging from 0 to 1, xij is the current position of the ith particle

in the j th dimension, pij is the best position in the j th dimension achieved by the ith particle so far, and

pgj is the best position in the j th dimension achieved by the population so far. Particle velocities should be

in a predefined range of [–Vmax , Vmax] to keep the global search capability under control. Therefore, they are

shifted to predefined limits as given in Eq. (3) when they exceed the limits. The Vmax value was considered

the same for each dimension in benchmark tests, but this limit value can be different for each dimension j

depending on the optimization problem. We chose Vmax as 1.

vij(t+ 1) =

 −Vmax , vij(t+ 1) ≤ −Vmax

vij(t+ 1) , − Vmax < vij(t+ 1) < Vmax

Vmax , vij(t+ 1) ≥ Vmax

(3)

Inertia weight w in Eq. (2) is an important parameter to control the convergence characteristic of the PSO

algorithm. If an inertia weight w > 1 is chosen, the velocities converge to limit velocities and the swarm

diverges from the global minimum. Higher values of w in the range of [0, 1] increase global search capability

and decrease local search capability of the algorithm, or vice versa. It was reported experimentally that if

w decreases from 0.9 to 0.4 linearly through the iterations, the PSO performance increases significantly [34].

Although the acceleration coefficientsc1 and c2 are chosen as equal in most of the applications, the ratio of

these values depends on the problem type. While small values of acceleration coefficients cause smooth particle

trajectories with slow velocity changes, high values of them cause sharply changing particle trajectories with

rapid velocity changes. The static value of 1.494 can be used for each one of the acceleration coefficients to get

a good optimization performance [35]. We used these recommended c1 , c2 , and w values in our experiments.

Because the diversity of the initial population directly affects the PSO performance, initialization of the

population is a very important issue to get better optimization. Initial positions are assigned to particles by

using Eq. (4):

xij = xmin
j + rand ·

(
xmax
j − xmin

j

)
, (4)

where xij is the position of the ith solution in the j th dimension, xmin
j and xmax

j are the limit values for

the j th dimension, and rand is a uniform random number ranging from 0 to 1. Initial positions are assigned

to initial personal best positions and initial velocity values can be set to zero. Another important point to be

considered is the limit check for the next positions of the particles, which are calculated by Eq. (2). All of the

particles are forced to be inside the problem space by making proper shifts via Eq. (5) when it is needed:

xij(t+ 1) =

xmin
j , xij(t+ 1) ≤ xmin

j

xij(t+ 1) , xmin
j < xij(t+ 1) < xmax

j

xmax
j , xij(t+ 1) ≥ xmax

j

, (5)

where xij(t+ 1) is the next position of the ith particle in the j th dimension, and xmin
j and xmax

j are the limit

values of the j th dimension. This shifting operation is also valid for all of the following algorithms.

1881

MAKAS and YUMUŞAK/Turk J Elec Eng & Comp Sci

2.2. The ABC algorithm

The ABC algorithm is another swarm intelligence-based metaheuristic algorithm. It is inspired by bees’ foraging

behaviors. The position of a food source represents a possible solution for the optimization problem and the

nectar amount of a food source corresponds to the quality or fitness of that solution. There are employed bees

and onlooker bees. The numbers of employed bees and onlooker bees are equal to that of food sources [36].

Therefore, the total number of food sources is equal to half of the colony size. There are three calculation phases

in each iteration: the employed bee phase, the onlooker bee phase, and the scout bee phase. At the beginning,

the algorithm generates randomly distributed initial positions for the food sources via Eq. (4). After completing

the food source initialization, algorithm phases start to run and continue until the termination criteria are met.

The first phase is the employed bee phase. Employed bees try to enhance their solutions by generating

new neighbors via Eq. (6) in this phase:

x̂ij = xij + ϕ · (xij − xkj) (6)

where xij is the position of the ith solution in the j th dimension, k is a randomly selected index value different

from i , xkj is the position of the k th solution in the j th dimension, ϕ is a random number ranging from –1 to

1, and x̂ij is the generated new neighbor position in the j th dimension for the ith solution. This calculation

controls the neighborhood creation at the same time by making a comparison between two bees’ positions in

parentheses. That is, the smaller the difference between xij and xkj is, the closer the solutions are. In other

words, closer solutions make the change in xij decrease. The fitness value of a source is calculated by Eq. (7):

Fitnessi =

1

(1 + fi)
, fi ≥ 0

1 + abs (fi) , fi < 0

, (7)

where fi and Fitness i are the cost and fitness values of the ith source, respectively. A greedy selection

mechanism, which is only based on the fitness values of the food sources, is used to make a selection between

existing food sources and new generated neighbors. After performing the greedy selections, selection probabilities

of updated sources by onlooker bees are calculated via Eq. (8):

pi =
Fitnessi

SN∑
j=1

Fitnessj

, (8)

where pi is the selection probability of the ith source by onlooker bees and SN is the total number of sources.

In the second phase, the onlooker bee phase, the onlooker bees make their selections depending on the

corresponding pi probabilities. The higher the selection probability is, the more chance there is that the

corresponding food source may be selected and enhanced by onlooker bees. Roulette wheel or some other

probabilistic selection mechanism can be used by onlooker bees in selection operation. Each onlooker generates

a neighborhood for its selection via Eq. (6). It then makes a greedy selection between the selected source and

new generated source in order to enhance the selected food source.

In the third phase, the scout bee phase, new food sources instead of the food sources whose nectar was

abandoned are generated by scouts via a global search operation. A failure counter is assigned to each source

in implementations. After completing a neighborhood creation for the corresponding food source, the failure

1882

MAKAS and YUMUŞAK/Turk J Elec Eng & Comp Sci

counter of this source is increased by one if no improvement is achieved. Otherwise, that counter is set to zero.

Whenever the failure counter of a food source exceeds a predefined limit, the employed bee of that source is

transformed into a scout bee to find a new food source by making a global search via Eq. (4). The scout bees

are retransformed into employed bees after they generate new sources. The limit for the failure counter can be

determined by using Eq. (9) depending on the problem dimension and colony size [37]:

FCLimit = SN ∗D, (9)

where FC Limit is the maximum limit for failure counters of the food sources; SN is the total number of food

sources, which is equal to half of the colony size; and D is the problem dimension (number of variables in

optimization problem). We used Eq. (9) in our implementations.

2.3. The DE algorithm

The DE algorithm is a powerful population-based algorithm. It uses operators very similar to those of the GA.

These are mutation, recombination, and selection operators. These operators are applied repeatedly until the

termination criteria are met. The main difference between the DE algorithm and the GA in constructing better

solutions is that the GA focuses on crossover operation while the DE algorithm focuses on mutation operation.

The main operation of the DE algorithm is based on the differences of randomly sampled solution pairs in a

population [38]. Details of the DE algorithm operations are as follows. First, the DE algorithm initializes the

population randomly. We used Eq. (4) for initialization. Iterative operations then start. The DE algorithm

performs a search task by using a mutation operation in which a mutant solution is generated for each solution.

Mutant solutions are generated via Eq. (10):

vi,G+1 = xr1,G + F · (xr2,G − xr3,G) , (10)

where vi,G+1 is the generated mutant solution in the next generation for the ith solution; xrn,G is a solution

in the current generation; r1 , r2 , and r3 are randomly selected different integer indexes that point to different

solutions and they are also different from the running index, i ; and F is a real amplification constant ranging

from 0 to 2. In summary, three different indexes, which are also different from the running index i , are generated.

