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Abstract: The majority of power system faults occur in transmission lines. The classification of these faults in power

systems is an important issue. In this paper, the real parameters of a 28 km, 154 kV transmission line between Simav

and Demirci in Turkey’s electricity transmission network is simulated in MATLAB/Simulink. Wavelet packet transform

(WPT) is applied to instantaneous voltage signals. Instantaneous active power components are obtained by multiplying

instantaneous currents obtained from a voltage source side with these WPT-based voltage signal components. A new

feature vector extraction scheme is employed by calculating the energies of instantaneous active power components.

Constructed feature vectors are treated with a classifier for short-circuit faults that occurred in high-voltage energy

transmission lines; this is known as the common vector approach (CVA). This is the first implementation of CVA in

the classification of short-circuit faults that occurred in high-voltage energy transmission lines. Furthermore, the same

feature vector is applied to a support vector machine and artificial neural network for a comparison with the CVA method

regarding classification performance and testing duration issues. Additionally, a graphical user interface is designed in

MATLAB/GUI. Various noise levels, source frequencies, fault distances, fault inception angles, and fault exposure

durations can be investigated with this interface. Classification of short-circuit faults in high-voltage transmission line

is achieved by using an offline monitoring methodology. It is concluded that a combination of the proposed feature

extraction scheme with the CVA classifier gives substantially high performance for the classification of short circuit

faults in transmission line.

Key words: Common vector approach, support vector machine, artificial neural network, wavelet packet transform,

fault classification, short circuit, transmission line

1. Introduction

Faults occurring in transmission lines constitute 85%–87% of overall power system faults [1]. Symmetric and

asymmetric short circuits happen when transmission line conductors contact each other or the ground as a result

of various physical effects [2]. A rapid and accurate determination of fault type is necessary so that the faulty

zone in the electrical line is deactivated immediately to reduce the adverse impacts resulting from substantially

high magnitudes of short-circuit circumstances.
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Fourier transform (FT), short-time Fourier transform (STFT), and wavelet transform (WT) are the

most widely used signal processing methods in determining fault characteristics. FT is applied to obtain only

frequency components of stationary signals, but time information is lost. STFT is used for time information

requirements in processing nonstationary signals. However, missing data occur in transient analysis of STFT,

since it examines signals by dividing equal time intervals. WT is widely preferred in fault classifications, because

it treats signals in both frequency and time domains. In WT, the low-frequency components of the signal are

analyzed by using large time intervals, whereas the high-frequency components are treated by using small time

intervals.

Only current/voltage data or the combination of current and voltage data are exploited in transmission

line fault classification studies. In the literature, measured voltage data can be input, and discrete wavelet

transform (DWT) is applied to this input signal [3,4]. The components calculated from DWT are classified with

using artificial neural network (ANN) classifier [3]. Energies of voltage signals were also utilized in [4]. When

measured current signal is used, DWT decomposition draws attention. For transmission line fault detection,

Chanda et al. [5] investigated the absolute value of the current peaks, the average value of the current signals,

and three-level DWT detail coefficients, while Geethanjali and Priya [1] employed five-level DWT components

of current signals and used an ANN as a classifier. DWT and fuzzy logic were combined as an alternative study

[6]. Entropy values of DWT components obtained from current data were preferred in the study of El Safty

and El-Zonkoly [7]. Upendar et al. [8] used nine-level DWT coefficients and a perceptron neural network as

classifiers, whereas Abdollahi and Seyedtabaii [9] employed an ANN with three-level approximation and detail

coefficients. In addition, Samantaray [10] applied S-transform to current signals and obtained a feature vector

with energy, standard deviation, variance, and autocorrelation components calculated from these signals. The

systematic fuzzy rule-based approach was used [10].

In addition to the above-mentioned studies, several experiments based on both current and voltage data

were implemented for transmission line fault diagnosis. Joorabian et al. [11] developed a fault classifier that

uses discrete Fourier transform (DFT) of both current and voltage signals with radial basis function networks.

Jamehbozorg and Shahrtash [12] applied one-phase voltage and odd harmonics of the remaining two phases to

a decision tree classifier. He et al. [13] developed a new classification scheme that uses WT, singular value

decomposition, and Shannon entropy. Ekici [14] preferred the entropy of DWT components, while Çöteli [15]

classified transmission line faults by incorporating the S-transform with an SVM classifier.

