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Abstract: Four-tone small signal analysis was performed for a nonlinear optoelectronic feedback laser diode system.

In the analysis, Volterra power series up to second-order opening, the second kernel for the output intermodulation

distortion (IMD) analysis was performed. The components of the alternative IMD frequency were selected for analysis.

These are the four IMD frequency components. The variation of IMD frequency component amplitudes was investigated

under various values of delay-time ( t0) and the feedback gain constant (K) . The feedback values and the critical

frequencies, at which the coherence collapse or chaos occur, were also determined.

Key words: Laser diode, Volterra series, intermodulation, harmonic distortion, nonlinear distortion, electronics feed-

back, chaos, gain, nonlinear optoelectronic feedback

1. Introduction

Laser systems, which are the optical source for fibre-optic and hybrid communication systems, employ various

laser diode applications. Laser diodes have been increasingly used both commercially and industrially due to

their optical characteristics, small size, and ruggedness. Laser diodes have three main characteristic quantities:

gain [1–3], refractive index change [4–6], and linewidth enhancement factor [7–9]. These quantities have been

studied many times theoretically [10–15], experimentally [16–24], and intelligently [22–42]. In this current study,

the characteristic quantity gain and coherence collapse condition with optoelectronic feedback are analysed and

simulated with the use of Volterra series.

In optical communication systems, different optical feedback schemes are used based on the structure of

the laser diode. Hybrid (analogue/digital) communication system structures for metropolitan areas consist of

fibre-optic and coaxial cables and use feedback for different purposes [43]. In recent years, data communication

is widely used due to extensive use of the Internet. However, the communication systems infrastructure has

reached its limits to meet this fast increasing demand for data transfer. To overcome this problem, the bandwidth

of systems can be increased with the use of subcarrier systems. The prominent property of these systems is

the use of the wideband subcarrier multiplexing (SCM) technique. SCM systems are classified according to

the employed analogue and digital modulation techniques. Asymmetric digital subcarrier line (ADSL), digital

subcarrier line (DSL), very-high speed digital subcarrier line (VDSL), discrete multitone (DMT), discrete wavelet

multitone (DWMT), and wavelength division multiplexing (WDM) are some examples of SCM systems. Due to

the nonlinear behaviour of laser diodes, intermodulation distortion (IMD) frequency components are generated.
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The systematic analysis of Volterra kernels is carried out in [44]. Several authors presented results on

harmonic distortion, optimised intermodulation [45–49,50,51], and various aspects of the issue [52,53].

The use of an optic filter system in optical feedback provides the stable operation of the dynamic system

by controlling the nonlinear transmission function through the filter [54]. Moreover, the operation of the dynamic

system can be adjusted by means of the feedback systems [55]. Feedback is also used in controlling the dynamic

systems with various modulation types [56–58]. Another use of feedback is to achieve wavelength stability [59]

of wavelength division multiplexing (WDM) systems through the adjustment of cross-correlation level by setting

up the DC bias current [60].

In high speed fibre-optic systems, chaotic laser systems are used. The properties of chaotic communication

systems change depending on bandwidth, performance, bit error rate, and the length of the fibre-optic line [61].

Rotated polarisation and inverted polarisation optical feedback systems are used in chaos-based safe fibre-

optic communication systems [62]. Adjustable time delayed optoelectronic feedback is used in safe chaos-based

multiplexed communication systems [63,64]. The feedback between nonlinear elliptical polarisation and laser

source is another optical feedback method [65]. Feedback is used for steady data transmission in commercial

communication systems [66]. For high resolution two-tone separation and two-tone signal quality, an optical

filter/feedback system is used [67]. Feedback methods are also used for setting the quality factor, gain, and

loss [68]. For dynamic systems, time delayed polarisation mode switching in semiconductor lasers polarisation

rotating coupling methods are applied [69]. In nonlinear dynamic delayed feedback optoelectronic oscillator

systems, dual fibre optical feedback is used between the hybrid system and the oscillator [70]. In another study,

the stability of the feedback system is achieved by the relaxation oscillation frequency feedback current [71].

