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Abstract: Family-based designs are commonly used in genetic association studies to locate markers associated with

diseases. It is a challenging task to collect a large enough sample size, perform a statistical test, and obtain the desired

statistical power. The sequential probability ratio test (SPRT) was introduced to overcome the limited sample size

problem. However, the drawback of SPRT is that, for the sake of accuracy, the test leaves many markers in a gray zone

meaning “no decision”. In this article, we propose a novel approach: a sequential probability ratio test ‘plus’ (SPRT+)

to reduce the number of these gray zone markers. Using simulated data, the results of SPRT+ are compared with the

results of SPRT. SPRT+ shows a promising overall performance in identifying highly and moderately associated markers

in the correct association region without a loss of accuracy.
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1. Introduction

Genome-wide association studies (GWASs) have initiated a new era in the study of human genetics [1]. Rapid

advances in genotyping array technology and the completion of the HapMap Project make it a popular and

feasible approach in genetic analysis of complex traits [2]. The goal of a GWAS is to understand the genetic

basis of common multifactorial diseases and predict unknown disease-associated variants [3]. Association studies

are now being routinely performed in the genetic analysis of common diseases.

The major problem in association studies is the presence of systematic differences in allele frequencies

due to the population substructure [4]. This problem is essentially existent in unrelated case-control studies

and is susceptible to potential false findings. To overcome this serious danger, family-based design has been

proposed [5–7]. Family-based association studies are robust for the discovery of spurious associations and avoid

problems of population heterogeneity. It demonstrates the cosegregation of a disease with its genetic markers by

using related individuals [8]. The haplotype relative risk approach is the simplest and generally most powerful

family-based design consisting of trios: an affected individual and his or her two parents [9].

Several different family-based association tests (FBATs) for this ‘trio design’ have been developed [10].

They compare the distributions of the transmitted allele to the nontransmitted allele from heterozygous parents

and then detect a genetic linkage in the presence of an association [11]. To get reasonable results from FBATs,

we need a large enough sample size of a completely known nuclear family genotype [10]. However, for late-

onset diseases it is difficult and even sometimes impossible to get the genotype information of the parents [12].
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Therefore, in family-based design, the most challenging task is how to avoid a type I error with limited sample

size.

Recently, Ilk et al. proposed a sequential test that detects genetic associations even with small sample

sizes [13]. Sequential tests are different from classical hypothesis tests that were used in FBATs. In classical

hypothesis testing the number of samples is fixed at the beginning of the test, whereas in sequential testing it is

not fixed and every sample is analyzed after being collected. A sequential test compares the samples collected up

to that moment with certain threshold values and puts the markers into one of the following regions: ‘associated

zone’, ‘not-associated zone’, and ‘gray zone’. A sequential test terminates the sample collection when the marker

is in the associated or not-associated zone and continues sampling as long as the marker is in the gray zone [14].

As a result, the primary advantage of this test is high accuracy in defining associated zone and not-associated

zone markers, whereas the drawback of this test is undefined gray zone markers. The purpose of this article is

to introduce a method for the reduction of the number of gray zone markers in sequential testing.

2. Methods

In this section, first, a general description of the sequential probability ratio test (SPRT) is given and then, to

overcome this challenge, the newly proposed algorithm is discussed. The methods are applied to simulated data

for performance comparison.

3. SPRT

The SPRT is an application of hypothesis testing that tests a simple null hypothesis H0 against a single

alternative hypothesis H1 [14]. In classical hypothesis testing, the number of required observations is fixed at

the beginning of the experiment and two decision regions are considered: the region of acceptance of the null

hypothesis and the region of acceptance of the alternative hypothesis. The SPRT differs from classical hypothesis

testing as the required sample size in the SPRT is not predetermined at the beginning of the experiment and

the test procedure is carried out sequentially. It splits the sample space into three regions: acceptance of the

null hypothesis, acceptance of the alternative hypothesis, and a gray region where the number of observations

is not sufficient to make a decision. The advantage of the sequential test is that it requires a smaller number

of observations than classical hypothesis testing [15]. Therefore, it is meaningful to apply the SPRT to small

samples.

