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Abstract:A new configuration for modular isolated bidirectional dc-dc converters is presented. The proposed converter

has interesting features such as fewer switching devices, bidirectional power flow, and low switching losses. The simple

modular structure, high frequency operation, zero voltage switching (ZVS) capability, and fewer switching devices make

the extended configuration of the proposed converter suitable for high power applications. The operation principle of

the proposed converter is analyzed in steady state, and then ZVS analysis of the converter is presented in detail. A

generalized averaging technique, which uses dc and first order terms of Fourier’s series of state variables, is applied to

model the converter. A small-signal average model is developed to obtain the control-to-output transfer function of the

converter. In order to obtain acceptable dynamic response, closed-loop control of the converter using a PID controller

is studied. Finally, measurement and simulation results are presented to verify the operation principles of the converter

and effectiveness of the PID controller.

Key words: Modular converter, isolated dc-dc converter, bidirectional power flow, generalized average modeling.

1. Introduction

The integration of modular power converters enables low rating components to be used in high power appli-

cations. Modular power conversion systems, with series or parallel converter modules at output and input

sides, are classified into four architectures considering their connection forms, namely, input-series output-series

(ISOS), input-series output-parallel (ISOP), input-parallel output-series (IPOS), and input-parallel output-

parallel (IPOP). The advantages of modular conversion systems include ease of thermal design, each module

handles only a part of the total power, straightforward design process, increased system reliability due to re-

duced thermal and electrical stresses on power switches and components, improved system reliability due to

redundancy, lowered cost and ease of expansion, and therefore step by step increase of the system rating [1,2].

Several modular isolated bidirectional dc-dc converters have been reported in the literature [3–11]. Most

of them have been designed for a specific application and some of them have focused on developing control

techniques to achieve equal input voltage and output current sharing and improve the dynamic performance.

Based on the proposed research review, it can be said that most of the modular isolated bidirectional dc-dc

converters have used a dual active bridge (DAB) dc-dc converter as a basic module. The bidirectional isolated

DAB dc-dc converter, initially presented in [12,13], is considered as a suitable case for medium and high power
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applications. This converter has many advantages such as electrical isolation, high reliability, soft-switching

capability, and bidirectional power flow [12,13]. However, employment of the DAB dc-dc converter as a basic

module results in a high number of power switching devices, high cost, and large size of modular converter.

Therefore, the expansion of the converter is very limited for high power applications. In some cases, a dual

half bridge (DHB) dc-dc converter has been used as a basic module. The DHB topology uses only half as

many switching devices as the DAB topology [14,15]. However, the main drawback of DHB topology is that

the split dc-link capacitors have to withstand the full load current. Hence, the DHB converter is suitable for

low power applications [14]. Therefore, this solution reduces power transfer capacity and needs switches with

higher ratings.

A closed-loop controller is needed to regulate the output of a dc-dc converter. The design of the controller

requires a small-signal average model of the converter. State-space averaging is a common technique to model

switching converters. This technique has been applied to model the single-phase DAB dc-dc converter [16–18]

and three-phase dc-dc converters [19,20]. The conventional averaging techniques for modeling dc-dc converters

neglect the current ripple [21], but this assumption is not acceptable for a converter with a high frequency

isolating transformer because the current of the transformer is purely ac. A generalized averaging technique,

which represents state variables using more coefficients of Fourier’s series, can be used to model the converter

with a high frequency isolating transformer. This technique has been used to model the single-phase ac-dc

converter [22] and dc-ac resonant converter [23]. Moreover, this averaging technique has been applied to the

DAB dc-dc converter [24].

This paper proposes a new topology for modular isolated bidirectional dc-dc converters using fewer

switching devices, to reduce the cost and size without imposing any limitation on the converter power rating.

The proposed converter has bidirectional power flow capability. In addition, it has the capability of easy

expansion for high power applications. Based on two later capabilities, the application of “a connection between

two dc-links with different nominal voltage in a dc microgrid” is proposed for the converter. Dynamic analysis

based on generalized averaging technique is presented and closed-loop control of the converter using a PID

controller is studied. The simulation and measurement results are provided to confirm the theoretical aspects

of the controller and the proposed converter.