In this paper, first, WPT is applied to three-phase voltage values. Second, the components of instanta-

neous active power are calculated by multiplying current values with WPT-based voltage components for each

phase. Third, a feature extraction process is carried out by obtaining the energies of these components. This

feature vector is then applied to CVA, SVM, and ANN. These classifiers are compared with respect to their

recognition accuracies, training, and testing times. Furthermore, white Gaussian noise (WGN) that is between

20 and 50 dB SNR value is added to the signals, and the effects of noise are examined. Finally, MATLAB/GUI

is used for a visual demonstration of fault cases and a fault type classification using different classifiers.

2. Wavelet packet transform

A wavelet is a form of wave limited in time whose average value is zero [16]. WT has the ability to analyze

various power quality problems. The application areas of wavelets include electromagnetic wave analysis, filters,

time and frequency analysis of different patterns, image processing, transient analysis of electrical signals, and

data compression techniques [17]. Wavelets have various window sizes. They are wide for slow frequencies and

1902



YUMURTACI et al./Turk J Elec Eng & Comp Sci

narrow for fast frequencies [18]. WT can be carried out in two ways, namely continuous wavelet transform

(CWT) and DWT. DWT is preferred because it is faster than CWT [19].

The most important factor in WT is to determine the level of decomposition and the mother wavelet.

The decomposition level is adjusted by the sampling frequency of the original signal [20]. When WT is applied

to a signal, several components having different frequency values of the signal can be found by doing scaling and

shifting with the mother wavelet. The high-scale, low-frequency components of the signal produced by low-pass

filtering are called approximations, and these are indicated as ‘A’ in Figure 1. The low-scale, high-frequency

components of the signal produced by a high-pass filter are known as details, and these are indicated as ‘D’ in

Figure 1 [21].

Figure 1. Decomposition of a two-level WPT of the S signal.

WPT gives more information than DWT. A two-level WPT of the S signal is illustrated in Figure 1. The

subscripts in this figure indicate the level of the WPT.

In this paper, the sampling frequency is selected as 3.2 kHz. Four-level WPT is applied to obtain the

bandwidth that is closest to the fundamental frequency of 50 Hz. db20, which belongs to the Daubechies wavelet

family, is preferred as the mother wavelet [22,23]. The frequency bandwidths of 16 components obtained for

each phase are given in Table 1.

Table 1. Frequency bandwidths of components obtained by using four-level WPT of a signal sampled at 3.2 kHz.

WPT Frequency WPT Frequency
component bandwidth (Hz) component bandwidth (Hz)
AAAA4 0–100 AAAD4 800–900
DAAA4 100–200 DAAD4 900–1000
ADAA4 200–300 ADAD4 1000–1100
DDAA4 300–400 DDAD4 1100–1200
AADA4 400–500 AADD4 1200–1300
DADA4 500–600 DADD4 1300–1400
ADDA4 600–700 ADDD4 1400–1500
DDDA4 700–800 DDDD4 1500–1600

3. Power system simulation model

The simulation of the 28 km, 154 kV transmission line between Simav and Demirci is achieved in MAT-

LAB/Simulink using real parameters given in [24]. The corresponding power system model is given in Figure

2. Parameters of equipment used in the model are presented in the Appendix. The ground resistance and fault

resistances are fixed as 0.001 Ω. The identification and classification of short-circuit faults occurring in the

transmission line are performed under variable conditions such as source frequency, fault inception angle, fault

time, and fault distance.
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Figure 2. Power system model of the simulated transmission line.

Phase short-circuit types and the corresponding class labels are given in Table 2, along with a number

of signals belonging to 10 different short-circuit faults, which are either symmetrical or asymmetrical in the

simulation model of the system. Three-phase instantaneous voltage and current waveforms measured at the

beginning of the line are shown in Figure 3 for nonfaulty and faulty conditions in ABCG, ABG, AB, and AG

phase short-circuit circumstances. Short circuits of these phases occur at 14 km of the transmission line and are

investigated in an interval of 0.04–0.1 s. The power system operating frequency is 50 Hz. In any short circuit

condition, the voltages of faulty phase(s) decrease, whereas the current passing through them rises significantly.
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Figure 3. Three-phase current and voltage waveforms of the transmission line in nonfaulty and faulty conditions.
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Table 2. Phase short-circuit types and the corresponding class labels with the number of signals for each class.