For a brief discussion of the SPRT method, consider τ as the probability of transmitting the M1 allele

from the M1M2 heterozygous parent to the offspring, as in Ilk et al. [13]. The aim is to test the hypothesis

H0 : τ = τ0 against H1 : τ = τ1 where τ0 is different fromτ1 . The decision is then made by using the likelihood

ratio statistic λn where n is the number of first available observationsx1, x2, ..., xn [16]. The likelihood ratio

statistic λn is then computed for the first n observations using Eq. (1):

λn =
τ b0(1− τ0)

c

τ b1(1− τ1)c
for n = 1, 2, . . . (1)

The parameters b and c come from a 2×2 contingency table, where b is the sum of heterozygous parents

who transmit the M1 but not the M2 allele to the offspring, and c is the sum of heterozygous parents who

transmit the M2 but not the M1 allele to the offspring.

For a desired statistical power of a test, thresholds k0 and k1 with k0 <k1 were set as boundaries by
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Wald’s approximations:

k0 =
α

1− β
, k1 =

1− α

β
, (2)

where thresholds k0 and k1 depend on type I (α) and type II (β) errors and determine the boundaries between

the decision regions. The SPRT then concludes that:

accept H0 if λn ≤ k0, (3)

reject H0 if λn ≥ k1, (4)

continue sampling if k0 < λn < k1, (5)

which means that if the likelihood ratio statistic λn is less than or equal to the k0 threshold, then there is an

association between the genetic marker and a susceptible disease gene. Similarly, if the likelihood ratio statistic

λn is greater than or equal to the k1 threshold, then there is no association between the genetic marker and

a susceptible disease gene. On the other hand, if the likelihood ratio statistic λn is within the critical interval

(k0, k1), a decision has to be postponed until new observations are made [13].

Ilk et al. applied the SPRT to simulated data and showed improved performance of the sequential test

over classical hypothesis testing. The SPRT accurately classified markers even with small sample sizes. However,

many markers fell within a gray zone and no explanation was given about the gray zone markers.

4. SPRT+

We propose a novel method SPRT+ to reduce gray zone markers by using the marker-term annotation matrix

with kappa statistics. The marker-term annotation matrix is one in which rows correspond to the markers and

columns correspond to the independent terms. The relationships between the markers and the terms are in

binary form. Let A = [aij ] denote an m × nbinary data matrix, where m is the number of markers and n

is the number of terms. In this case, if the ith marker is related to the j th term then the element aijwill be

equal to 1; if the ith marker is not related to the j th term then the element aijwill be equal to 0. Hence, in

A , all associations between markers and terms are represented by a combination of ones and zeros.

Our hypothesis is that similar annotation terms will share similar markers and by kappa statistics we will

get the agreement metric between the markers. The kappa statistics determine the distance metric by which the

marker-marker and marker set-marker relationship is judged. The metric defines the observed marker-marker

relationship compared to its probability according to annotation cooccurrence [17].

We calculate the kappa statistics for the given markers a and b using Eq. (6).

Kab =
Oab −Aab

1−Aab
(6)

Here, Oab is the observed relationship between markers a and b , Aab is the chance cooccurrence of the common

markers, and Kab is the distance metric of markers a and b [18].

Notice that in an m×m kappa score matrix K=[kij ] with m markers, kij = kji , i.e. K is symmetric,

and k ij is defined by the kappa statistics between the markers i and j .
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According to the defined agreement range of the kappa value, the gray zone markers can then be

reclassified into the same three regions once again. Thus, with no need of new trios, the gray zone markers

can be refined. As a result, SPRT+ partially overcomes the drawback of the sequential test and reduces the

number of gray zone markers.

5. Simulation study

A simulation study was performed to compare the performance of the proposed statistical method, SPRT+,

with SPRT. The simulation data were generated with MATLAB. For the simulations, we generated 262,264

markers, 120 trios, and 100 annotation terms.

The marker set was generated with the three different genotypic risk ratio (GRR) subgroups: not

significantly associated (GRR ≤ 1.5), moderately associated (1.5 <GRR <3.5), and highly associated (GRR

≥ 3.5) markers [13]. For a realistic scenario, 98% of the markers were generated under the null hypothesis and

only 2% of the markers were generated under the alternative hypothesis. As a consequence, the subgroup with

“no significant association” had 257,019 markers, the subgroup with “moderate association” had 3934 markers,

and the subgroup with “high association” had 1311 markers. The minimum and maximum sample sizes of

simulation data were assumed to be 20 and 120, respectively. Distinct sample sizes in increments of 10 were

considered.

The relationships between the marker and the terms were simulated in the same probabilistic range as in

subgroups. Namely, there is no relationship among the not-significant associated markers; there is a moderate

relationship among the moderately associated markers and a high relationship among the highly associated

markers.