Solutions pointed out by the generated indexes are then used in Eq. (10) to generate a new neighborhood, which

is called a mutant solution. After generating mutant solutions from parent solutions, a recombination operation

is performed. In this operation, mutant and parent solutions are mixed via Eq. (11) to generate a new solution,

which is called trial solution:

uji,G+1 =

{
vji,G+1 , if randb(j) ≤ CR ∨ j = rnbr(i)

xji,G , else
, (11)

where uji,G+1 is the generated ith trial solution in the j th dimension for the next generation, vji,G+1 is the

generated ith mutant solution in the j th dimension for the next generation, xji,G is the ith current solution

in the j th dimension, randb(j) is a random number generated for the j th dimension ranging from 0 to 1, CR

is the crossover constant, and rnbr(i) is a randomly chosen dimension index. This index guarantees that the

trial solution gets at least one parameter from the mutant solution. A greedy selection among the trial and

current solutions is performed in the selection step. Considering the minimization problems, greedy selection

1883

MAKAS and YUMUŞAK/Turk J Elec Eng & Comp Sci

can be defined as:

xi,G+1 =

{
ui,G+1 , if f(ui,G+1) ≤ f(xi,G)

xi,G , else
, (12)

where xi,G , xi,G+1 , and ui,G+1 are the ith current solution, ith solution in the next generation, and ith trial

solution in the next generation, respectively, and f is the cost function. Suitable F and CR values should be

chosen to get a good optimization performance. We used F and CR values ranging from 0.2 to 0.8. We used

small parameter values for high-dimensional problems and large parameter values for low-dimensional problems.

2.4. The GA

In the GA, the actual solutions, which are called phenotypes, are represented by chromosomes, which are

called genotypes. It is essential in the GA to design a proper chromosome representation and to determine a

proper fitness calculation method. The phenotypes are converted to genotypes before the application of genetic

operators and the genotypes are converted to phenotypes before the fitness calculations.

In the GA process, first, the initial population is created randomly. We used Eq. (4) to generate initial

population. The fitness of each solution is then calculated. If the solution with the best fitness value does not

meet the termination criteria, then the genetic operators are applied to the chromosomes.

In the application of genetic operators, the first step is determination of the parents. There are several

GA implementations and each of them uses different application methods. In our implementations, the number

of parent pairs is equal to half of the population size and we used the roulette wheel method for determination

of the parent pairs.

The second genetic operator is the crossover. The most common crossover method for binary coded

chromosomes is the one-point crossover, which is shown in Figure 1. The same crossover point is selected for

each parent in this method. The parts delimited by crossover points are interchanged by the parents. Two new

offsprings are generated from two parents by using this method.

Crossover

1 0 0 0 1 1 0 0 Parent1

1 1 1 1 0 0 0 1 Parent2

Crossover point

1 0 0 0 1 0 0 1 Offspring1

1 1 1 1 0 1 0 0 Offspring 2

Figure 1. One-point crossover for binary coded chromosomes.

There are several crossover methods for the real coded GAs. We used a method that closely mimics

the binary coded GA. It is the combination of an extrapolation method and a crossover method [39]. In this

method, a chromosome is thought to be in the form of

parent = [p1p2 . . . pNvar], (13)

where p represents variables and Nvar is the number of variables. Let the parents be

parent1 = [pm1pm2 . . . pmα . . . pmNvar]

parent2 = [pd1pd2 . . . pdα . . . pdNvar]
, (14)

1884

MAKAS and YUMUŞAK/Turk J Elec Eng & Comp Sci

where α is a randomly produced integer ranging from 1 to Nvar , and subscripts m and d represent mom and

dad parents, respectively. The new variables that will appear in offsprings are calculated via

pnew1 = pmα − β[pmα − pdα]

pnew2 = pdα − β[pmα + pdα]
, (15)

where β is a randomly produced number ranging from 0 to 1. The offsprings with new variables are then

generated by replacing pmα and pdα with pnew1 and pnew2 respectively and swapping the right side of the

selected variables in parents.

offspring1 = [pm1pm2 . . . pnew1 . . . pdNvar]

offspring2 = [pd1pd2 . . . pnew2 . . . pmNvar]
(16)

The third genetic operator is the mutation. For the binary coded GA, a predefined percentage of bits in

chromosomes are toggled. On the other hand, because we used a real coded GA, we selected a predefined

percentage of variables among the offsprings randomly and then employed Eq. (4) to change their values. The

mutation operation enables new regions of the problem space to be included inside the search region. High

mutation rate values increase the randomness in the search operation and give rise to divergence from the

global optimum. However, mutation rate values that are too low decrease the diversity in the population and

cause an insufficient problem space search. We used a 5% mutation rate in our implementations.

2.5. The MBO algorithm

The MBO algorithm is a recently introduced and nature-inspired metaheuristic neighborhood search method.

It simulates the V flight formation of migrating birds. V-shaped flight with its induced drag reduction is an

effective formation for birds to save energy [2]. For instance, in a V-shaped flight formation consisting of 25

members, each bird can achieve a reduction in induced drag as large as 65%. This could result in a range

increase of about 70% [40].

The benefit mechanism of the V flight formation can be explained briefly as follows. A pair of vortices

is created owing to the wing movements as seen in Figure 2. Looking in the direction of the flight, the vortices

from the left and the right wing tips rotate in clockwise and counter-clockwise directions, respectively [2,40].

Vortices create downwash and upwash for the birds flying behind. Downwash is undesirable because it increases

the induced drag on a wing in flight. However, upwash is beneficial because it decreases the induced drag on

a wing in flight. Thus, all the birds in the V formation except for the leader bird are located mostly in the

upwash regions of vortices. Thus, they get the benefit of these upwashes and reduce their energy consumptions.

In summary, the leader bird in that formation is the one expending the most energy and the birds in other

positions get benefit from the birds in front [2].

Figure 2. Regions of upwash and downwash created by trailing tip vortices.

1885

MAKAS and YUMUŞAK/Turk J Elec Eng & Comp Sci

A flow diagram of the MBO algorithm is given in Figure 3. It simulates the benefit mechanism of

the real birds by sharing the solutions. The parameters of the MBO algorithm are the number of solutions

representing the flock size (n), the total number of neighbor solutions to be considered (k), the number of

neighbor solutions to be shared with the next solution (x), the number of tours to change the leader (m), and

the maximum iteration number (K).

Initialize n bird positions, place them on a hypothetical

V formation and calculate the fitness values

Generate k neighbors to the leader and

calculate their fitness values

Change the leader position with the neighbor having better

fitness if exists, and share 2x unused neighbors with the

next 2 birds in right and left legs of V formation

Generate k-x neighbours to the birds in turn in V formation

and combine them with x unused neighbors from the birds

in the front, then calculate their fitness values

Change the position of birds in turn with the neighbors

having better finesses if exist, and share x unused

neighbors with the next bird both in left and right legs

Y

N Have all the birds

been processed?

N
Have m tours been

completed for

leader change?

Y

Change the leader

N

Y

Are termination

criteria OK?

Last bird positions

Initialize

the flock

Improve

the leader

Improve

the other birds

Change the leader

if it is necessary

Continue untill the

termination

criteria are OK

Stop

Figure 3. Flow diagram of the MBO algorithm.