Phase short-circuit types
Class Number of
labels signals

Short circuit between A, B, C phases and ground ABCG 440
Short circuit between A and B phases AB 440
Short circuit between A, B phases and ground ABG 440
Short circuit between A and C phases AC 440
Short circuit between A, C phases and ground ACG 440
Short circuit between A phase and ground AG 440
Short circuit between B and C phases BC 440
Short circuit between B, C phases and ground BCG 440
Short circuit between B phase and ground BG 440
Short circuit between C phase and ground CG 440

Current and voltage waveforms measured from real power systems usually contain noise. Therefore, noise

is added to the measured signals in order to simulate noise conditions occurring in real power systems. Four

different noisy situations with a 20, 30, 40, and 50 dB signal-to-noise ratio (SNR) value are realized. Any SNR

value of a signal is calculated as in Eq. (1):

SNR = 10 log

(
Ps

Pn

)
(dB) , (1)

where Pn is the power of the noise and Ps is the power (variance) of the signal. A peak noise magnitude

of nearly 3.5% of the voltage signal is equivalent to a typical SNR value of 30 dB [25]. Current and voltage

waveforms of a fault that occurred between phase A and the ground with a value of 20 dB SNR are shown in

Figure 4.
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Figure 4. Current and voltage waveforms of fault that occurred between phase A and the ground with a value of 20

dB SNR.

4. Feature vector extraction

Feature extraction algorithms are the methods used to convert high-dimensional data to low-dimensional data

with equivalent information content. Therefore, they are often used to reduce the size of data for decreasing

the complexity of the classification or regression schemes [26]. Instantaneous active power components are

thought to be more effective in the classification of short-circuit faults, because these signals have both current

and voltage signal features. Therefore, feature extraction is performed by using instantaneous active power

components. The specified simulation time is 0.2 s with 3.2 kHz of sampling frequency. Thus, there are 64 data
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per period. The size of instantaneous current and voltage data for each phase in the voltage source side is 1 ×
640. Instantaneous current and voltage data are normalized prior to feature extraction process using Eq. (2):

FC =
FC

max (|FC [n]|)
(2)

where n is the number of samples in the first simulation period before a fault occurrence. In Eq. (2), voltage

and current signals are scaled per unit (pu) [27]. Both training and testing data are normalized according

to the maximum current/voltage value of the related nonfaulty phase. The total active power is the sum of

instantaneous active powers calculated for each phase in a three-phase system [28]. Gökmen [22] proposed a

wavelet-based instantaneous active and reactive power calculation method. According to this method, it is

possible to obtain DWT components of instantaneous active power by multiplying the DWT components of

voltage and current.
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Figure 5. Various feature vectors based on the types of faults.

pa = va.ia =

(
vAAAA4 + vDAAA4 + vADAA4 + vDDAA4 + vAADA4 + vDADA4 + vADDA4 + vDDDA4+

vAAAD4 + vDAAD4 + vADAD4 + vDDAD4 + vAADD4 + vDADD4 + vADDD4 + vDDDD4

)
.ia

(3)
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Four-level WPT is applied to normalized voltage data. Each voltage wavelet subband is then multiplied by

the normalized current of the relevant phase, as seen in Eq. (3). In this way, 16 instantaneous active power

components are obtained per phase. The size of each instantaneous active power component is 1 × 640. Thus,

a total of 16 × 640 data are available for each phase. Since a three-phase system is investigated, there are 3 ×
16 × 640 data in the overall experiment. An excessive amount of memory and time is required for processing

30,720 data. Signal energy is used for reducing data size and, in this way, the data do not lose their information

content. The formulation of signal energy is given in Eq. (4).

E =
N∑

n=1

|v [n]|2 (4)

In Eq. (4), v is any signal, N is the number of samples included in the signal, and E is the energy of the

signal. The energy of each instantaneous active power component is calculated for a phase. When they are

arranged from the lower-frequency components to the higher ones, a feature vector with dimensions of 1 × 16

is constructed. The energy values of the other two phases are evaluated and concatenated in order to obtain a

feature vector (1 × 48) for the entire three-phase system. The average duration of the feature vector extraction

process is 0.1052 s per feature vector.

