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1Department of Mathematics, Celal Bayar University, Manisa, Turkey
2Department of Mathematics, Ege University, İzmir, Turkey
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Abstract: In this paper, we study certain properties of digital H-spaces. We prove that a digital image that has the

same digital homotopy type with any digital H-space is also a digital H-space. We show that the digital fundamental

group of a digital H-space is abelian. We give examples that are related to a digital homotopy associative H-space and

a κ -contractible digital H-space. Several important applications of digital H-spaces are given in computer vision and

image processing. Finally, we deal with the importance of digital H-space in digital topology and image processing. We

conclude that any κ -contractible digital image is a digital H-space.
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1. Introduction

Although algebraic topology is an area of pure mathematics, there are several applications of algebraic topology

in engineering and science. Interesting techniques have been applied, especially in computer vision and image

processing. In the last decade, homotopy and homology groups, which are significant tools in algebraic

topology, play an important role for some problems of computer vision and image processing with computational

properties.

Digital image processing and pattern recognition are developing fields with various applications in

medicine, geology, biology, industry, etc. The principal aim of digital topology is to determine the topological

properties of discrete objects. Researchers have determined significant properties of two- and three-dimensional

digital images with tools from topology and algebraic topology. In homotopy theory, a variety of properties of

topological spaces that are invariant under continuous deformations are studied. Computer graphics, geometric

modeling, computer vision, and digital image analysis are important usage areas of digital topology.

H-spaces play an important role in the basic properties in homotopy theory. For example, a fundamental

group of an H-space is abelian. Additionally, Adams [1] proved that the spheres S0, S1, S3, S7 are H-spaces.

Digital homotopy groups that can be related to digital H-spaces are used to classify digital images. A digital

homotopy group is a significant invariant for image analysis. This generalizes the digital fundamental group,

which gives information about loops and holes of a space. A general method that is related to deciding whether

two digital images have isomorphic homotopy groups could be a powerful tool for image processing. We think

that digital H-spaces will be a very useful tool in determining digital homotopy groups.

Researchers in this area wish to characterize the properties of digital images. Since we aim to get

important results for digital H-spaces, we benefit from [2]. Ayala et al. [3] showed that the digital fundamental
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group of a digital object is isomorphic to the fundamental group of its continuous analog and give a digital

version of the Seifert–Van Kampen theorem. Boxer [4] dealt with the digital versions of several notions from

topology, including homeomorphism, retraction and homotopy. He [5] introduced the digital fundamental group

by using classical methods of algebraic topology. He also [6] studied various digital continuous functions that

preserve homotopy types and gave [7] several theorems about covering spaces. Boxer and Karaca [8] investigated

the conditions under which the fundamental group of a Cartesian product of digital images is isomorphic to

the product of the fundamental groups of the factors. Ege and Karaca [9] studied the fixed point properties

of digital images. They [10] introduced a digital H-space, a digital H-group, and a digital H-map between

digital H-spaces, and also obtained some results about digital H-spaces. Ege and Karaca [11] constructed a

cohomology theory of digital images and defined a digital simplicial cup product. The digital fundamental group

was discussed in [12,13]. Herman [14] gave several adjacency relations. He [15] presented an algorithm to find

any finite boundary between two components in any binary picture in any finitary 1-simply connected digital

space. Kong [16] defined a digital fundamental group of discrete objects in the 3D digital Euclidean space,

which gives us information about the structure of the digital image. Kopperman [17] gave an approximation

on finite spaces and digital topology. Kovalevsky [18] introduced a notion of a cell list and data structure for

encoding segmented images. He also gave some applications of these data to image analysis. Malgouyres [19]

gave a complete algebraic presentation of the digital fundamental group of any object in a 2D digital image.

He concluded that two 2D connected objects have isomorphic fundamental groups if and only if they have the

same number of holes. Mazo et al. [20] proved that the fundamental group of a digital space is isomorphic

to the fundamental-like group, which is generally considered in digital image analysis. They also used finite

spaces for image analysis and processing. Rosenfeld and Kak [21] presented some concepts and mathematical

techniques of digital image processing and analysis. Rosenfeld [22] addressed continuous functions between two

digital images. Since H-spaces were widely characterized in [23,24], we also benefit from them. In this paper,

we prove that a digital image that has the same digital homotopy type with any digital H-space is also a digital

H-space, and we show that the digital fundamental group of a digital H-space is abelian.