2. Configuration and operation principles of the proposed converter

2.1. Configuration

Figure 1 shows the proposed modular isolated bidirectional dc-dc converter, with N modules, and parallel

or cascaded connection of high frequency transformer windings and power switches. The converter’s modular

bridges are the generalized forms of the conventional full-bridge.

As shown in Figure 1, basic modules of bridges contain one of the transformer windings and two power

switches connected to the ends of the winding. The modular parallel bridge is based on the parallel connection of

modules, and each of two adjacent parallel modules has reverse directions of magnetic flux. The modular series

bridge is a cascaded connection of modules, and each of two adjacent cascaded modules has reverse directions

of magnetic flux. In this configuration, the switches that are placed between each pair of windings are named

inner switches, and the other four switches, which are proprietary of the first and the last windings, are named

outer switches.

Series or parallel connection of modules is selected considering the requirements of converter voltage

and current ratings. Using the proposed modular parallel and series bridges, all four possible architectures of
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modular converter (i.e., IPOS, IPOP, ISOP, and ISOS) are achievable. This work focuses on the IPOS modular

isolated bidirectional dc-dc converter architecture, which can be employed for power transmission between two

high power and high voltage dc-links. As shown in Figure 1, the primary or low voltage side of the proposed

IPOS converter consists of a low voltage dc-link and modular parallel bridge. The secondary or high voltage side

of the converter consists of a high voltage dc-link and modular series bridge. High frequency transformers are

applied to transmit power and perform a galvanic isolation between two sides. Primary windings of transformers

are placed in the primary side bridge, and secondary windings are placed in the secondary side bridge. In each

module, the sum of the transformer leakage inductance and external auxiliary inductance is considered as an

equivalent inductance in the secondary side of the transformer.

T1 T2 TN
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Iin

T2

T1

TN
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Figure 1. Proposed IPOS modular isolated bidirectional dc-dc converter.

2.2. Analysis of operation principles

Figures 2a and 2b show the switching operation of the proposed IPOS converter with two modules during one

switching cycle. To generate a high frequency ac voltage on transformer windings, in the parallel bridge, three
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Figure 2. Switching operation of proposed IPOS converter with two modules during one switching cycle, in (a) first

and (b) second half cycle.
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switches conduct the current in each half cycle, one inner switch in one step, and two outer switches in the

other step; and in the series bridge, one inner switch in one of the bridge legs, and two outer switches in the

other leg conduct the current in each half cycle.

Using a phase shift control algorithm, the first bridge provides square wave voltage with a duty ratio of

50% to the primary winding of the transformer in each module, and the square wave voltage of the secondary

winding has a finite phase shift from the primary one in order to transfer power from the primary side to the

secondary side. The leakage inductance of transformers and external auxiliary inductors serve as instantaneous

energy storage components. Figure 3a illustrates the process of power transfer from the primary to the secondary

side. The phase shift angle is defined to be positive in this power transfer process, which means that the primary

side phase is leading the secondary side phase. The proposed converter has the capability of bidirectional

power flow. As shown in Figure 3b, when the secondary side phase is leading the primary side phase, power is

transmitted from the secondary to the primary. In this condition, the phase shift angle is defined to be negative.

vp

v's

iL

0 2

>0

IL, Max

IL, Min

vp

v's

0 2

<0

iL

IL, Max

IL, Min

Figure 3. Transformer voltages and current during one switching cycle, when vp = nvs , for power transmission (a)

from primary to secondary and (b) from secondary to primary.

Considering Figure 3a, the converter average input current for each module over one switching cycle is

determined as follows [25]:

iin =
V

′

O

Lω
θ(1− θ

π
), (1)

where L is the sum of each transformer leakage inductance referred to primary and external auxiliary inductor.

ω is the switching frequency in radians per second. Moreover, n(= n1/n2) is defined as the transformer turns

ratio, and θ is the phase shift angle between the voltage of two bridges in radians. Vin and VO are defined

as modular converter input and output dc voltages, andV
′

O is the output dc voltage referred to primary, i.e.

(nV O)/N .