5. Classifiers and graphical user interface design

The SVM and ANN methods are most widely used in the studies of classification of the short circuits occurring in

transmission lines. The CVA classifier was used in the diagnosis of the induction motor-bearing faults [29], phase-

ground short circuit in low-voltage systems, and classification of four different faults exposed to two different

loads [30]. In this paper, short circuits that occurred in high-voltage transmission line are classified. First,

CVA is exploited as a classifier. The same training data are then treated with SVM and ANN for comparing

the performances of the classifiers. The characteristics of CVA, SVM, and ANN classifiers, respectively, will be

discussed in the following subsections.

The block diagram of the phase short-circuit fault classification is given in Figure 6.

5.1. Common vector approach

CVA is a classification method based on the separation of feature space into two subspaces, null space and

range space. This method is broadly preferred in speech recognition [31,32], speaker identification [33], image

classification [34], and motor fault diagnosis [29] problems. The main objective is to find a unique common

vector that preserves the inherent characteristics of a pattern class. The CVA algorithm is performed separately

for each class so that only within-class scatters of features are taken into account. The following steps are carried

out to implement the CVA algorithm:

• The within-class covariance matrix (Φ) of a short circuit fault class is evaluated using the feature vectors

of the corresponding class:

Φ =
m∑
i=1

[
(ai − aave) (ai − aave)

T
]
, (5)

where ai is the ith feature vector in a fault class, m is the total number of feature vectors in the training

set of each class, and aave is the average feature vector of the related class.
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Figure 6. Block diagram of the phase short-circuit fault classification.

• The eigenvalues of Φ are semipositive and are sorted in descending order: λ1 ≥ λ2 ≥ . . . ... ≥ λn .

• The uppermost (m– 1) eigenvectors corresponding to the nonzero eigenvalues constitute an orthonormal

basis vector set, spanning a subspace known as the difference subspace B. The orthogonal complement

(B⊥ ) is known as the indifference subspace spanned by the eigenvectors corresponding to the zero

eigenvalues.

• Utilizing the linear combination of the eigenvectors corresponding to the zero eigenvalues, the common

vector is calculated:

acom = ⟨ai,um⟩um + ⟨ai,um+1⟩um+1 + . . .+ ⟨ai,un⟩un

∀i = 1, 2, . . . ,m
, (6)

where acom is the common vector of the fault class and um,um+1, ...,un represents the orthonormal

eigenvectors spanning the indifference subspace (B⊥) [29].

• In the test phase, an unknown feature vector, ax , is classified according to the following decision criterion:

class = argmin
1≤c≤S

∥∥∥∥∥∥
n∑

j=m

{[
(ax−acave)

T
uc
j

]
uc
j

}∥∥∥∥∥∥
2

, (7)

where acave is the average feature vector of the cth class, S is the number of the classes, and n indicates

the total number of eigenvectors. This decision criterion assigns the test feature vector (ax) to the cth

class.
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5.2. Support vector machine

SVM is a class of supervised learning algorithms. It was first introduced by Vapnik [35,36]. Pattern recognition

problems, regression estimation problems, construction of intelligent machines, and forecasting are some of the

SVM application areas.

SVM can be applicable to nonlinear and linear conditions. The separating margin between two classes

is maximized by using SVM. The separating hyperplane g(x) is given in Eq. (8) for linearly separable training

data of two classes:

g (x) = wTx+ b = 0, (8)

where w represents weight vectors, x is an input vector, b is bias, and g(x) is output. Eq. (9) is solved for the

maximum distance between two classes:

min
1

2
wTw, (9)

and Eq. (10) is considered for minimizing the objective function in Eq. (9):

di
(
wTxi + b

)
≥ 1. (10)

This problem can be solved by minimizing the Lagrange function. Eq. (11) is used for this minimization.