1886

MAKAS and YUMUŞAK/Turk J Elec Eng & Comp Sci

The algorithm runs as follows. The population is initialized in the first step. We used the method defined

in Eq. (4) to initialize the positions of the birds, which represent possible solutions. After initialization, one of

the solutions is chosen as the leader and all of the generated solutions are placed in a hypothetical V formation

arbitrarily. Starting with the first solution, which corresponds to the leader bird, and progressing along the

lines towards the tails, the MBO algorithm aims to improve each solution by using its neighbor solutions [2].

The leader bird is tried to be improved in the second step. Hence, k neighbors are generated and their

fitness values are calculated. We used the method given in Eq. (6) for neighbor creation. After creating these

neighbors, if the neighbor solution having the best fitness shows an improvement for the leader, the position of

that neighbor solution is assigned to the leader solution and then 2x unused best solutions are shared with the

two birds in the second row.

The other birds are tried to be improved in the third step. For each bird in turn, (k − x) neighbors

are generated and their fitness values are calculated. These neighbors are combined with x unused neighbors

coming from the birds in the front. Thus, the total number of neighbor solutions to be considered for each

bird is k , like in the improvement of the leader bird. If the neighbor solution having the best fitness shows an

improvement for the corresponding bird, the position of that neighbor solution is assigned to the corresponding

bird, and then x unused best solutions are shared with the next bird. This neighborhood sharing mechanism

simulates the benefit of upwash caused by trailing tip vortices in V flight formation. One iteration ends after

completing improvement trials for all birds. In short, the leader bird spends the most energy by creating k

neighbors in iterations. However, the birds in other positions benefit from the birds in front and spend less

energy by creating (k − x) neighbors in iterations.

In the fourth step, the leader bird is thought to be tired after performing a predefined number of iterations

(m). The leader solution is then shifted to the end of one side in the hypothetical V formation, and the second

solution at that side is shifted to the leader position. We chose m = 10 as recommended in [2]. Steps from

step 2 to step 4 run until predefined termination criteria are satisfied by the generated solutions. The algorithm

then stops and gives the solution having the best fitness as the overall solution.

Parameters k and x directly affect the algorithm performance and should be chosen appropriately.

Parameter k is inversely proportional with the flight speed of the real birds. If it is chosen at small values, the

birds are assumed to be flying at higher speeds. Higher speeds enable the MBO algorithm to reduce the total

execution time. This is an advantageous choice for problems with small number of parameters. However, the

search deepness of the algorithm increases if parameter k increases. Therefore, although the execution time

increases, k may need to be increased to get a satisfactory solution for high-dimensional problems. Parameter

x represents the upwash benefit of trailing tip vortices in a real bird flock. Since the benefit mechanism of the

MBO algorithm is defined as the number of good neighbor solutions obtained from the predecessor solution,

high values of x cause solutions to be similar to each other. Thus, premature convergence may happen [2]. In

our implementations, we chose x = 1 to prevent the algorithm from premature convergence, and we chosek =

3 to reduce the total execution time. The MBO algorithm makes k + (population size – 1) × (k – x) fitness

calculations in one iteration. The total number of fitness calculations in one iteration for the other algorithms

is equal to the population size. That is, the total number of fitness calculations in the MBO algorithm for our

k and x choices is approximately equal to two times that in the other algorithms. Therefore, we set the total

number of iterations in the MBO algorithm implementations to half of those in the other algorithms in order

to make fair comparisons between the algorithms.

1887

MAKAS and YUMUŞAK/Turk J Elec Eng & Comp Sci

2.6. System identification by metaheuristics

System identification is a methodology that aims to construct the model of an unknown system and tunes

parameters of the model constructed by using experimental data. Methods known as black box modeling use

input signal data and the resultant outputs. That is, they are not interested in what the system looks like or

what the system is used for [30]. They make parameter adjustment in order to minimize the error between

unknown system output and the model output. Gradient-based conventional methods are commonly used for

system identification. Because these methods need smooth and differentiable search spaces, they cannot be

applied to systems having nondifferentiable multimodal error functions [29]. Because of this fact, researchers

have been focused on new system identification methods.

Metaheuristics are systematic search techniques and applicable to system identification problems. If we

consider a system with the input x(n) and the output u(n), then the input-output relation of the system can

be defined as:

u(n) +

P∑
i=1

aiu(n− i) =

R∑
i=0

bix(n− i), (17)

where x(n– i) and u(n– i) are the values of previous observations and ai and bi are the coefficients of these

observations. The autoregressive moving average (ARMA) model representation of this system is given in Figure

4 and its transfer function is defined as:

H(z) =
B(z)

A(z)
=

∑R
i=0 biz

−i

1 +
∑P

i=1 aiz
−i

. (18)

Coefficients of the unknown system transfer function in Eq. (18) can be written in the vector form of:

[b0, b1, . . . , bR, a1, a2, . . . , aP] . (19)

If the system identification problem is thought to be an optimization problem of a population-based metaheuris-

tic algorithm, each member of the population contains the transfer function coefficients described in Eq. (19).

Metaheuristic optimization algorithms try to minimize the error e(n) shown in Figure 5 by using systematic

techniques. They produce new population members (coefficient vectors) in each iteration and calculate the

mean squared errors (MSEs) of these members.

z
–1

z
–1

z
–1

b1

b2

bR

z
–1

z
–1

z
–1

–a1

–a2

–aP

+x(n) u(n)b0

Figure 4. ARMA model representation of an unknown system.

1888

MAKAS and YUMUŞAK/Turk J Elec Eng & Comp Sci

x(n)

u(n)

û(n)

+

-

e(n)

Unknown system

Designed model

Metaheuristics
(PSO, ABC, DE, GA, MBO)

Figure 5. System identification process by using metaheuristics.

The MSE is defined as:

E(t) =
1

N

N∑
i=1

(u(i)− û(i))
2
, (20)

where u(i) and û(i) are the desired output and model output of the ith input, respectively; N is the total

number of inputs used for the test; and E(t) is the MSE at the tth iteration. The system identification process

using a metaheuristic runs until the predefined termination criteria are met, as shown in Figure 6. In summary,

a metaheuristic algorithm creates new coefficients from the existing coefficients in each iteration. It then makes

greedy selections between new and existing coefficients depending on the MSE calculations. In this way, it tries

to find much better solutions during the progress of iterations. Finally, it reaches a reasonable solution having

minimum error.

3. Problems and experimental setups

3.1. Benchmark function test

A function that has only one maximum or minimum in the region to be searched is called unimodal. Conversely,

it is called a multimodal function if it has many local minima or maxima in its search region. Performances

of the optimization algorithms on benchmark functions are highly dependent on this characteristic of the

benchmark functions. As a generalization, an optimization algorithm that is poor at exploration may not

show good performances for high-dimensional multimodal benchmark functions. They require good exploration

performance to escape from falling into local minima of the search space. Otherwise, the algorithm may fall

into a local minimum trap and may not escape from there. On the other hand, the convergence performance of

an algorithm depends on its exploitation characteristics. If an optimization algorithm is good at exploitation, it

shows a good convergence performance. Otherwise, it cannot perform satisfactory convergence even if it finds

the region including the global minimum. As a result, there should be a fine balance between exploration and

exploitation characteristics of an algorithm to perform good optimization.

We used 2-, 5-, 10-, 30-, and 50-dimensional versions of the benchmark functions to test optimization

performances of the algorithms. These benchmark functions are given in Table 1. First, 100 different initial

populations were created for each selected dimension by using Eq. (4), and they were stored in files. It was

aimed to make fair comparisons among the metaheuristics by using the same initial populations from the stored

files. Each algorithm was executed 100 times for each dimension of each benchmark function. A new initial

population from the stored files was selected for each execution. Average values of the final results are given

in Table 2–6. These average values are calculated by using the best 50 results having the smallest cost values

among 100 executions. The aim of this experiment is to obtain the average minimum of the benchmark functions

for each case and to compare the results.