This paper is organized as follows. In the preliminaries section, we give some basic definitions re-

lated to digital topology such as digital κ -adjacencies, a digital (κ1, κ2)-continuous function, digital (κ1, κ2)-

isomorphism, and digital (κ1, κ2)-homotopy. In the next section we introduce a digital H-space and a digital

H-group. Moreover, we give examples of digital homotopy-associative H-space and κ-contractible digital H-

spaces. In Section 4, we deal with several applications of digital H-spaces in image processing and computer

vision. Finally, we arrive to certain important conclusions about digital H-spaces.

2. Preliminaries

In this work, we denote the set of integers by Z . A finite subset of Zn with an adjacency relation is called

a digital image, which is denoted by (X,κ), where Zn represents the set of lattice points in Euclidean n-

dimensional space and κ is an adjacency relation for the members of X . Various adjacency relations are used

in the study of digital images.

Definition 2.1. [16]. Consider the following statements:

(1) Two points p and q in Z are 2-adjacent if |p− q| = 1 (Figure 1).

(2) Two points p and q in Z2 are 8-adjacent if they are distinct and differ by at most 1 each coordinate.
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(3) Two points p and q in Z2 are 4-adjacent if they are 8-adjacent and differ by exactly one coordinate (see

Figure 2).

(4) Two points p and q in Z3 are 26-adjacent if they are distinct and differ by at most 1 each coordinate.

(5) Two points p and q in Z3 are 18-adjacent if they are 26-adjacent and differ by at most two coordinates.

(6) Two points p and q in Z3 are 6-adjacent if they are 18-adjacent and differ by exactly one coordinate

(Figure 3).

Figure 1. The 2-adjacency.

Figure 2. The 4-adjacency and 8-adjacency.

Figure 3. The 6-adjacency, 18-adjacency, and 26-adjacency.

Let κ be an adjacency relation defined on Zn . A κ-neighbor of p ∈ Zn is a point of Zn that is κ-adjacent

to p . A digital image X ⊂ Zn is κ -connected [14] if and only if for every pair of different points x, y ∈ X ,

there is a set {x0, x1, . . . , xr} of points of a digital image X , such that x = x0 , y = xr and xi and xi+1 are

κ -neighbors where i ∈ {0, 1, . . . , r − 1} . A κ -component of a digital image X is a maximal κ -connected subset

of X . Let a, b ∈ Z with a < b . A digital interval [4] is a set of the form

[a, b]Z = {z ∈ Z|a ≤ z ≤ b}.

For the Cartesian product of two digital images, the adjacency is defined as follows:
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Definition 2.2 [12]. Given two points xi, yi ∈ (Xi, κi) , i ∈ {0, 1} , (x0, x1) and (y0, y1) are adjacent in

X0 ×X1 if and only if one of the following is satisfied:

a) x0 = y0 and x1 and y1 are κ1 -adjacent; or

b) x0 and y0 are κ0 -adjacent and x1 = y1 ; or

c) x0 and y0 are κ0 -adjacent and x1 and y1 are κ1 -adjacent.

We will denote κ∗ for the adjacency of the Cartesian product of digital images (X0, κ0) and (X1, κ1).

Definition 2.3 [5]. Let (X,κ1) ⊂ Zn1 and (Y, κ2) ⊂ Zn2 be digital images. A function f : X → Y is called

(κ1, κ2)-continuous if the image under f of every κ1 -connected subset of X is a κ2 -connected subset of Y .

A function f : X → Y is (κ1, κ2)-continuous [5,22] if and only if for every κ1 -adjacent points {x1, x2}
of X , either f(x1) = f(x2) or f(x1) and f(x2) are κ2 -adjacent in Y .

Let (X,κ1) ⊂ Zn1 and (Y, κ2) ⊂ Zn2 be digital images. A function f : X → Y is a (κ1, κ2)-isomorphism

[7] if f is (κ1, κ2)-continuous and bijective and f−1 : Y → X is (κ2, κ1)-continuous.