Notice that in steady state the transformer current is symmetrical for each half switching cycle; therefore,

iL(0) = −iL(π). If the losses of a converter are negligible, then the output power is equal to the input power.

Therefore, the amount of power transmitted to the load via each module is calculated as follows:

P =
VinV

′

O

Lω
θ(1− θ

π
) =

nVinVO

NLω
θ(1− θ

π
) (2)
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and the total output power of the proposed IPOS converter with N modules is determined as follows:

Pt = N × P = N
nVinVO

NLω
θ(1− θ

π
) =

nVinVO

Lω
θ(1− θ

π
) (3)

3. ZVS operation analysis of the proposed converter

In the proposed converter, a snubber capacitor is paralleled with each switch to reduce the switching losses and

damp out overvoltages. However, if each switch is turned on with the charged snubber capacitor, the switch

shorts out the capacitor and dissipates the stored energy [26]. Therefore, it is necessary to provide the ZVS

condition for the switches. Each switch can be turned on in ZVS condition, when V1 /n = V2/N and, moreover,

the power transfer is sufficient. When V1/n ̸= V2/N , the switch is not necessarily turned on in ZVS condition.

Figure 4 shows ZVS operation of the secondary side bridge. In the secondary side bridge, switching maximum

and minimum currents are defined as stated in (4) and (5)

IL,Min = − [(V1/n) + (V2/N)]θ + [(V1/n)− (V2/N)](π − θ)

2Lω
(4)

IL,Max =
[(V1/n) + (V2/N)]θ − [(V1/n)− (V2/N)](π − θ)

2Lω
(5)

As shown in Figure 4, the current of iL is flowing in switch S3 , and after turning off of switchS3 , the dead time

starts. The current flowing in switch S3 is commutated to CS1 , CS3 , and CS5 . A resonance begins among

L and CS1 , CS3 , and CS5 . Capacitor CS1 discharges from V2 /N to zero, while CS3 charges from zero to

2V2 /N . When CS1 discharges down to zero, the current is commutated to diode D1 . Generating a gating

signal during conduction of diode D1 makes S1 ready to conduct the current. Switch S1 starts to conduct

the current after the current of diode D1 decays to zero and changes its polarity. ZVS operation of switches is

provided when the following equation is satis?ed:

IL,Min < 0 ⇒ θ ≥ V2 −NV1/n

2V2
π (6)

Besides the above criterion, if the energy for charging and discharging of snubber capacitors is not sufficient,

despite the switching minimum current being negative, the switches cannot be turned on in ZVS condition.

Suppose that at t= 0 switch S3 turns off and none of the devices are conducting. Once the device turns off,

the current in Ldischarges CS1 and charges CS3 in the resonant manner until their respective voltages reach

the opposite values. If in this instant the current is still positive, diode D1 turns on and clamps the voltage

across CS1 to zero and CS3 to 2V2 /N. Now the minimum value of the current iL at t= 0, which ensures that

the voltage across switch S3 reaches the clamping value when current iL reaches zero, is determined. The

input bridge is replaced by the secondary-referred voltage source as V1 /n , with the polarity required during

this event. The timet = tm is defined as the instant at which iL just reaches zero. At time t= 0, we have iL =

IL,Min , VCS1 = V2 /N , VCS3 = 0 and at time t= tm , we have iL = 0, VCS1 = 0, VCS3 = 2V 2 /N . During

the interval 0 < t < tm , we have

iL = iCS1
+ iCS3

(7)

iL = CS1
dvCS1

dt
− CS3

dvCS3

dt
= CS1

dvCS1

dt
− (−2CS1

dvCS1

dt
) (8)
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Figure 4. ZVS operation of the proposed converter, (a) just before dead time starts, (b) just after dead time starts, (c)

diode freewheeling, and (d) current polarity change after the dead time.

iL = 3CS1
dvCS1

dt
= 3C

dvC
dt

(9)

The energy balance indicates that E(t=0) = E(t= tm ) +ELosses +EDelivered , and based on the assumption of

lossless circuit, we have E(t=0) − E(t=tm) = EDelivered ; thus, the following equation is achieved:
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2× 1

2
LI2L,Min = EDelivered (10)

To reach the ZVS condition, EDelivered should be equal to

EDelivered =

∫ tm

0

iL(V1/n)dt =

∫ tm

0

3C
dVC

dt
(V1/n)dt = 6CV1V2/(nN) (11)

Using (10) and (11), the minimum current of the bridge is derived as follows:

|IL,Min| ≥
√
6

√
C

L

√
V1V2

nN
(12)

If similar analysis is used for the four marginal switches in the bridge, the following inequality is achieved.