1889

MAKAS and YUMUŞAK/Turk J Elec Eng & Comp Sci

Initialize transfer function coefficients randomly

Generate new transfer function

coefficients by using metaheuristics

Calculate outputs of the transfer function

using new coefficients

Calculate MSE of the transfer function

using new coefficients

Is MSE

decreasing?

Update transfer function coefficients

with generated new coefficients

Are Termination

criteria OK?

Stop

Y

N

Y

N

Figure 6. Flow diagram of system identification by using a metaheuristic.

3.2. System identification problems

In this experiment, we used white noise sequences as the input signals x(n). We applied x(n) signals to 5

different systems to get resultant output signals u(n). The second-, third-, fourth-, fifth-, and eighth-order

transfer functions of these systems are given in Eqs. (21)–(25) [41].

H1(z) =
2 + 3z−1 + 4z−2

1− 0.8z−1 + 0.15z−2
(21)

H2(z) =
1− 1.4z−1 − 1.71z−2 + 2.34z−3

1− 0.5z−1 − 0.29z−2 + 0.105z−3
(22)

H3(z) =
2− 1.5z−1 + 4.1z−2 + 6.8z−3 − 2z−4

1− 0.2z−1 − 0.55z−2 + 0.116z−3 + 0.042z−4
(23)

H4(z) =
1.41− 2.0404z−1 − 0.1739z−2 + 1.0973z−3 − 0.2595z−4 − 0.0339z−5

1− 0.443z−1 − 1.067z−2 + 0.43z−3 + 0.187z−4 − 0.045z−5
(24)

1890

MAKAS and YUMUŞAK/Turk J Elec Eng & Comp Sci

Table 1. Benchmark functions (n : problem dimension, C: characteristic, U: unimodal, M: multimodal).

Function Definition
Ranges & Global

C
parameters minimum

Sphere f1(x) =
n∑

i=1

x2
i [–5.12,5.12]n 0 U

Rastrigin f2(x) = 10n+
n∑

i=1

[
x2
i − 10 cos(2πxi)

]
[–5.12,5.12]n 0 M

Axis parallel
f3(x) =

n∑
i=1

(i · x2
i) [–5.12,5.12]n 0 U

hyperellipsoid

Griewangk f4(x) =
1

4000

n∑
i=1

x2
i −

n∏
i=1

cos
(

xi√
i

)
+ 1 [–600, 600]n 0 M

Michalewicz f5(x) = −
n∑

i=1

sin (xi)
[
sin
(

i·x2
i

π

)]2m [0,π]n
–1.801 (n= 2)

M
(m = 10)

–4.687 (n= 5)

:

Alpine f6(x) =
n∑

i=1

|xi sin (xi) + 0.1xi| [–10,10]n 0 M

Step f7(x) =
n∑

i=1

(|xi + 0.5|)2 [–100,100]n 0 U

Schwefel f8(x) =
n∑

i=1

[
−xi sin

(√
|xi|
)]

[–500,500]n –418.9829n M

Ackley
f9(x) = −a exp

(
−b ·

√
1
n

n∑
i=1

x2
i

)
− exp

(
1
n

n∑
i=1

cos (cxi)

)
+ a+ exp(1)

[–32.8, 32.8]n

0 Ma = 20,

b = 0.2,

c = π

Schawefel f10(x) = max {|xi| , 1 ≤ i ≤ n} [–100,100]n 0 U

Table 2. Mean cost values reached by the algorithms for 2-dimensional benchmark functions (K : iteration, n :

population size).

F Global min.

MBO ABC PSO DE GA
K = 750 K = 1500 K = 1500 K = 1500 K = 1500
n = 15 n = 16 n = 15 n = 15 n = 16

f1 0 0 3.7719E-17 0 0 1.7836E-11
f2 0 0 3.7067E-04 0 0 3.7503E-08
f3 0 0 2.8856E-17 0 0 4.9702E-13
f4 0 3.1104E-03 1.8944E-02 3.2543E-03 0 7.6190E-03
f5 –1.8013 –1.8013 –1.8013 –1.8013 –1.8013 –1.8013
f6 0 0 9.7922E-06 0 0 6.8008E-08
f7 0 0 2.5502E-16 0 0 1.7879E-09
f8 –8.3797E+02 –8.3797E+02 –8.3796E+02 –7.5032E+02 –8.3797E+02 –1.0440E+04
f9 0 8.8818E-16 1.9223E-09 8.8818E-16 8.8818E-16 9.7299E-05
f10 0 0 1.8925E-02 0 0 5.6174E-03

1891

MAKAS and YUMUŞAK/Turk J Elec Eng & Comp Sci

Table 3. Mean cost values reached by the algorithms for 5-dimensional benchmark functions (K : iteration, n :

population size).

F Global min.

MBO ABC PSO DE GA
K = 1500 K = 3000 K = 3000 K = 3000 K = 3000
n = 31 n = 32 n = 31 n = 31 n = 32

f1 0 0 6.5052E-17 0 0 1.0206E-07
f2 0 0 0 1.3133 0 1.2427E-05
f3 0 0 6.9817E-17 0 0 1.2859E-07
f4 0 1.2911E-02 1.7489E-07 7.7363E-02 0 1.8813E-02
f5 –4.6877 –4.6877 –4.6877 –4.5642 –4.6877 –4.6877
f6 0 0 1.6728E-16 1.1463E-16 0 6.5403E-05
f7 0 0 6.2974E-17 0 0 3.3636E-05
f8 –2.0949E+03 –2.0949E+03 –2.0949E+03 –1.5765E+03 –2.0949E+03 –1.3374E+04
f9 0 3.4461E-15 4.2277E-15 4.2277E-15 8.8818E-16 4.3284E-03
f10 0 0 1.3134E-08 0 4.5152E-84 5.0126E-02

Table 4. Mean cost values reached by the algorithms for 10-dimensional benchmark functions (K : iteration, n :

population size).

F Global min.

MBO ABC PSO DE GA
K = 2500 K = 5000 K = 5000 K = 5000 K = 5000
n = 41 n = 42 n = 41 n = 41 n = 42

f1 0 0 8.2649E-17 0 0 7.2550E-07
f2 0 0 0 5.6315 0 1.2293E-04
f3 0 0 8.8269E-17 0 0 3.7363E-06
f4 0 2.6046E-02 8.1595E-14 3.3098E-01 0 2.9947E-02
f5 –9.6600 –9.6359 –9.6602 –8.5504 –9.6602 –9.6601
f6 0 3.5527E-17 2.4721E-16 4.4720E-16 0 2.1913E-04
f7 0 0 8.6227E-17 0 0 2.7967E-04
f8 –4.1898E+03 –4.1849E+03 –4.1898E+03 –2.6354E+03 –4.1898E+03 –1.9546E+04
f9 0 5.9330E-15 7.9226E-15 6.9988E-15 3.3040E-15 7.3117E-03
f10 0 1.8978E-38 5.3854E-14 7.8663E-86 5.6296E-10 1.0803E-01

Table 5. Mean cost values reached by the algorithms for 30-dimensional benchmark functions (K : iteration, n :

population size).

F Global min.