Definition 2.4 [5]. Let X ∈ Zn1 and Y ∈ Zn2 be digital images with κ1 -adjacency and κ2 -adjacency,

respectively. Two (κ1, κ2)-continuous functions f, g : X → Y are said to be digitally (κ1, κ2)-homotopic in Y

if there is a positive integer m and a function H : X × [0,m]Z → Y , such that:

• for all x ∈ X , H(x, 0) = f(x) and H(x,m) = g(x);

• for all x ∈ X , the induced function Hx : [0,m]Z → Y , defined by

Hx(t) = H(x, t) forall t ∈ [0,m]Z,

is (2, κ2)-continuous; and

• for all t ∈ [0,m]Z , the induced function Ht : X → Y , defined by

Ht(x) = H(x, t) forall x ∈ X,

is (κ1, κ2)-continuous.

The function H is called a digital (κ1, κ2)-homotopy between f and g . The notation f ≃(κ1,κ2) g is

used to indicate that functions f and g are digitally (κ1, κ2)-homotopic in Y . The digital (κ1, κ2)-homotopy

relation [5] is one of equivalence among digitally continuous functions f : (X,κ1) → (Y, κ2).

Definition 2.5 [5]. Let f : X → Y be a (κ1, κ2)-continuous function and let g : Y → X be a (κ2, κ1)-

continuous function, such that f ◦ g ≃(κ2,κ2) 1Y and g ◦ f ≃(κ1,κ1) 1X . Then we say that X and Y have the

same (κ1, κ2)-homotopy type and that X and Y are (κ1, κ2)-homotopy equivalent.

Definition 2.6 [4]. (i) A digital image (X,κ) is said to be κ-contractible if its identity map is (κ, κ)-homotopic

to a constant function c̄ for some c ∈ X , where the constant function c̄ : X → X is defined by c̄(x) = c for all

x ∈ X .
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(ii) We say that a (κ1, κ2)-continuous function f : X → Y is κ2 -nullhomotopic if f is κ2 -homotopic to

a constant function c̄ in Y .

(iii) Let (X,A) be a digital image pair with κ-adjacency. Let i : A → X be the inclusion function. A is

called a κ-retract of X if and only if there is a κ-continuous function r : X → A such that r(a) = a for all

a ∈ A . Then the function r is called a κ-retraction of X onto A .

Definition 2.7 [6]. A digital homotopy H : X × [0,m]Z → X is a κ-deformation retract if the induced map

H(−, 0) is the identity map 1X and the induced map H(−,m) is κ-retraction of X onto H(X × {m}) ⊂ X .

The set H(X × {m}) is called a κ-deformation retract of X .

For a digital image (X,κ) and its subset (A, κ), we call (X,A) a digital image pair with κ -adjacency.

Moreover, if A is a singleton set {x0} , then (X,x0) is called a pointed digital image.

3. Digital H-spaces

In this section we explore digital H-spaces. We generally benefit from [2,23,24].

Definition 3.1. Let (X, p, κ) be a pointed digital image. For a digital continuous multiplication µ : X×X → X

and a digital constant map c : X → X , if we have

µ ◦ (c, 1X) ≃(κ,κ) 1X ≃(κ,κ) µ ◦ (1X , c),

then (X, p, κ) is called a digital H-space.

Example 3.2. Let X = {p} be a single point digital image with κ-adjacency. We now show that (X, p, κ) is

a digital H-space. Since

µ ◦ (c, 1X)(p) = µ(c(p), 1X(p)) = µ(p, p) = p = µ(1X(p), c(p)) = µ ◦ (1X , c)(p)

where c : X → X is a digital constant map, i.e. c(p) = p , we have

µ ◦ (c, 1X) ≃(κ,κ) µ ◦ (1X , c) ≃(κ,κ) 1X .

As a result, we find that (X, p, κ) is a digital H-space.

Definition 3.3. A digital H-space (X, p, κ) is called digital homotopy associative if we have µ◦(1X×µ) ≃(κ∗,κ)

µ ◦ (µ× 1X) , where µ : X ×X → X.

Example 3.4. Let X = [0, 1]Z . Then (X, p, 2) is a digital H-space where p = 0 or 1 . We first determine

images of X ×X ×X and X ×X .

X ×X ×X = MSS
′

6 = [0, 1]Z × [0, 1]Z × [0, 1]Z ⊂ Z3

is a digital image with 6-adjacency [13] (Figure 4).

On the other hand, X ×X = [0, 1]Z × [0, 1]Z ⊂ Z2 is a digital image with 4-adjacency (Figure 5).
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Figure 4. Digital image MSS
′
6 . Figure 5. Digital image X ×X .