Periodical feedback oscillation is obtained by high injection current [72]. The coherence collapse regime is used

to focus the optical output power and the reflected optical power under test [73].

In this work, the analysis of alternative IMD frequency components of a nonlinear laser diode with

optoelectronic feedback under four-tone small signal input is performed. The Volterra operators Z1 , Z2 and

the Volterra kernels H1 , H2 are found. The analysis is carried out for the second kernel output.

The main contribution this study is that alternative IMD frequency components are employed in order

to increase the bandwidth of the fibre-optic system.

2. The basic single-mode laser diode

Hassine [74], Tucker [75], and Olshansky [76] modelled the basic single mode laser diode using the following

dynamic equations:

dp (t)

dt
= ΓA [n (t)−Ntr] [1− ε̂p (t)] p (t)− 1

τp
p (t) +

βΓ

τn
n (t) (1)

dn (t)

dt
=

1

q
I (t)− 1

τn
n (t)− ΓA [n (t)−Ntr] [1− ε̂p (t)] p (t) , (2)

where p(t) and n(t) denote the photon and carrier numbers, respectively, and Γ the compression factor (Γ =

0.3), A gain constant (A = 1.83 times 104 s−1), Ntr the number of carriers at the threshold (Ntr = 107),

τp photon life (τp = 1.6 times 10−12 s), τn carrier life (τn = 2.2 times 10−9 s), β spontaneous emitting

factor (β = 10−4), I(t) total current, q elementary charge (q = 1.6 times 10−19C), ε̂ = ε/V = 1 × 10−6

dimensionless gain factor, and V the volume of the active region.
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Using (1) and (2), the Volterra kernels (H1 , H2) are determined. The interested reader is referred to

[66–70] for details of Volterra and the nonlinear system theories and to [44] for the detailed solutions of a

single-mode laser diode.

In [45,46], the analysis of the system with two-tone and three-tone inputs for the harmonic distortion,

the bandwidth, and the optimisation is given with the results. The general four-tone small signal input i(t) is

given as

i(t) = uo cos (ωot+ δ0) + u1 cos (ω1t+ δ1) + u2 cos (ω2t+ δ2)

+u3 cos (ω3t+ δ3) + u4 cos (ω4t+ δ4)
, (3)

where ui , ωi , and δi are the amplitude, frequency, and phase of the ith (i = 1,2,3,4) input, respectively. The

carrier signal is represented by uo cos(ωot+ δo). The number of photons, P (t), at the output is given as

P (t) = p1(t) + p2(t) + p3(t) + ....+ pn(t) =

n∑
i=1

pi(t), (4)

where pi(t) (i = 1,2,...,n) is the estimated photon numbers of the ith Volterra kernel [44,45].

3. The first-order Volterra operator

The transfer function Z1(jω) of the first order Volterra operator is given as [44]

Z1(jω) =
H1(jω)

1 +H1(jω)G1(jω)
, (5)

where H1(jω) and G1(jω) is defined as

H1(jω) =
Bo

q

(
1

(Do − ω2) + jD1ω

)
(6)

G1(jω) = ge−jωto , (7)

where B0 , D0 and D1 , and g are constants and t0 is the normalised time. The detailed definitions can be

found in [44].