MBO ABC PSO DE GA
K = 3500 K = 7000 K = 7000 K = 7000 K = 7000
n = 101 n = 102 n = 101 n = 101 n = 102

f1 0 0 4.9986E-16 0 0 6.8423E-06
f2 0 0 0 3.0247E+01 0 1.2403E-03
f3 0 0 4.3213E-16 0 0 9.0918E-05
f4 0 0 7.5495E-17 2.4649E-03 0 8.6388E-03
f5 –2.9583E+01 –2.9566E+01 –2.9631E+01 –2.3646E+01 –2.5930E+01 –2.9628E+01
f6 0 7.9495E-16 5.7107E-16 1.1644E-12 5.1108E-60 1.0217E-03
f7 0 0 4.5768E-16 7.3956E-34 0 2.4184E-03
f8 –1.2570E+04 –1.2555E+04 –1.2569E+04 –6.5279E+03 –1.2569E+04 –6.0910E+04
f9 0 2.1849E-14 3.0589E-14 3.2365E-14 4.4409E-15 1.1875E-02
f10 0 2.9023E-10 5.5636E-02 1.1495E-06 1.7504E-02 4.0999E-01

1892

MAKAS and YUMUŞAK/Turk J Elec Eng & Comp Sci

Table 6. Mean cost values reached by the algorithms for 50-dimensional benchmark functions (K : iteration, n :

population size).

F Global min.

MBO ABC PSO DE GA
K = 4000 K = 8000 K = 8000 K = 8000 K = 8000
n = 151 n = 152 n = 151 n = 151 n = 152

f1 0 0 9.0469E-16 3.5142E-38 0 9.0755E-05
f2 0 0 0 5.9837E+01 0 1.5338E-02
f3 0 0 8.2402E-16 1.3864E-36 0 1.9948E-03
f4 0 0 9.1038E-17 1.6431E-14 0 4.2609E-02
f5 –4.9513E+01 –4.9544E+01 –4.9624E+01 –3.8896E+01 –3.2365E+01 –4.9590E+01
f6 0 1.9429E-15 2.1666E-15 1.0866E-07 6.9538E-03 4.0222E-03
f7 0 0 8.2391E-16 4.1723E-32 0 3.3912E-02
f8 –2.0949E+04 –2.0933E+04 –2.0949E+04 –9.9439E+03 –2.0949E+04 –1.0752E+05
f9 0 3.7623E-14 5.5316E-14 9.9224E-13 7.7094E-15 3.4396E-02
f10 0 2.8918E-04 4.2017E-01 4.2010E-02 3.3912E-05 1.5517

H5(z) =
0.01− 0.041z−2 + 0.061z−4 − 0.041z−6 + 0.01z−8

1− 2.472z−1 + 4.309z−2 − 4.886z−3 + 4.477z−4 − 2.914z−5 + 1.519z−6 − 0.5z−7 + 0.12z−8
(25)

Considering x(n) and u(n) as the input and output signals of an unknown system and considering that transfer

function coefficients of this system form a population like in Eq. (19), metaheuristics can be used to optimize

these transfer function coefficients. The main philosophy of a metaheuristic system identification process in each

iteration is as follows. First, it generates new transfer function coefficients (new population members), then it

calculates the system output û(n) by using generated new coefficients, and finally it makes greedy selections

between existing and new population members depending on the calculated MSE values.

For each system, each algorithm was executed 100 times and the average values of the results were

calculated by using the best 50 results having the smallest MSE values among 100 executions. Average results

are given in Tables 7 and 8. The same initial populations were also used in calculations to make fair comparisons

as mentioned in Section 3.1.

If the system transfer function is higher than the fourth order, it is difficult to find the original transfer

function parameters of an unknown system. Since a small change in any coefficient of the transfer function gives

rise to a large fluctuation in the system response, algorithms most probably cannot find the original transfer

function coefficients at that time. Although the algorithms generally cannot find the original transfer function

coefficients for these cases, predicted systems give very close responses to unknown systems’ responses. In fact,

the predicted systems are another near optimal equivalent of the unknown systems. The MSE reached by the

optimization algorithm is the main measurement for the similarity check between the unknown original system

and the predicted system. That is, the lower the MSE value is, the higher the similarity between the original

and predicted systems is.

4. Results

4.1. Benchmark function test results

The benchmark function test results are given in Tables 2–6. Mean cost values reached by the algorithms for

2-, 5-, 10-, 30-, and 50-dimensional benchmark functions in these tables were calculated by using the method

mentioned in Section 3.1. The results can be concluded as follows.

1893

MAKAS and YUMUŞAK/Turk J Elec Eng & Comp Sci

• The ABC algorithm generally performs reasonable optimizations owing to its good exploration, which

occurs in the scout bee phase. It generally finds reasonably optimal solutions to all functions in all

dimensions. However, it cannot perform good convergence to the global minima. While the MBO and DE

algorithms converge to global minima as closely as possible, the ABC algorithm cannot achieve a closer

convergence than they accomplish. Its exploitation capability thus needs to be enhanced to get a better

convergence performance.

• The PSO algorithm gives reasonable results for unimodal benchmark functions in all dimensions. It

performs good convergence owing to its good exploitation capability. However, the results for multimodal

functions are not good, especially in high dimensions. This is caused by its weakness in exploration and

its dependence on initial population quality.

• Performance of the GA decreases while the problem dimension increases. Since its exploitation capability

is at a medium level, it needs many more iterations in order to get good results, and this increases

the execution time. The overall optimization performance given in Figure 7 proves that the exploration

performance that emerges in the mutation phase is at a medium level. It thus falls into local minima for

some high-dimensional functions.

• The DE algorithm achieves reasonable optimizations for all benchmark functions in all dimensions. It has

a fine balance between exploration and exploitation.

• The MBO algorithm gives good convergence performance owing to its good exploitation property. This

is caused by the fact that the MBO algorithm makes many more calculations in one iteration depending

on the value of parameter k . That is, increasing the parameter kenables the algorithm to get better

optimization results, but this gives rise to an increase in the total number of fitness calculations and total

execution time. We took this fact into account to make a fair competition between the algorithms and we

determined the maximum iteration numbers to be lower for the MBO algorithm so that an equal number

of fitness calculations could be performed for each algorithm in the same experiment.

• Figure 7 shows the overall optimization performances of the algorithms by giving the total number of

successful benchmark function tests for each algorithm in each dimension. The MBO algorithm showed

the best performance. Among the ten benchmark functions, it found optimal results for nine of them for

the 5- and 10-dimensional cases. It found optimal results for all of the benchmark functions for the 2-,

30-, and 50-dimensional cases. It was followed by the DE and ABC algorithms.

• How fast and how stable an algorithm approaches to the global minimum is another important issue

to be focused on. Figure 8 shows cost values reached by the algorithms vs. iteration graphs for the 10-

dimensional unimodal sphere function and 10-dimensional multimodal Rastrigin function. It is clearly seen

that the MBO algorithm reaches reasonable results at lower iterations for the unimodal sphere function,

and it reaches the exact global minimum at lower iterations for the multimodal Rastrigin function.

4.2. System identification results

After performing the experimental study on system identification mentioned in Section 3.2, we got the results

given in Table 7 for the H1 , H2 , and H3 systems, and we got the results given in Table 8 for the H4 and H5

systems. The results can be concluded as follows.

1894

MAKAS and YUMUŞAK/Turk J Elec Eng & Comp Sci

12

MBO ABC PSO DE GA

2D

5D

10D

30D

50D

N
u

m
b

e
r
 o

f
S

u
c
c
e
s
fu

l

B
e
n

c
h

m
a
r
k

 F
u

n
c
ti

o
n

 T
e
st

s

10

8

6

4

2

0

Figure 7. Successful benchmark function test distributions over problem dimensions.