For all x ∈ X , let c : X → X be defined by c(x) = p where p ∈ {0, 1} . It is clear thatµ ◦ (c, 1X) ≃(2,2)

µ ◦ (1X , c). Similarly, for all (x, y, z) ∈ X ×X ×X , we have

µ ◦ (1X , µ) ≃(6,2) µ ◦ (µ, 1X).

As a result, (X, p, 2) is a digital (6, 2)-homotopy associative H-space.

Definition 3.5. Let (X, p, κ) be a digital H-space. A map η : (X, p, κ) → (X, p, κ) is called a digital homotopy

inverse for (X, p, κ) if we have

µ ◦ (η, 1X) ≃(κ,κ) µ ◦ (1X , η) ≃(κ,κ) p

where p(x) = p , µ : X ×X → X.

Definition 3.6. For a digital H-space (X, p, κ) , if µ ◦ T ≃(κ∗,κ) µ , where T is defined by T (x, y) = (y, x) ,

then we say µ is digital homotopy-commutative.

Definition 3.7. A digital H-group is a digital H-space (X, p, κ) with the digital homotopy associative multipli-

cation µ and digital homotopy inverse η .

Definition 3.8. Let (X, p, κ) and (Y, q, κ′) be digital H-spaces. A map f : X → Y is called a digital H-map

if we have f ◦ µ ≃(κ,κ′) µ
′ ◦ (f × f) where µ′ : Y × Y → Y.

Theorem 3.9. Let (X, p, κ) be a digital H-space. If (X, p, κ) and (Y, q, κ′) have the same (κ, κ′)-homotopy

type, then (Y, q, κ′) is a digital H-space.

Proof. Let g : Y → X be the digital homotopy inverse of f : X → Y . Since (X, p, κ) is a digital H-space, it

has a digital continuous multiplication µ : X ×X → X . If we define µ′ : Y × Y → Y by µ′ = f ◦ µ ◦ (g × g),

then µ′ is a digital continuous multiplication in Y and

µ′ ◦ (1, c′) = f ◦ µ ◦ (1, c) ◦ g ≃(κ′,κ′) f ◦ g

where c and c′ are digital constant maps. Because f ◦ g ≃(κ′,κ′) 1Y , we get

µ′ ◦ (1, c′) ≃(κ′,κ′) 1Y .
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Similarly, we have µ′ ◦ (c′, 1) ≃(κ′,κ′) 1Y . Thus, have we obtained the required result. 2

Corollary 3.10. Any κ-contractible digital image (X,κ) is a digital H-space.

Example 3.11. Let 0n be the origin of Zn . Boxer [7] defines a sphere-like digital image as follows:

Sn = [−1, 1]n+1
Z \ {0n+1} ⊂ Zn+1. We define a digital version of the real projective line ZP 1 via quotient

map from S1 with antipodal points, and we denote the digital projective line by ZP 1 (Figure 6).

Figure 6. S1 and the digital projective line ZP 1 .

It is easy to show that S1 is an 8-deformation retract of ZP 1 . Therefore, ZP 1 is an 8-contractible

image and ZP 1 has the same (8, 2)-homotopy type as a single point image. As shown by Example 3.2 and

Theorem 3.9, (ZP 1, 8) is a digital H-space.

Example 3.12. Ege and Karaca [9] defined a digital version of the real projective plane ZP 2 via a quotient

map from S2 with antipodal points. They denoted the digital projective plane by P 2 (Figure 7).

It is easy to show that S2 is a 6-deformation retract of P 2 . As a result, P 2 is a 6-contractible image

and has the same (6, 2)-homotopy type as a single-point image. As shown by Example 3.2 and Theorem 3.9,

(P 2, 6) is a digital H-space.

Figure 7. Digital projective plane P 2 .
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Figure 8. Complex molecule of a protein.

Theorem 3.13. If (X, p, κ) and (Y, q, κ′) are digital H-spaces, then the product space (X × Y, p× q, κ∗) is a

digital H-space, where κ∗ is the product adjacency.