The input current, i(t), is selected as in (3) excluding carrier component as follows:

i(t) = u1 cos (ω1t+ δ1) + u2 cos (ω2t+ δ2) + u3 cos (ω3t+ δ3) + u4 cos (ω4t+ δ4) . (8)

The photon output of the first order Volterra kernel is defined as

p1 = u1 |Z1 (jω1) cos [ω1t+ δ1 + ∠Z1 (jω1)]|+ u2 |Z1 (jω2) cos [ω2t+ δ2 + ∠Z1 (jω2)]|
+u3 |Z1 (jω3) cos [ω3t+ δ3 + ∠Z1 (jω3)]|+ u4 |Z1 (jω3) cos [ω4t+ δ4 + ∠Z1 (jω4)]|

, (9)

where |Z1 (jωi)| , ∠Z1 (jωi) and ωi (i = 1,2,3,4) denote the amplitude, phase, and the angular frequencies of

the input currents, respectively.
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4. The second-order Volterra operator

Using the block diagrams given in [44], the block diagram of the second order Volterra operator, p2(t), can be

obtained as given in Figure 1.

R1 H1 K1 H2 R1 
i(t)     i1(t)    p1(t)        n1(t)   ~p2(t)    p2 (t)  

       

       p1(t) 

Figure 1. Block diagram of the second-order Volterra operator.

In Figure 1, the R1 and H1 are linear time invariant (LTI) systems. The R1 block is defined in terms

of G1 and H1 given in (6) and (7), respectively, as

R1 (jω) =
1

1 +H1 (jω)G1 (jω)
(10)

Since R1 and H1 blocks are connected in series, the equivalent block has the following transfer function:

R1 (jω)H1 (jω) =
H1 (jω)

1 +H1 (jω)G1 (jω)
. (11)

The photon output is in the following form:

p1(t) = A1 cos (ω1t+ α1) +A2 cos (ω2t+ α2) +A3 cos (ω3t+ α3) +A4 cos (ω4t+ α4) , (12)

where
Ai = ui |Z1 (jωi)| (i = 1, 2, 3, 4) (13a)

αi = δi + ∠Z1 (jωi) (i = 1, 2, 3, 4). (13b)

The carrier density, n1(t), has the following form:

n1(t) = B1 cos (ω1t+ β1) +B2 cos (ω2t+ β2) +B3 cos (ω3t+ β3) +B4 cos (ω4t+ β4) (14)

The K1 block has the following transfer function [44]:

K1 (jω) =
1

Bo
(B1 + jω) , (15)

where
Bi = Ai |K1 (jωi)| (i = 1, 2, 3, 4) (16a)

βi = αi + ∠K1 (jωi) (i = 1, 2, 3, 4). (16b)

The block diagram for H2 is given in [44]. To find the output of H2 , p
2
1 (t) and n1(t)p1(t) should be available.

From (12),

p21(t) = [A1 cos (ω1t+ α1) +A2 cos (ω2t+ α2) +A3 cos (ω3t+ α3) +A4 cos (ω4t+ α4)]
2

(17)

2166



YILDIRIM and CANBOLAT/Turk J Elec Eng & Comp Sci

and from (12) and (14)

n1 (t) p1(t) = (A1 cos (ω1t+ α1) +A2 cos (ω2t+ α2) +A3 cos (ω3t+ α3) +A4 cos (ω4t+ α4))

(B1 cos (ω1t+ β1) +B2 cos (ω2t+ β2) +B3 cos (ω3t+ β3) +B4 cos (ω4t+ β4))
(18)

are obtained. In [44], f2(t) is given as

f2 (t) = ΓA [1− 2ε̂Po]n1 (t) p1 (t)− ΓA [No −Ntr] p
2
1 (t) . (19)

The above expression for f2(t) is obtained by substituting for p21 (t) and n1(t)p1(t) from (17) and (18).

The function M(jω) is given as [44]

M (jω) =
jω − βΓ−1

τn

(Do − ω2) + jD1ω
R1 (jω) . (20)

Substituting for R1

M (jω) =

[
jω − βΓ−1

τn

(Do − ω2) + jD1ω

][
Do − ω2 + jD1ω

Do − ω2 + jD1ω + gBo

q ejωto

]
(21)

is obtained. The kernel number of photon output p2(t) is defined as

p2 (t) = f2 (t)M (0) . (22)

Substituting ω = 0 in (21), M (0) = (1−βΓ)
(Doq+gBo)

q
τn

. Using this value for M (0), one can obtain the expression

for p2(t) from (22).