Furthermore, the threshold values k0 and k1 were calculated with the nominal values α(0.1%) and

β (20%). Different kappa statistic scores ranging from 0.21 (fair agreement) to 0.81 (almost perfect agreement),

in increments of 0.1, were considered [17].

6. Results

Consider a scenario in which a family-based haplotype relative risk approach is designed. We have a ‘trio design’

and want to identify the association between the markers and the disease locus. The sequential test is applied

to this limited sample. However, there is a challenge: undefined gray zone markers. The simulation data results

and the accuracy versus gray zone percentages for 262,264 markers generated under high association, moderate

association, and no association are presented in Table 1 for different kappa scores.

Overall accuracies of SPRT and SPRT+ are calculated by the following equation.

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

The accuracy of SPRT exceeds the accuracy of SPRT+ when the kappa score is less than 0.3. When the kappa

score value is equal to or greater than 0.3, the accuracy of SPRT+ exceeds the accuracy of SPRT for sample

sizes with 40 or less trios.

For samples with a small number of trios, the percentage of gray zone markers in SPRT+ is much less

than the percentage of gray zone markers in SPRT. With 30 trios, SPRT classifies about 22% of total markers

and leaves about 78% of markers with no decision. With 50 trios, SPRT barely reaches a conclusion for about

half of the given markers. Ninety percent of the markers are classified only when the sample size reaches 150
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trios. To be fair, one should keep in mind that the classified percentage of markers is less than 90% until

reaching 150 trios; the accuracy is always over 90%, meaning that SPRT classifies a marker in a very safe mode.

According to Table 1, when compared to SPRT, SPRT+ always has a higher or equal percentage of

decided markers with a decreasing gain as the number of trios in the samples increases.

Table 1. Percentages of true positives and false positives versus trio size and kappa score for markers with moderate

association, high association, and no association.

SPRT+ reduces gray zone markers by classifying moderately and highly associated markers as no

further interpretations are expected for not-associated markers. The true-positive (TP) percentages for 5435

markers with high or moderate association and the false-positive (FP) percentages for 257,019 markers with no

association are displayed in Table 2. For samples with 30 trios, with a kappa statistics score of 0.26, the FP

percentage of markers with no association is less than 1% and the TP percentage of markers with moderate

and high association is 72% and 100%, respectively. As sampling continues, the FP percentage reduces to zero

and the TP percentage of moderately associated markers reaches 84%. The Figure illustrates the results of the

TP percentage of associated markers versus sample size for SPRT and SPRT+ with a kappa score of 0.3.
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Figure. True-positive percentage results of SPRT+ and SPRT.

Table 2. Percentages of accuracy and gray zone versus trio size and kappa score for SPRT and SPRT+.

Hence, results confirm that SPRT+ reduces the percentage of gray zone markers and accurately classifies

the markers with moderate or high association.

With small sample sizes, it is difficult to classify markers into associated or not-associated groups. SPRT

overcomes this challenge, but some results remain in a huge gray zone with unclassified markers. The results

show that SPRT+ effectively refines the gray zone markers and sustains the desired statistical power. With a

0.26 kappa statistics score, the moderately and highly associated markers are identified as significantly associated

with the disease marker. When comparing the two methods, for SPRT+, the TP percentages of associated
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markers lie between 70% and 80% even with a small sample size, whereas for SPRT, 150 and more trios are

needed to achieve the same power.

Note that, although not classifying all moderately associated markers with even 200 trios, 100% of highly

associated markers are classified as associated with the disease with only 30 trios.

7. Conclusion

One of the important challenges in family-based association studies is reducing the needed sample size. Tra-

ditional statistical methods require more than 200 trios to give powerful results and classify the markers as

associated with the disease or not. However, especially for the late-onset diseases like some types of cancer,

it is very difficult to gather trios with offspring whose parents are still alive. The sequential test SPRT was

proposed to analyze samples with small sizes and became useful for accurate association analysis. The SPRT

does not only classify the markers into two groups as associated and not associated markers, but also for some

other markers says that there is not enough evidence for correct classification. These markers require more trios

and are put into a ‘gray zone’. This conserves the method’s statistical accuracy. However, now a new problem

arises. For small sample sizes, the percentage of the decided markers may be very low, which results in a high

percentage of ‘gray zone’ markers. To overcome this problem, a novel approach (SPRT+) is proposed in this

study.

Simulation results have shown that SPRT+ conserves the statistical accuracy of the SPRT while partially

solving the ‘gray zone’ problem by using a marker-term annotation matrix and kappa statistics.
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