Notice that (12) is valid for the rest of the switches.

|IL,Min| ≥ 2

√
C

L

√
V1V2

nN
(13)

Similar analysis can be considered for the parallel bridge.

4. Modeling and control of proposed converter

4.1. Small-signal model

In the modeling, it is assumed that the transformer magnetizing current and voltage drop across the switch

are not significant, and switching transients are negligible. The input capacitance is relatively large and so its

dynamics are not considered in the modeling. Figure 5 shows the simplified model of the proposed modular

converter. The current source on the output may have either polarity for bidirectional power flow [24]. The sum

of the transformer leakage inductance and that of the auxiliary inductor in the j th module is defined as module

inductance, Lj , which is referred to the output side. Similarly, switch on-time resistance and transformer

winding resistance in the j th module are defined as module resistance, Rj . For the sake of simplicity, the

transformers turn ratios are selected to be unity (n = 1).

The phase shift modulation results in this point that the voltage at the primary side of j th transformer,

vpj , can only have two states, namely, +Vin , when the switches S2j−1,1 and S2j+1,1 are ON, and −Vin , when

the switches S2j,1 and S2j+2,1 are ON. Thus, the input voltages of transformers are defined as follows:

vpj(τ) = U1(τ)vin(τ) ; j = 1 to N , (14)

where the switching function of the input bridge, U1(τ), is considered as follows [24]:

U1(τ) =


1 0 ≤ τ < T

2

−1
T
2 ≤ τ < T

, (15)

where T = 2π/ω . In this analysis, τ denotes the time within a period referenced to the rising edge of U1 . In a

similar way, for the output voltage of transformers, we have

N∑
j=1

vsj(τ) = U2(τ)vO(τ), (16)
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Figure 5. Simplified model of proposed converter.

where the switching function of the output bridge, U2(τ), is considered as follows:

U2(τ) =


1 ϕT

2 ≤ τ < ϕT
2 + T

2

−1 0 ≤ τ < ϕT
2 and ϕT

2 + T
2 ≤ τ < T

(17)

In the above equation, φ is defined as the phase shift ratio, which is equal to θ/π . As can be seen in Figure

5, the secondary sides of transformers are connected in series and so the total equivalent resistance and total

equivalent inductance in the secondary side bridge are calculated as follows:

Req =
N∑
j=1

Rj ; Leq =
N∑
j=1

Lj (18)

If transformer current, iL , and output capacitor voltage, vO , are selected as state variables, then state equations

of the proposed converter are derived, as follows:

dvO(τ)

dt
= − 1

RLCO
vO(τ) +

1

CO
U2(τ)iL(τ)−

iNo

CO
(19)

diL(τ)

dt
= −Req

Leq
iL(τ) +

N

Leq
U1(τ)vin(τ)−

1

Leq
U2(τ)vO(τ) (20)

Both equations are time-variant and nonlinear. It is necessary to apply averaging to derive a linear time-

invariant model. The conventional state-space averaging technique is applied when the ripples in state variables

are small, i.e. considering only dc terms. However, transformer currents in the proposed converter are pure

ac currents, which means that the ripple is large and dc coefficient is zero. Therefore, a generalized averaging
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technique is applied to model the proposed modular converter. In this technique, state variables are represented

using their Fourier’s series. In this paper, dc and first order terms of Fourier’s series have been used to represent

the average of state variables.

It is assumed that the dynamics of the input voltage and load are much slower than those of the converter.