Proof. Let µ and ν be digital continuous multiplication maps for (X, p, κ) and (Y, q, κ′), respectively. Now

let θ be a digital multiplication map for (X × Y, p × q, κ∗). We define θ by θ = (µ × ν)(1 × T × 1), where

T : X × Y → Y ×X is defined by T (x, y) = (y, x). Since

θ ◦ (c, 1)(x, y) = (x, y) and θ ◦ (1, c)(x, y) = (x, y),

where c is digital constant map and 1X×Y is the identity map on X ×Y , we have θ ◦ (c, 1) ≃(κ∗,κ∗) 1X×Y and

θ ◦ (1, c) ≃(κ∗,κ∗) 1X×Y . As a result, θ is the digital continuous multiplication for X×Y , and (X×Y, p× q, κ∗)

is a digital H-space. 2

Denote [X,Y ] by the set of pointed digital (κ, κ′)-homotopy classes of pointed maps from X to Y .

If (Y, q, κ′) is a digital H-space and (X, p, κ) is any digital image, then the set [X,Y ] can be given binary

operation, which is defined as follows:

Let f, g : X → Y be digital maps and define

f + g = µ ◦ (f × g) ◦ d = µ ◦ (f, g).

Here, d : X → X ×X is the diagonal map. If α = [f ] , β = [g] ∈ [X,Y ] , then we set α+ β = [f + g].

Theorem 3.14. Let (Y, q, κ′) be a digital H-group and its digital multiplication map be µ : Y × Y → Y . For

all digital images(X, p, κ) , [X,Y ] has a natural group structure given by [f ][g] = [µ ◦ (f, g)]. If µ is digital

homotopy commutative, then [X,Y ] is abelian.

Proof. Since µ ◦ (1Y × µ) ≃(κ∗,κ′) µ ◦ (µ × 1Y ), we have associativity. For every [f ], [g], [h] ∈ [X,Y ] , we get

[f ]([g][h]) = ([f ][g])[h] . We claim that [X,Y ] has a two-sided identity element. Let c : Y → Y and e : X → Y

be digital constant maps. We know that µ◦(1, c) ≃(κ′,κ′) 1Y and µ◦(c, 1) ≃(κ′,κ′) 1Y . Since we get [f ][e] = [f ]

and [e][f ] = [f ] , then we have a two-sided identity element [e] for [X,Y ] .

[ϕ◦f ] is a two-sided inverse of f , because [f ][ϕ◦f ] = [e] where ϕ◦f represents [f ]−1 and ϕ : Y → Y is

a digital homotopy inverse for µ and Y. Thus, [X,Y ] is a group. If µ is digital homotopy commutative, then

[f ][g] = [µ ◦ (f, g)] = [µ ◦ T ◦ (f, g)] = [g][f ].
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Thus, we obtain the result. 2

Theorem 3.15. Let (X, p, κ) be a digital H-space, (Y, q, κ′) a digital image, and f : Y → X a pointed map.

If f has a left-pointed digital homotopy inverse, then (Y, q, κ′) is a digital H-space.

Proof. Let r : X → Y be a left-pointed digital homotopy inverse of f . Then r ◦ f ≃(κ′,κ′) 1Y . We define a

digital multiplication map µY : Y × Y → Y by µY = r ◦ µX ◦ (f × f). It is clear that µY ◦ (1Y × µ) ≃(κ∗,κ′)

µY ◦ (µY × 1Y ). As a result, Y is a digital H-space. 2

We immediately obtain the following.

Proposition 3.16. If (X, p, κ1) , (Y, q, κ2) , and (Z, r, κ3) are digital H-spaces and f : Y → Z is a digital

H-map, then f∗ : [X,Y ] → [X,Z] is a homomorphism.

Lemma 3.17. A κ-retract of a digital H-space (X, p, κ) is a digital H-space.

Proof. Let (X, p, κ) be a digital H-space and A ⊂ X be a κ -retract with a κ -retraction r : X → A . We

know that X has a digital multiplication map µ : X ×X → X . Let i : A → X be an inclusion map. Because

µA = r ◦ µ ◦ (i × i), we conclude that µA is a digital multiplication map. As a result, (A, q, κ) is a digital

H-space where r(p) = q ∈ A . 2

Example 3.18. Let X = [0, 1]Z . By Example 3.4, we know that (X, p, 2) is a digital H-space where p = 0 or

1 . Consider the subset A = [0]Z ⊂ X . Since A is a 2-retract of (X, p, 2) , from Lemma 3.17 we conclude that

one-pointed digital image A is a digital H-space.