0 500 1000 1500 2000
10

–150

10
–100

10
–50

10 0

1050

Iteration

C
o

st

Sphere Function Optimization

MBO
ABC
PSO
DE
GA

0 500 1000 1500 2000
10

–20

10
–15

10
–10

10
–5

10 0

10 5

Iteration

C
o

st

Rastrigin Function Optimization

MBO
ABC
PSO
DE
GA

 (a) (b)

Figure 8. Trends of the cost values reached by the algorithms (a) for 10-dimensional unimodal sphere function and

(b) for 10-dimensional multimodal Rastrigin function.

• The GA system identification results mostly have the highest MSE values. The GA needs many more

iterations to reach a reasonable MSE value because of its typical characteristics, but this increases the

total execution time needed.

• The ABC algorithm results are generally reasonable, but not the best. Its coefficient predictions are very

close to the unknown system coefficients for low-order systems, and the MSEs of its predictions are low

enough for high-order systems.

• The DE algorithm results are good enough for all systems. In particular, the MSEs of its predictions for

low-order systems are very low. For instance, it was able to find the global minimum easily and gave the

exact coefficients of H1 in every trial. Its predictions for the other systems are good enough.

• The PSO algorithm results are reasonable for all systems. In particular, it has a good performance for

H1 , like the DE algorithm. Although it was not able to find the exact global minimum in every trial for

H1 , it gave nearly exact coefficients.

• The MBO algorithm has good system identification performances for all systems. It minimized the MSEs

as desired. For the H1 , H2 , and H3 systems, it gave prediction values very close to the coefficients of

the unknown systems. For the H4 and H5 systems, it reached MSE values as low as desired. These low

MSE values prove that although it could not get the original transfer function parameters for high-order

systems, it gets optimal systems that are very close to the real unknown systems.

1895

MAKAS and YUMUŞAK/Turk J Elec Eng & Comp Sci

Table 7. System identification results for low-order systems H1 , H2 , and H3 (K : iteration, n : population size).

Parameters
Unknown

MBO
ABC PSO DE GA

system
K = 1000 K = 2000
n = 31 n = 30

H1 b0 2.00000 2.00000 2.00170 2.00000 2.00000 2.00440
b1 3.00000 3.00050 2.99410 3.00000 3.00000 3.05200
b2 4.00000 4.00070 3.98600 4.00000 4.00000 4.07440
a1 –0.80000 –0.79982 –0.80235 –0.80000 –0.80000 –0.78049
a2 0.15000 0.14985 0.15169 0.15000 0.15000 0.13414
MSE 4.682E-05 1.344E-03 3.752E-31 0 2.229E-02

K = 2000 K = 4000
n = 39 n = 38

H2 b0 1.00000 1.00000 1.00000 1.04660 0.99987 0.99691
b1 –1.40000 –1.40000 –1.40000 –1.35940 –1.39960 –1.39370
b2 –1.71000 –1.71000 –1.71000 –1.88400 –1.71000 –1.71060
b3 2.34000 2.34000 2.34000 2.35870 2.33930 2.32860
a1 –0.50000 –0.50000 –0.50000 –0.47877 –0.49975 –0.49537
a2 –0.29000 –0.29000 –0.29000 –0.30218 –0.28988 –0.28749
a3 0.10500 0.10500 0.10500 0.10968 0.10499 0.10506
MSE 3.209E-32 8.779E-12 1.238E-02 3.821E-07 4.510E-05

K = 3000 K = 6000
n = 51 n = 50

H3 b0 2.00000 2.00120 2.00070 2.00160 2.00320 2.02550
b1 –1.50000 –1.43210 –1.49450 –1.41220 –1.41490 –1.26280
b2 4.10000 4.06680 4.09970 4.05700 4.06280 4.02140
b3 6.80000 6.93280 6.79720 6.97180 6.94220 7.10720
b4 –2.00000 –1.72960 –1.98340 –1.65040 –1.66270 –0.99449
a1 –0.20000 –0.16594 –0.19833 –0.15596 –0.15881 –0.08655
a2 –0.55000 –0.54791 –0.54948 –0.54731 –0.54633 –0.52747
a3 0.11600 0.09825 0.11446 0.09305 0.09264 0.03892
a4 0.04200 0.04217 0.04217 0.04223 0.04303 0.04672
MSE 7.113E-05 2.825E-04 7.978E-05 2.862E-04 1.954E-02

• Figure 9 shows the parameter calculation trends of the algorithms for H1 system modeling. These trends

were obtained by averaging the trends of the best 50 models as mentioned in Section 3.2. It is clearly seen

that the MBO algorithm reaches near-optimum values at about the 25th iteration. Considering the total

fitness calculation, this is equivalent to the 50th iteration of the other algorithms. The others, except for

the ABC algorithm, could not reach the desired coefficients at the 50th iteration. This proves that the

MBO algorithm finishes the system identification problem faster in comparison with the others.

5. Conclusions

The MBO algorithm is a recently introduced metaheuristic optimization algorithm and has a unique benefit

mechanism. This paper is the first study to employ the MBO algorithm in system identification problems. In

this paper, good optimization capabilities and the performance of the MBO algorithm were first investigated

via a set of benchmark function tests. It was then proved that the identification of an unknown system can be

performed easily by using metaheuristics including the MBO algorithm.

1896

MAKAS and YUMUŞAK/Turk J Elec Eng & Comp Sci

Table 8. System identification results for high-order systemsH4 and H5 (K : iteration, n : population size).

Parameters
Unknown

MBO ABC PSO DE GA
system

K = 2500 K = 5000
n = 59 n = 58

H4

b0 1.41400 1.41240 1.41300 1.46880 1.41040 0.01260
b1 –2.04040 –1.24930 –0.98289 –0.84852 –1.19470 0.00831
b2 –0.17390 0.22646 0.04390 –0.22938 0.11894 –0.00263
b3 1.09730 0.09728 0.02168 0.10685 –0.00642 –0.07510
b4 –0.25590 –0.49338 –0.43686 –0.34856 –0.37424 0.00845
b5 –0.03390 0.15051 0.12206 0.07243 0.18511 0.18332
a1 –0.44300 0.11707 0.30221 0.38575 0.15586 –0.63028
a2 –1.06700 –0.22301 –0.16957 –0.26717 –0.25801 0.85377
a3 0.43000 0.28252 0.19105 0.11044 0.15311 0.32330
a4 0.18700 –0.26819 –0.25548 –0.17571 –0.27800 –0.16278
a5 –0.04500 –0.08654 –0.08784 –0.07993 –0.04360 0.47587
MSE 2.988E-04 5.509E-04 1.784E-03 6.859E-04 3.943E-03