J (w, b, α) =
1

2
wTw −

p∑
i=1

αi

[
di
(
wTxi + b

)
− 1
]

(11)

In Eq. (11), α is a nonzero Lagrange coefficient. Eqs. (9) and (10) have different forms when two classes are

in a nonlinear case. The new objective function ø is given by:

(w, ξ) =
1

2
wTw + C

p∑
i=1

ξi, ξi > 0, (12)

di
(
wTxi + b

)
≥ 1− ξi, (13)

where C is the penalty factor and ξ is the slack variable. SVM maps the input vectors x into a high-dimensional

space through some nonlinear mapping (φ function) in a nonlinear case [37,38]. Multiclass SVM could classify

more than two classes. The one-against-one (OAO) and one-against-all (OAA) strategies are the most widely

preferred methods [39–41]. In this paper, the Statistical Pattern Recognition Toolbox (STPRtool) for MATLAB

is used for the SVM classifier [42]. The utilized versions of STPRtool and MATLAB are 2.11 and R2009b,

respectively. The OAO strategy is preferred for the classification of short-circuit faults. The radial basis

function (rbf) is chosen as the kernel function. The width parameter of rbf (γ) and penalty factor (C) are

selected as 10,000 with trial-and-error learning.

5.3. Artificial neural network

An ANN is a mathematical model based on the structure of biological neuron cells. It obtains the knowledge

given to it by processing. It is capable of implementing certain decision-making processes about new data. A

multilayer neural network consists of an input layer, one or more hidden layers, and an output layer. Each layer

contains numerous neurons. A neuron in each layer of the network is linked to nodes in the previous layer or to
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other neurons [43]. The Neural Network Toolbox (nntool) for MATLAB is utilized in this paper. A three-layer

feed-forward backpropagation network is applied for this study [1,9]. Although the number of neurons in the

input and output layers depends on the number of input and output data, the number of neurons in the hidden

layer is determined by the training performance of the network. Forty-eight neurons in the input layer, ten

neurons in the hidden layer, and four neurons in the output layer are utilized in this paper. Sigmoid in the hidden

layers and linear function in the output layers are applied as the activation functions. The network is trained by

using the Levenberg–Marquardt backpropagation (TRAINLM) algorithm [44]. The adaption-learning function

is chosen as gradient descent with momentum weight/bias (LEARNGDM), and the performance function is

mean squared error (MSE). Four hundred data of a total of 4400 fault data are used for the training process of

the ANN, and the remaining 4000 data are used for test process.

Since a normalization process is applied to the three-phase current and voltage data in the feature

extraction stage, a data range of [–1, +1] is obtained. Although the measured output values are close to 1

in faulty conditions, they are close to 0 under normal conditions. A threshold value is identified to increase

recognition accuracy. Classification performance of test data for various threshold values is given in Table

3. When the threshold values are chosen as 0.1, the highest recognition performance is obtained. If network

output(s) are greater than 0.1, the case is accepted as faulty.

Table 3. Classification performance with respect to various threshold values for ANN.

Threshold values
0.001 0.005 0.01 0.05 0.1 0.3 0.5

Noiseless 98.8% 98.525% 98.5% 97.975% 97.625% 96.85% 96.2%
20 dB 76.4% 90.2% 93.7% 99.35% 99.7% 99.6% 98.5%
30 dB 63.75% 83% 90.35% 99.125% 99.15% 99.05% 98.675%
40 dB 36.375% 40.025% 42% 90.075% 99.55% 98.775% 97.725%
50 dB 69.05% 82.175% 88.075% 97.375% 98.8% 98.725% 97.45%
Average 68.875% 78.785% 82.525% 96.78% 98.965% 98.6% 97.71%

SVM has certain important advantages compared to ANNs. The error function has many local minima,

and hence a learning process may fail. Furthermore, a learning algorithm cannot control the complexity of the

architecture of ANN; therefore, this architecture determines the generalization abilities [36,45–51].

5.4. GUI design

A graphical user interface (GUI) is designed by using the MATLAB/GUI application and it is shown in Figure 7.

This interface provides several facilities, such that a user can classify short-circuit faults with different classifiers,

set the required parameters, and generate various short-circuit faults on the transmission line.

Fault type, source frequency, fault distance, fault inception angle, and fault duration can be easily

adjusted with this developed interface. In addition, different amplitudes of fault types can be specified. Noises

with various SNR values can be added to current and voltage signals. Current, voltage, and feature vector

waveforms of the desired phase(s) can be easily sketched. Furthermore, the type of classifier preferred in fault

classification is readily determined by using this interface. The window where the plots are sketched can be

shifted, and waveforms can be expanded or narrowed with a magnifying glass. It is possible to read a value at

any desired point in a plot.
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Figure 7. GUI of phase short-circuit classifier.