Therefore, for dc and first order coefficients of these parameters, we have ⟨vin⟩0 = Vin; ⟨vin⟩1R = ⟨vin⟩1I = 0

and ⟨iNo⟩0 = INo; ⟨iNo⟩1R = ⟨iNo⟩1I = 0, where subscripts R and I denote real and imaginary parts of a

complex number, respectively. The dc and first order coefficients of state variables and switching functions in

(19) and (20) are calculated according to [27,28], and finally the following state-space representation can be

written:

d
dt



vO0

iL1R

iL1I

iL0

vO1R

vO1I


=



− 1
RLCO

−4 sinϕπ
πCO

−4 cosϕπ
πCO

0 0 0

2 sinϕπ
πLeq

−Req

Leq
ω 0 0 0

2 cosϕπ
πLeq

−ω −Req

Leq
0 0 0

0 0 0 −Req

Leq
−4 sinϕπ

πLeq
− 4 cosϕπ

πLeq

0 0 0 −2 sinϕπ
πCO

− 1
RLCO

ω

0 0 0 −2 cosϕπ
πCO

−ω − 1
RLCO





vO0

iL1R

iL1I

iL0

vO1R

vO1I


+



0 − 1
CO

0 0

− 2N
πLeq

0

0 0

0 0

0 0



[
Vin

INo

]

(21)

In the above equation, iL0 , vO1R , and vO1I are all zero, if their initial values are zero. Therefore, the dynamics

of iL0 , vO1R , and vO1I can be decoupled. Thus, the state-space representation of (21) can be reduced to (22).

d

dt


vO0

iL1R

iL1I

 =


− 1

RLCO

−4 sinϕπ
πCO

−4 cosϕπ
πCO

2 sinϕπ
πLeq

−Req

Leq
ω

2 cosϕπ
πLeq

−ω −Req

Leq




vO0

iL1R

iL1I

+


0 − 1

CO

0 0

− 2N
πLeq

0


[

Vin

INo

]
(22)

This equation illustrates that the dynamic of the proposed modular isolated bidirectional dc-dc converter can

be represented using the dc term of the output voltage and first order terms of transformer current. In the

above analysis, the effect of the output capacitor equivalent series resistance (ESR) has not been considered,

because its consideration results in a coupling among all six state variables and the order of the system would

be 6, which has a complicated controller design procedure.

The small-signal control-to-output transfer function should be used to design a controller for the converter.

This function describes the dynamic response of the converter against a small perturbation in control signal, φ .

For a small perturbation in φ, the state variables vO0 , iL1R , and iL1I in (22) will deviate from their steady
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state values. Therefore, the control signal and state variables contain two components, namely, steady state

value (Φ, VO0 , IL1R ,IL1I) and small-signal (∆φ , ∆vO0 , ∆iL1R , ∆iL1I):

ϕ = Φ+∆ϕ; vO0 = VO0 +∆vO0; iL1R = IL1R +∆iL1R; iL1I = IL1I +∆iL1I (23)

Eq. (22) includes the multiplication of the control signal and state variables. For a small ∆φ , by approximating

nonlinear terms and determining the steady state values of vO0 , iL1R , and iL1I , the matrix form of the small-

signal model of the proposed converter is achieved as given in (24) and (25).

ẋ = Ax+Bu

y = Cx+Du
(24)

x =

 ∆vO0

∆iL1R

∆iL1I

 , A =


− 1

RLCO

−4 sin(Φπ)
πCO

−4 cos(Φπ)
πCO

2 sin(Φπ)
πLeq

−Req

Leq
ω

2 cos(Φπ)
πLeq

−ω −Req

Leq

 ; B =


4

CO
[IL1I sin(πΦ)− IL1R cos(πΦ)]

2
Leq

VO0 cos(πΦ)

− 2
Leq

VO0 sin(πΦ)


y = ∆vO0, C = [ 1 0 0 ], D = [0], u = ∆ϕ

(25)

The control-to-output transfer function is derived to study the effect of operating points and circuit components

on the power stage. The frequency response, and transient and steady state responses of the converter are also

determined using this transfer function. For the proposed modular converter, the control-to-output transfer

function is determined using the small-signal model as follows:

Gvφ(s) =
∆vO0

∆φ
= C(sI −A)−1B +D (26)