K = 4000 K = 8000
n = 91 n = 90

H5

b0 0.01000 0.00958 0.01273 0.00982 0.00771 0.00728
b1 0 0.02042 0.04974 0.01985 0.01862 0.01765
b2 –0.04100 –0.02847 0.06309 –0.02836 –0.02197 –0.02492
b3 0 –0.07883 –0.03790 –0.07672 –0.09756 –0.09398
b4 0.06100 –0.01118 0.01724 0.00038 –0.03538 –0.02399
b5 0 0.10633 0.07659 0.10181 0.15224 0.14779
b6 –0.04100 0.06153 0.05958 0.04461 0.13248 0.10576
b7 0 –0.06171 0.01078 –0.05995 –0.08742 –0.09479
b8 0.01000 –0.06805 –0.01882 –0.04875 –0.17069 –0.13733
a1 –2.47200 –0.42854 –0.16695 –0.52595 –0.15186 –0.27205
a2 4.30900 0.82151 0.88426 0.88877 0.31134 0.39061
a3 –4.88600 0.36758 –0.17745 0.38345 0.33339 0.31193
a4 4.47700 0.20769 0.43342 0.06808 0.13762 0.09285
a5 –2.91400 0.28702 –0.07887 0.46050 –0.05005 –0.01935
a6 1.51900 0.42684 0.22607 0.31384 0.09981 0.11957
a7 –0.50000 –0.12332 –0.00746 –0.08003 –0.00285 –0.02962
a8 0.12000 0.19351 0.14485 0.20715 –0.18008 –0.15381
MSE 1.514E-04 4.453E-02 3.017E-05 2.306E-03 1.825E-03

The system identification process can be thought of as an optimization problem in metaheuristic ap-

proaches. Thus, metaheuristics can be employed to optimize the coefficients of transfer functions aiming to

minimize the MSE between the model output and real unknown system output. Experimental results show

that the MBO algorithm performs good optimizations for the benchmark functions, and it has a good perfor-

mance to solve the system identification problems. It makes very close predictions to the unknown systems

having low-order transfer functions. For the systems with higher-order transfer functions, it can reach the

desired low MSE values. These low MSE values prove that even if it cannot get the original transfer function

parameters for higher-order systems, it can construct their near-optimal equivalent transfer functions.

1897

MAKAS and YUMUŞAK/Turk J Elec Eng & Comp Sci

0 50 100 150 200 250 300
–1

0

1

2

3

4

5

Iteration

a
&

 b
 C

o
e"

ic
ie

n
ts

Coe"icient Calculation Progress for H1 by using GA

0 50 100 150 200 250 300
–1

0

1

2

3

4

5

Iteration

a
&

 b
 C

o
e"

ic
ie

n
ts

Coe"icient Calculation Progress for H1 by using DE

0 50 100 150 200 250 300
–1

0

1

2

3

4

5

Iteration

a
&

 b
 C

o
e"

ic
ie

n
ts

Coe"icient Calculation Progress for H1 by using ABC

0 50 100 150 200 250 300
–1

0

1

2

3

4

5

Iteration

a
&

 b
 C

o
e"

ic
ie

n
ts

Coe"icient Calculation Progress for H1 by using PS O

0 50 100 150
–1

0

1

2

3

4

5

Iteration

a
&

 b
 C

o
e"

ic
ie

n
ts

Coe"icient Calculation Progress for H1 by using MBO

a1

a2

b0

b1

b2

Figure 9. Parameter calculation trends of the algorithms for H1 system.

1898

MAKAS and YUMUŞAK/Turk J Elec Eng & Comp Sci

References

[1] Boussäıd I, Lepagnot J, Siarry P. A survey on optimization metaheuristics. Inform Sciences 2013; 237: 82-117.

[2] Duman E, Uysal M, Alkaya AF. Migrating birds optimization: a new metaheuristic approach and its performance

on quadratic assignment problem. Inform Sciences 2012; 217: 65-77.

[3] Ahuja RK, Ergun O, Orlin JB, Punnen AP. A survey of very large scale neighborhood search techniques. Discrete

Appl Math 2002; 123: 75-102.

[4] Holland JH. Adaptation in Natural and Artificial Systems. Ann Arbor, MI, USA: University of Michigan Press,

1975.

[5] Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated annealing. Science 1983; 220: 671-680.

[6] Glover F. Future paths for integer programming and links to artificial intelligence. Comp Oper Res 1986; 13:

533-549.

[7] Dorigo M. Optimization, learning and natural algorithms. PhD, Polytechnic University of Milan, Milan, Italy, 1992.

[8] Eberhart RC, Kennedy J. A new optimizer using particle swarm theory. In: Proceedings of the Sixth International

Symposium on Micromachine and Human Science; 4–6 October 1995, Nagoya, Japan. New York, NY, USA: IEEE.

pp. 39-43.

[9] Storn R, Price K. Differential evolution - a simple and efficient heuristic for global optimization over continuous

spaces. J Global Optim 1997; 11: 341-359.

[10] Geem ZW, Kim JH, Loganathan GV. A new heuristic optimization algorithm: harmony search. Simulation 2001;

76: 60-68.

[11] Mucherino A, Seref O. A novel meta-heuristic search for global optimization. In: Proceedings of the Conference on

Data Mining, System Analysis and Optimization in Biomedicine; 28–30 March 2007; Gainesville, FL, USA. Melville,

NY, USA: AIP Publishing. pp. 162-173.

[12] Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony

(ABC) algorithm. J Global Optim 2007; 39: 459-471.

[13] Yang XS. Nature-Inspired Metaheuristic Algorithms. 2nd ed. Frome, UK: Luniver Press, 2010.

[14] Shah-Hosseini H. The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm.

International Journal of Bio-Inspired Computation 2009; 1: 71-79.

[15] Yang XS, Deb S. Cuckoo search via Lévy flights. In: Proceedings of World Congress on Nature & Biologically

Inspired Computing (NaBIC); 9–11 December 2009; Coimbatore, India. New York, NY, USA: IEEE. pp. 210-214.

[16] Yang XS, Deb S. Engineering optimisation by cuckoo search. International Journal of Mathematical Modelling &

Numerical Optimisation 2010; 1: 330-343.

[17] Yang XS. A new metaheuristic bat-inspired algorithm. In: Cruz C, González JR, Krasnogor N, Pelta DA, Terrazas

G, editors. Nature Inspired Cooperative Strategies for Optimization (Studies in Computational Intelligence 284).

Granada, Spain: Springer, 2010. pp. 65-74.

[18] Yang XS. Bat algorithm for multi-objective optimisation. International Journal of Bio-Inspired Computation 2011;

3: 267-274.

[19] Eiben AE, Smit SK. Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm and Evolu-

tionary Computation 2011; 1: 19-31.

[20] Pandian SMV, Thanushkodi K. Considering transmission loss for an economic dispatch problem without valve-point

loading using an EP-EPSO algorithm. Turk J Electr Eng Co 2012; 20: 1259-1267.

[21] Mutluer M, Bilgin O. Application of a hybrid evolutionary technique for efficiency determination of a submersible

induction motor. Turk J Electr Eng Co 2011; 19: 877-890.

[22] Jaddi NS, Abdullah S. Hybrid of genetic algorithm and great deluge algorithm for rough set attribute reduction.

Turk J Electr Eng Co 2013; 21: 1737-1750.