6. Results and discussion

In this paper, the real parameters of a 28 km, 154 kV transmission line between Simav and Demirci in Turkey’s

electricity transmission network are simulated in MATLAB/Simulink. The system frequency is controlled in

a range of 49.8–50.2 Hz (approximately 50 Hz), according to the regulations [52]. The fault inception angle

is between 0◦ and 360◦ . Additionally, the fault distance is in the interval of 0.01 and 27.99 km from the

beginning of the line, and the fault exposure duration is between 0.01 and 0.2 s. In total, ten different short-

circuit conditions are classified: phase-ground, phase-phase, two phase-ground, and three phase-ground. Ten

different source frequencies, 10 different fault inception angles, 10 different fault exposure durations, and 10

different fault distances are generated for each fault. Therefore, the training process is achieved with a total

of 400 data. One hundred different source frequencies, 100 different fault inception angles, 100 different fault

exposure durations, and 100 different fault distances are also produced for each fault. In total, 4000 data

are used in the test process. All noiseless testing data are correctly classified by using the CVA classifier.

Classification performances of noiseless faults, using the proposed feature extraction scheme with the SVM and

ANN methods, are given in Tables 4 and 5, respectively.

Classification performances of the same training and test data are examined when they are exposed to

noise with SNR values of 20, 30, 40, and 50 dB. Table 6 presents the accuracies for the classification of faults

using CVA, SVM, and ANN for noiseless and noisy cases. It is clearly seen that CVA gives the best classification

results with the 99.965% average performance.
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Table 4. Classification performance of noiseless faults using SVM.

Fault ABCG AB ABG AC ACG AG BC BCG BG CG Accuracy (%)
ABCG 399 0 0 0 0 0 0 1 0 0 99.75%
AB 0 400 0 0 0 0 0 0 0 0 100%
ABG 1 0 399 0 0 0 0 0 0 0 99.75%
AC 0 0 0 394 6 0 0 0 0 0 98.5%
ACG 0 0 0 0 399 0 0 0 0 1 99.75%
AG 0 0 0 0 0 400 0 0 0 0 100%
BC 0 0 0 0 0 0 399 1 0 0 99.75%
BCG 0 0 0 0 0 0 1 399 0 0 99.75%
BG 0 0 0 0 0 0 0 0 400 0 100%
CG 0 0 0 0 0 0 0 0 0 400 100%
Overall classification accuracy 99.725%

Table 5. Classification performance of noiseless faults using ANN.

Fault ABCG AB ABG AC ACG AG BC BCG BG CG Accuracy (%)
ABCG 367 0 0 0 0 0 0 16 0 0 91.75%
AB 0 400 0 0 0 0 0 0 0 0 100%
ABG 0 37 363 0 0 0 0 0 0 0 90.75%
AC 0 0 0 400 0 0 0 0 0 0 100%
ACG 0 0 0 10 389 0 0 0 0 1 97.25%
AG 0 0 0 0 0 396 0 0 0 0 99%
BC 0 0 0 0 0 0 400 0 0 0 100%
BCG 4 0 0 0 0 0 2 394 0 0 98.5%
BG 0 0 0 0 0 0 0 0 398 0 99.5%
CG 0 0 0 0 2 0 0 0 0 398 99.5%
Overall classification accuracy 97.625%

Table 6. Comparison of classification performances of faults using CVA, SVM, and ANN methods for noiseless and

noisy circumstances.

Noiseless 20 dB 30 dB 40 dB 50 dB Average
CVA 100% 99.875% 99.975% 100% 99.975% 99.965%
SVM 99.725% 99.55% 99.75% 99.8% 99.75% 99.715%
ANN 97.625% 99.7% 99.15% 99.55% 98.8% 98.965%

Training and testing durations of CVA, SVM, and ANN methods for both noiseless and noisy data are

measured and given in Table 7. It can be easily deduced that SVM is the fastest classifier for the test stage,

whereas CVA is the fastest classifier for the training stage. A notebook used to measure these durations has a

microprocessor of Intel Core i7-740QM 1.73 GHZ and a memory of 4 GB.

Table 7. Training and testing durations of CVA, SVM, and ANN methods for noiseless and noisy data cases.