By substituting of (25) into (26), the following transfer function is achieved:

Gvφ(s) =
(IL1I sin(πΦ)− IL1R cos(πΦ))( 4

CO
s2 +

8Req

LeqCO
s+

4R2
eq

COL2
eq

+ 4ω2

CO
) + 8VO0ω

LeqπCO

s3 + (
2Req

Leq
+ 1

RLCO
)s2 + (

R2
eq

L2
eq

+
2Req

RLLeqCO
+ ω2 + 8

π2LeqCO
)s+ 1

RLCO
(
R2

eq

L2
eq

+ ω2) +
8Req

π2L2
eqCO

(27)

Figures 6a, 6b, and 6c show the Bode diagram, root locus, and unit-step response of the above control-to-output

voltage transfer function for the parameters given in Table 1, respectively. The phase margin of the open-loop

system is equal to –78◦ . It is obvious that the transfer function is unstable (because of a pair of right half zone

poles), and also the low frequency gain is not adequate for the output dc voltage regulation. Therefore, it is

necessary to design a proper controller in order to use the converter as a stable system with acceptable transient

and steady state responses.
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Figure 6. Control-to-output transfer function (a) Bode diagram, (b) Root Locus and (c) unit-step response.

Table 1. Parameters of simulated converter.

Number of modules 2
Input voltage 100 V
Output voltage 200 V
Output power 2 kW
Switching frequency 20 kHz
Turn ratio of transformers (n2:n1) 50:50
Total leakage inductance 40 µH

4.2. Controller design

A PD controller may be applied to increase the stability margin and improve the transient response. Moreover,

a PI controller is suggested to improve the steady state response. The advantages of PD and PI controllers

can be combined to obtain a wide bandwidth and zero steady state error. Therefore, a PID controller with the

following transfer function is designed and employed for the proposed converter, as shown in Figure 7a.

Figure 7. (a) Closed-loop block diagram of controlled converter with PID controller, (b) Bode diagram of the designed

PID controller.
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Gcon(s) = KP (1 +
1

Tis
+ Tds) (28)

The PID controller is designed using a computational optimization approach [29]. It is desired to find a

combination of PID controller parameters, i.e. Kp , Ti , and Td , such that the closed-loop system has desired

maximum overshoot and settling time in the unit-step response. There may be more than one set of parameters

that satisfy the specifications. To solve this problem, it is necessary to specify the region to search for appropriate

parameters Kp , Ti , and Td . Then a program is written that, in the unit-step response, a combination of

parameters is found that will satisfy the criteria of the maximum overshoot and settling time. If a solution

does not exist in this region, then it is needed to expand it. In the computational approach, it is necessary to

determine the step size for each of parameters Kp , Ti , and Td region. In the actual design process, it is needed

to choose step sizes small enough. In this paper, the object is to find a combination of parameter values such

that the closed-loop system has a maximum overshoot of less than 12%, but more than 10%, in the unit-step

response. In addition, the settling time should be less than 3 ms. The selected combination of parameters for

the controller are listed in Table 2. Figure 7b shows the Bode diagram of the designed PID controller. Figure

8a shows the Bode diagram of the open-loop transfer function of the compensated system. In comparison with

the uncompensated system, the controller increases the low frequency loop gain and causes a better regulation

of the output voltage. The phase margin of the compensated system is increased to 75◦ . In addition, Figure 8b

illustrates the root locus of the system open-loop gain when the effect of the PID controller is considered. This

figure indicates that the controller increases the stability margin. Figure 8c shows the unit-step response of the

closed-loop transfer function of the compensated system, presenting important information about transient and

steady state operations. The unit-step response overshoot is equal to 10.3% and settling time is equal to 2.9

ms. Therefore, the controller shows an acceptable operation from stability, steady state, and transient responses

point of view.

Figure 8. Compensated system response, (a) Bode diagram, (b) Root Locus and (c) unit-step response.

2185



SEDAGHATI et al./Turk J Elec Eng & Comp Sci

Table 2. Parameters of PID controller.