The carrier density transfer function is defined as

N2(s) =
1

Bo

 (s+B1)
(
s− βΓ−1

τn

)
s2 +D1s+Do

− 1

F2(s). (23)

The interested reader is referred to [44,45] for details of the analysis.

5. Results

In this study, the input current, I0 , is chosen such that I0 = 3.33Ith . The alternative IMD frequency

components, which are obtained from the second kernel output, are chosen as

1. (ω0 + ω1), (−ω0 + ω1) ,

2. (ω0 + ω2), (ω0 − ω2) ,

3. (ω0 + ω3), (ω0 − ω3) ,

4. (ω0 + ω4), (ω0 − ω4) .

The results are given in Figures 2–4. The line types indicated in Figure 4 are also valid for Figures 2 and 3.
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Figure 2. Frequency response of the second kernel (K = 1.231; t0 = 1 times 10−10 s).

Figure 3. Frequency response of the second kernel (K = 1.2972; t0 = 1 times 10−10 s).

In Figures 2, 3, and 4, the gain curves are given for the feedback gains K = 1.231, K = 1.2972, and K =

1.182 with the delay-time t0 = 1 times 10−10 s. From Figure 2, the bandwidth becomes narrower compared

with the analogue and digital communication specifications. However, the gain increases. Here, the normalised

collapse frequency value and gain are 1.77 and –21 dB, respectively.

In Figure 3, the normalised collapse frequency and gain are 1.132 and –18.5 dB, respectively, under the

feedback gain K = 1.2972.
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Figure 4. Frequency response of the second kernel (K = 1.182; t0 = 1 times 10−10 s).

In Figure 4 under the feedback gain K = 1.182, the normalised collapse frequencies of minimum gain

(37.71 dB) are 1.212 and 1.823, and the maximum gain is 79 dB. That is, the optoelectronic system with

feedback behaves like a bandpass filter. The bandpass characteristics are found as follows:

ωL = 1.212norm = 12.12 GHz

and
ωH = 1.823norm = 18.23 GHz,

where the norm denotes that the value is the normalised frequency value.

This leads the centre frequency to be

ω0 =
√
ωLωH = 1.486norm = 14.86 GHz.

Since the bandwidth is
BW = ωH − ωL = 18.23− 12.12 = 6.11 GHz,

the quality factor or the selectivity Q = ω0

BW of the bandpass filter is found as

Q = 14.86/6.11 = 2.432[71].

Available bandwidths are found as 17.90 GHz and 7.5 GHz for digital and analogue communication, respectively.

6. Conclusion

In this study, an optoelectronic feedback system with adjustable gain and time delay is applied to a laser diode.

The following is obtained by changing the gain K :

The input current is selected as I0 = 3.33Ith . Different I0 values may lead to different results. The

normalised frequency at the collapse or chaos corresponding to the critical feedback is found as 1.212 and 1.823.

The critical frequency depends on the input current, delay-time, and the feedback gain. Small variations in the

feedback can result a chaotic behaviour. The optical system is highly sensitive to variations in the feedback.
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The two collapse frequency ranges changed by the ratio of 81.69%, while the change in the input current

is 11%. This clearly shows that the system is nonlinear.

An interesting result arises for K = 1.182. In this case, the gain curve is very similar to a bandpass

filter with low and high bandpass frequencies 12.12 GHz and 18.23 GHz (Figure 4). The centre frequency is

estimated as 14.86 GHz with a quality factor larger than 2. However, the gain (37.71 dB) at the low and high

frequencies is much higher than −3 dB. Additionally, these values change with changing DC injection current.

The critical feedback value for chaos seems impossible to predict. Around the chaos frequencies, the

modulation should not be performed. The laser diode systems should be tested for stability at the critical

feedback and frequency. Then the system can be employed in fibre-optic subcarrier communication systems.
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