Noiseless 20 dB 30 dB 40 dB 50 dB

CVA
Train (s) 0.035551 0.036630 0.036098 0.037542 0.038225
Test (s) 0.002941 0.002924 0.002947 0.002959 0.002960

SVM
Train (s) 0.038229 0.043289 0.040668 0.040350 0.039428
Test (s) 0.000789 0.000829 0.000797 0.000743 0.000741

ANN
Train (s) 4 3 4 5 4
Test (s) 0.006705 0.006668 0.006878 0.006809 0.006799
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7. Conclusion

In this paper, a new feature extraction scheme is based on the energies of instantaneous active power components

for the classification of phase short-circuit faults that occurred in high-voltage transmission lines. An electricity

transmission network is simulated by using the real parameters of a 28 km, 154 kV transmission line between

Simav and Demirci. A normalization process was first applied to instantaneous current and voltage data

measured from the voltage source side of the transmission line. Instantaneous active power components were

obtained by multiplying normalized instantaneous current and WPT-decomposed instantaneous voltage data.

Feature vectors were constructed using energies of instantaneous active power components. These feature

vectors were then classified by CVA. This situation is the first implementation of CVA on the classification of

short-circuit faults occurring in high-voltage energy transmission lines. Furthermore, the same feature vectors

were applied to both SVM and ANN for a comparison with the CVA method in terms of recognition accuracy

and testing duration issues.

Noises with various SNR values (20, 30, 40, and 50 dB) were added to the raw voltage and current data.

Therefore, the simulated signals exactly resembled real faulty signals. The best results were attained with

the CVA method. The CVA classifier is simple, fast, and robust for both noise conditions and various fault

parameters.

Moreover, a graphical user interface was designed using MATLAB. Short circuit faults can be quite easily

classified with this interface. The fault parameters can be readily adjusted and their corresponding effects on

short-circuit faults can be explicitly traced by means of this interface.
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Kurumu, 2013 (in Turkish).

1915

http://dx.doi.org/10.1109/TPWRD.2006.877102
http://dx.doi.org/10.1109/TPWRD.2006.877102
http://dx.doi.org/10.1109/89.799687
http://dx.doi.org/10.1109/89.799687
http://dx.doi.org/10.1109/89.943343
http://dx.doi.org/10.1109/89.943343
http://dx.doi.org/10.1109/TPAMI.2005.9
http://dx.doi.org/10.1109/TPAMI.2005.9
http://dx.doi.org/10.1109/72.788640
http://dx.doi.org/10.1109/APPEEC.2009.4918280
http://dx.doi.org/10.1109/APPEEC.2009.4918280
http://dx.doi.org/10.1016/S0167-8655(02)00190-3
http://dx.doi.org/10.1016/S0167-8655(02)00190-3
http://dx.doi.org/10.1109/TPWRS.2004.825883
http://dx.doi.org/10.1109/TPWRS.2004.825883
http://dx.doi.org/10.1109/MELCON.2010.5476021
http://dx.doi.org/10.1109/MELCON.2010.5476021
http://dx.doi.org/10.1109/MELCON.2010.5476021
http://dx.doi.org/10.1023/A:1009715923555
http://dx.doi.org/10.1016/j.eswa.2009.02.002
http://dx.doi.org/10.1016/j.eswa.2009.02.002


YUMURTACI et al./Turk J Elec Eng & Comp Sci

Appendix. Parameters of equipment used in the model.

Equipment Parameters

Generator

Voltage: 154 kV Internal connection: Yg
3-phase short-circuit level at base voltage (VA): 667 MVA
X/R:7

Transmission line

Line voltage: 154 kV Line length: 28 km
R+ = 0.135714 Ω/km R0 = 0.417857 Ω/km
L+ = 0.001375 H/km L0 = 0.003853 H/km
C+ = 8.344266e-9 F/km C0 = 6.513984e-9 F/km

Transformer

Voltage: 154/34.5 kV Power: 16 MVA

(Yg/Yg)

R1 = 4.633 Ω L1 = 0.2666 H
R2 = 0.23252 Ω L2 = 0.01338 H
Magnetization resistance Rm = 1285004.1525 Ω
Magnetization inductance Lm = 528.9090 H

Load (Yg)
Voltage: 34.5 kV Active power P = 12.8 MW
Inductive reactive power QL= 9.6 MVAR

1
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