Proportional gain (Kp) 0.03
Integral time constant (Ti) 1.1 × 10−3 s
Differential time constant (Td) 9.5 × 10−6 s

5. Simulation and measurement results

5.1. Verification of operation principles

In order to verify the operation principles of the proposed modular isolated bidirectional dc-dc converter, a low

power prototype with two modules is implemented as illustrated in Figure 9. The specifications and parameters

of the prototype converter are given in Table 3. The converter modular parallel and series bridges are constructed

using power MOSFETs (IRFP 250). Two high frequency transformers with turn ratio of 50:50 are connected

to the bridges, to transfer the power and perform the galvanic isolation. In addition, an auxiliary inductor is

used in series with each transformer to serve as an instantaneous energy storage component. The switching

frequency is 20 kHz. Therefore, the modular bridges generate a square wave voltage with a duty ratio of 50%

and frequency of 20 kHz. The proposed converter has the capability of bidirectional power flow only by leading

or lagging the phase shift between two bridges of the converter. The measurement results for both power flow

directions are considered in this section. Thirty-five degrees of phase shift is applied between the two bridges

to transfer 110 W from one side to the other side of the converter.

Figure 9. Experimental prototype.

Table 3. Specifications of prototype converter.

Number of modules 2
Input voltage 60 V
Output voltage 120 V
Output power 110 W
Switching frequency 20 kHz
Turn ratio of transformers (n1:n2) 50:50
Total leakage inductance 200 µH
Output capacitor 330 µF
Snubber capacitors 150 pF
Input and output bridge switches IRFP 250
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Figure 10 shows the measurement results of the power transmission from parallel bridge to series bridge.

Figures 10a and 10b show the primary and secondary square wave voltages of the transformers. The phase shift

angle between two square waves is positive. Figures 10c and 10d illustrate the voltage on external inductors and

transformer ac currents, which flow through the inductors. The relationship between the inductance voltage

and current is perceptible in these figures. The converter measured input dc voltage and input current before

the dc filter are shown in Figure 10e, and the converter measured output dc voltage and output current before

the dc filter are shown in Figure 10f.

Figure 10. Measurement results of power transmission from parallel bridge to series bridge, (a) and (b) primary (CH1)

and secondary (CH2) square wave voltages of transformers, (c) and (d) external inductors voltage and current in both

modules, (e) input dc voltage (CH1) and input current, before dc filter, (CH2) and (f) output dc voltage (CH1) and

output current, before dc filter, (CH2).
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Figure 11a shows the relation between the outer switch current and voltage in the parallel bridge. As

this figure indicates, when the current changes its polarity, the voltage on the switch is zero; therefore, the

switch is turned on in ZVS condition. Figure 11b illustrates the current and voltage of the inner switch in the

modular parallel bridge. ZVS takes place at turn on instant as well. In both switches, when the current starts

to decay to zero, the voltage is zero, and when the current reaches zero, the voltage reaches its clamping value.

This condition warrants ZVS turn off of these switches. As these figures show, the current in the inner switch

is twice that of the outer one in the modular parallel bridge. Figure 11c shows the relation between the current

and voltage of the outer switch in the series bridge. The inner switch current and voltage in this bridge are

shown in Figure 11d. As these figures illustrate, when the current starts to increase, the voltage on the switch

is zero; therefore, the switches are turned on in ZVS condition. Moreover, in both switches, when the current

changes its polarity, the switch voltages are zero as well; thus the switches are turned off in ZVS condition. As

expected in the series bridge, the inner switch reverse-voltage is twice that of the outer switch reverse-voltage.

Figure 12 shows the measurement results of the reverse direction of power transmission, i.e. from

series bridge to parallel bridge. Figures 12a and 12b present primary and secondary square wave voltages

of transformers. In this condition, the phase shift angle between two square waves is negative, which means

that the primary side phase is lagging the secondary side phase. Figures 12c and 12d show the voltage on

external inductors and also transformer ac currents in both modules. Figure 12e shows the converter measured

Figure 11. Measurement results of ZVS operation of the proposed converter. ZVS turn on and turn off of (a) outer

switches in the modular parallel bridge, (b) inner switches in the modular parallel bridge, (c) outer switches in the

modular series bridge, (d) inner switches in the modular series bridge.
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input dc voltage and input current before the dc filter, and the converter measured output dc voltage and output

current before the dc filter are shown in Figure 12f .