1899

http://dx.doi.org/10.1016/j.ins.2013.02.041
http://dx.doi.org/10.1016/j.ins.2012.06.032
http://dx.doi.org/10.1016/j.ins.2012.06.032
http://dx.doi.org/10.1016/S0166-218X(01)00338-9
http://dx.doi.org/10.1016/S0166-218X(01)00338-9
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1016/0305-0548(86)90048-1
http://dx.doi.org/10.1016/0305-0548(86)90048-1
http://dx.doi.org/10.1109/MHS.1995.494215
http://dx.doi.org/10.1109/MHS.1995.494215
http://dx.doi.org/10.1109/MHS.1995.494215
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1177/003754970107600201
http://dx.doi.org/10.1177/003754970107600201
http://dx.doi.org/10.1007/s10898-007-9149-x
http://dx.doi.org/10.1007/s10898-007-9149-x
http://dx.doi.org/10.1504/IJBIC.2009.022775
http://dx.doi.org/10.1504/IJBIC.2009.022775
http://dx.doi.org/10.1504/IJMMNO.2010.035430
http://dx.doi.org/10.1504/IJMMNO.2010.035430
http://dx.doi.org/10.1007/978-3-642-12538-6_6
http://dx.doi.org/10.1007/978-3-642-12538-6_6
http://dx.doi.org/10.1007/978-3-642-12538-6_6
http://dx.doi.org/10.1504/IJBIC.2011.042259
http://dx.doi.org/10.1504/IJBIC.2011.042259
http://dx.doi.org/10.1016/j.swevo.2011.02.001
http://dx.doi.org/10.1016/j.swevo.2011.02.001
http://journals.tubitak.gov.tr/elektrik/issues/elk-12-20-sup.2/elk-20-sup.2-4-1102-1074.pdf
http://journals.tubitak.gov.tr/elektrik/issues/elk-12-20-sup.2/elk-20-sup.2-4-1102-1074.pdf
http://journals.tubitak.gov.tr/elektrik/issues/elk-11-19-6/elk-19-6-5-1003-428.pdf
http://journals.tubitak.gov.tr/elektrik/issues/elk-11-19-6/elk-19-6-5-1003-428.pdf
http://journals.tubitak.gov.tr/elektrik/issues/elk-13-21-6/elk-21-6-16-1202-113.pdf
http://journals.tubitak.gov.tr/elektrik/issues/elk-13-21-6/elk-21-6-16-1202-113.pdf

MAKAS and YUMUŞAK/Turk J Elec Eng & Comp Sci

[23] Fornarelli G, Giaquinto A. An unsupervised multi-swarm clustering technique for image segmentation. Swarm and

Evolutionary Computation 2013; 11: 31-45.

[24] Blum C, Roli A. Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput

Surv 2003; 35: 268-308.

[25] Lennart L. System Identification: Theory for the User. Upper Saddle River, NJ, USA: Prentice Hall, 1997.

[26] Rosenqvist F, Karlström A. Realisation and estimation of piecewise-linear output-error models. Automatica 2005;

41: 545-551.

[27] Pintelon R, Schoukens J. Box-Jenkins identification revisited - Part I: theory. Automatica 2006; 42: 63-75.

[28] Karaboğa N, Çetinkaya MB. A novel and efficient algorithm for adaptive filtering: artificial bee colony algorithm.

Turk J Electr Eng Co 2011; 19: 175-190.

[29] Kalınlı A. Simulated annealing algorithm-based Elman network for dynamic system identification. Turk J Electr

Eng Co 2012; 20: 569-582.

[30] Erçin Ö, Çoban R. Identification of linear dynamic systems using the artificial bee colony algorithm. Turk J Electr

Eng Co 2012; 20 (Suppl. 1): 1175-1188.

[31] Ercin O, Coban R. Comparison of the artificial bee colony and the bees algorithm for PID controller tuning. In:

Proceedings of the International Symposium on Innovations in Intelligent Systems and Applications (INISTA);

15–18 June 2011; İstanbul, Turkey. New York, NY, USA: IEEE. pp. 595-598.

[32] Karaboga N. A new design method based on artificial bee colony algorithm for digital IIR filters. J Frankl Inst

2009; 346: 328-348.

[33] Engelbrecht AP. Fundamentals of Computational Swarm Intelligence. New York, NY, USA: Wiley, 2006.

[34] Shi Y, Eberhart RC. Empirical study of particle swarm optimization. In: Proceedings of the CEC’99 Congress of

Evolutionary Computation; 6–9 July 1999; Washington, DC, USA. New York, NY, USA: IEEE. pp. 1945-1950.

[35] Eberhart RC, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization. In:

Proceedings of the IEEE International Congress on Evolutionary Computation; 16–19 July 2000; La Jolla, CA,

USA. New York, NY, USA: IEEE. pp. 84-88.

[36] Karaboga D, Akay B. A comparative study of artificial bee colony algorithm. Appl Math Comput 2009; 214:

108-132.

[37] Karaboga D, Basturk B. On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput 2008; 8:

687-697.

[38] Karaboga D, Okdem S. A simple and global optimization algorithm for engineering problems: differential evolution

algorithm. Turk J Electr Eng Co 2004; 12: 53-60.

[39] Haupt RL, Haupt SE. Practical Genetic Algorithms. 2nd ed. New York, NY, USA: Wiley, 2004.

[40] Lissaman PBS, Schollenberger CA. Formation flight of birds. Science 1970; 168: 1003-1005.

[41] Makas H. PORLA metodunun sistem modellemedeki performans analizi. MSc, Erciyes University, Kayseri, Turkey,

1998 (in Turkish).

1900

http://dx.doi.org/10.1016/j.swevo.2013.02.002
http://dx.doi.org/10.1016/j.swevo.2013.02.002
http://dx.doi.org/10.1145/937503.937505
http://dx.doi.org/10.1145/937503.937505
http://dx.doi.org/10.1016/j.automatica.2004.11.011
http://dx.doi.org/10.1016/j.automatica.2004.11.011
http://dx.doi.org/10.1016/j.automatica.2005.09.004
http://journals.tubitak.gov.tr/elektrik/issues/elk-11-19-1/elk-19-1-14-0912-344.pdf
http://journals.tubitak.gov.tr/elektrik/issues/elk-11-19-1/elk-19-1-14-0912-344.pdf
http://journals.tubitak.gov.tr/elektrik/issues/elk-12-20-4/elk-20-4-10-1012-942.pdf
http://journals.tubitak.gov.tr/elektrik/issues/elk-12-20-4/elk-20-4-10-1012-942.pdf
http://journals.tubitak.gov.tr/elektrik/issues/elk-12-20-sup.1/elk-20-sup.1-11-1012-956.pdf
http://journals.tubitak.gov.tr/elektrik/issues/elk-12-20-sup.1/elk-20-sup.1-11-1012-956.pdf
http://dx.doi.org/10.1109/INISTA.2011.5946157
http://dx.doi.org/10.1109/INISTA.2011.5946157
http://dx.doi.org/10.1109/INISTA.2011.5946157
http://dx.doi.org/10.1016/j.jfranklin.2008.11.003
http://dx.doi.org/10.1016/j.jfranklin.2008.11.003
http://dx.doi.org/10.1109/CEC.1999.785511
http://dx.doi.org/10.1109/CEC.1999.785511
http://dx.doi.org/10.1109/CEC.2000.870279
http://dx.doi.org/10.1109/CEC.2000.870279
http://dx.doi.org/10.1109/CEC.2000.870279
http://dx.doi.org/10.1016/j.amc.2009.03.090
http://dx.doi.org/10.1016/j.amc.2009.03.090
http://dx.doi.org/10.1016/j.asoc.2007.05.007
http://dx.doi.org/10.1016/j.asoc.2007.05.007
http://journals.tubitak.gov.tr/elektrik/issues/elk-04-12-1/elk-12-1-5-0404-14.pdf
http://journals.tubitak.gov.tr/elektrik/issues/elk-04-12-1/elk-12-1-5-0404-14.pdf
http://dx.doi.org/10.1126/science.168.3934.1003

	Introduction
	Methods and background
	The PSO algorithm
	The ABC algorithm
	The DE algorithm
	The GA
	The MBO algorithm
	System identification by metaheuristics

	Problems and experimental setups
	Benchmark function test
	System identification problems

	Results
	Benchmark function test results
	System identification results

	Conclusions