Using Lemma 3.17, we can give the following theorem.

Theorem 3.19. Let (X, p, κ) and (Y, q, κ′) be any two digital images. If (X×Y, p×q, κ∗) is a digital H-space,

then (X, p, κ) and (Y, q, κ′) are both digital H-spaces, where κ∗ is the product adjacency.

Proof. •X is a digital κ -retract of X × Y , since there is a κ-retraction map r1 : X × Y → X that can be

defined by r1(x, y) = x , such that r1 ◦ i(x) = x ⇒ r1 ◦ i ≃(κ,κ) 1X where i : X → X × Y is an inclusion

map.

•Y is a digital κ′ -retract of X × Y because there is a κ′ -retraction map r2 : X × Y → Y that can be

defined by r2(x, y) = y , such that r2 ◦ j(y) = y ⇒ r2 ◦ j ≃(κ′,κ′) 1Y where j : Y → X × Y is an inclusion

map.

From Lemma 3.17, we conclude that (X, p, κ) and (Y, q, κ′) are digital H-spaces. 2

If we associate with Theorem 3.13 and Theorem 3.19, we have the following corollary:

Corollary 3.20. (X, p, κ) and (Y, q, κ′) are both digital H-spaces if and only if (X × Y, p× q, κ∗) is a digital

H-space.
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4. Applications

In this section, we deal with certain applications of this theory in computer vision and image processing. Several

problems show the important role played by digital topology in the analysis of digital images and computer

vision. One problem concerns counting objects in an image, such as the number of people in a market, which is

important for security. Another problem is distinguishing objects due to their properties. Computer scientists

use homotopy invariants, such as the fundamental group, to compare the forms of objects. Other problems are

reduction of data, image segmentation, and data compression.

We now give three applications of this theory.

1) The following figure is a complex molecule of a protein.

The 3D structure of the protein can be given as follows.

If we obtain the digital simplicial complex structure of Figure 9, then we can calculate its digital funda-

mental group and digital homotopy groups. Our purpose is to gain information about the shapes, holes,

and sizes of the components of digital images. This information is one of the important problems of image

analysis. Since the digital homotopy groups are invariant from digital images, we can classify them. If

we determine whether a digital image is a digital H-space or not, certain results are achieved about the

image.

Figure 9. 3D structure of the protein.

2) If a digital image (X,κ) is κ-contractible, then we say that it is a digital H-space and has the same

properties as the one-point digital image. Homotopy deals with topological invariants such as the number

of connected components, holes, etc. of a topological space. Homotopy groups codify and shape properties.

The following figure shows the machinery of this theory.

There are no adjacent points in Figure 10, so its zero and first digital homotopy groups are Z ⊕ Z ⊕ Z .

The other homotopy groups are trivial. We conclude that a digital H-space that has three components

has the same homotopy-type as the image. This knowledge contains the topological properties of the

digital image. Using these properties, we arrive to certain conclusions about the digital image, including

the classification of images.

3) Thinning, an important operation in image analysis, aims to reduce data without altering crucial topo-

logical properties such as connectivity and homotopy type. If the computer data are reduced by digital
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homotopy, the computer program of the digital image can be run quickly and easily. The following exam-

ple is given to explain this procedure. An8-deformation retract of the digital image Z2 − {(0, 0)} is the

digital image MSC
′

8 , which is defined by MSC
′

8 = {(1, 0), (0, 1), (−1, 0), (0,−1)} in Z2 .

Figure 10. Original CAT mediastinum image and image with different connected components.

Since MSC
′

8 is an 8-contractible digital image [5], i.e. it has the same digital homotopy type with a

one-pointed digital image, it is a digital H-space. Therefore, we conclude that this image has all the properties

of a digital H-space. This knowledge will be useful for solving certain problems of digital image processing.

Figure 11. 8-deformation retract of the digital image Z2 − {(0, 0)} to MSC
′
8 .

5. Conclusion

The aim of this paper is to present several important properties of digital H-spaces. We arrived to useful

conclusions about digital H-spaces. Since the digital homotopy groups related to digital H-spaces are powerful

invariants that carry much of the topological information about a digital image, we can arrive to some useful

conclusions about image processing and computer graphics algorithms. In the future, we aim to construct a

homology and cohomology theory for digital H-spaces, because they are powerful tools with computational

properties.
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