Figure 12. Measurement results of power transmission from series bridge to parallel bridge, (a) and (b) primary (CH1)

and secondary (CH2) square wave voltages of transformers, (c) and (d) external inductors voltage and current in both

modules, (e) input dc voltage (CH1) and input current, before dc filter, (CH2) and (f) output dc voltage (CH1) and

output current, before dc filter, (CH2).

Measurement results confirm operation principles of the experimental prototype for both power flow

directions. It is obvious that the proposed converter with more than two modules is useful for high power

applications.
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5.2. Verification of dynamic performance

The proposed converter extendable configuration and bidirectional power flow capabilities make it suitable as a

connection between two dc-links with different nominal voltage for applications such as dc microgrids. Therefore,

in this section, closed-loop control of the converter output voltage between two dc-links using PID controller

is simulated for step changes in input voltage and load power. The switching model of the proposed converter

with two modules is simulated using PSCAD/EMTDC. Simulations are performed for both directions of power

flow. Simulation parameters are given in Table 1.

Figure 13 shows simulation results of the power transmission from parallel bridge to series bridge. Two

step changes in input voltage and load power values are studied in this simulation. The first disturbance, which

is a 20% increase in the input voltage for duration of 0.2 s, starts at t= 0.2 s. As shown in Figure 13, the increase

in the input voltage results in a decrease in phase shift angle to keep the output power and voltage constant.

Therefore, during this disturbance, the load power and voltage remain at their desired values. When the first

disturbance ends, the phase shift angle returns to its initial value. The second disturbance is a 20% increase in

the load power at time t= 0.6 s. As load power increases, the converter phase shift angle increases. Therefore,

more power is absorbed from the source, and this leads to an increase in the load current and regulation of the

output voltage to its rated value.

Figure 13. Simulation results of dynamic performance of controlled converter for power transmission, from parallel

bridge to series bridge.

Figure 14 shows simulation results of power transmission in reverse direction, i.e. from series bridge

to parallel bridge. The effectiveness of the PID controller in the reverse power flow direction is illustrated in

this simulation. Notice that the reference voltage and output voltage have been changed for this condition.
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Similar to the previous simulation, two step changes in input voltage and load power values are simulated in

this simulation. The 20% increase in input voltage starts at t= 0.2 s and its duration is 0.2 s. As shown in

Figure 14, the increase in input voltage causes a decrease in phase shift angle value to keep the load current and

voltage at rated values. Notice that the phase shift angle is negative in this condition. The phase shift angle

returns to its initial value, when the voltage step change ends at t= 0.4 s. The second step change is a 20%

increase in the load power, which occurs at t= 0.6 s. As the load power increases, the converter phase shift

angle value increases as well. Thus, more power is transmitted from the source to the load, which leads to an

increase in the load current and regulation of the output voltage.

Figure 14. Simulation results of dynamic performance of controlled converter for power transmission, from series bridge

to parallel bridge.

These simulation results show the effectiveness of the PID controller for output voltage regulation during

dynamic variations at input and output sides of the proposed converter.

6. Conclusion

A new modular isolated bidirectional dc-dc converter has been proposed in this paper. High frequency operation,

ZVS capability, and fewer switching devices are the main advantages that make the extended configuration of

the proposed converter suitable for high power applications. It has been shown that the proposed converter has

the capability of power flow in both directions, only by leading or lagging the phase shift between two bridges.

A generalized averaging technique, which represents the averages of state variables using the dc and first order

terms of Fourier’s series, has been applied to model the proposed converter. The control-to-output transfer

function of the converter has been derived using a small-signal average model, and its frequency response,
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steady state, and transient responses have been studied. Based on the converter dynamic characteristics, a

closed-loop control using a PID controller has been designed. It has been shown that the controller can improve

the stability, and obtain acceptable transient and steady state responses. The operation principles of the

proposed converter and effectiveness of the PID controller are validated using experimental measurements and

simulation results.
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